
This is a postprint version of the following published document:

Zhang, C., & Peleato, B. (07-11 June 2020). On the
Average Rate for Coded Caching with Heterogeneous
User Profiles [proceedings]. ICC 2020: IEEE
International Conference on Communications. Virtual
Conference.

DOI: https://doi.org/10.1109/icc40277.2020.9148779

 © 2020, IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

On the Average Rate for Coded Caching with
Heterogeneous User Profiles

Ciyuan Zhang and Borja Peleato,
Purdue University

West Lafayette, IN 47907
Email:{zhan3375,bpeleato}@purdue.edu

Abstract—Coded caching utilizes pre-fetching during off-peak
hours and multi-casting for delivery in order to balance the
traffic load in communication networks. Most of the existing
research focuses on reducing the peak transmission rates with
homogeneous file popularities, despite modern systems are often
able to categorize users by their preferences and tend to care
more about the average rather than peak rate. This paper con-
siders a scenario with heterogeneous user profiles and analyzes
the average transmission rates for three coded caching schemes
under the assumption that each user can only request a subset of
the total available files. In addition, it evaluates the average rate
of the three schemes when the number of files is much larger
than the number of users and the amount of cache memory.
Furthermore, it proposes methods of cache allocations which
minimize the average rate when the users have relatively small
storage. Our results demonstrate connections between cache
distributions which result in minimal average rate and peak rate.

I. INTRODUCTION

With the high demand for data driven by state of the
art computer communication networks, coded caching was
introduced to drastically reduce the congestion of the systems
during their peak hours. In [1], Maddah-Ali and Niesen pro-
posed a coded caching scheme which maximizes multicasting
opportunities for the worst case user demands. Subsequent
works focused on lowering the peak rate in different sce-
narios [2], [3]. However, in practical systems it is common
for different users to request the same files, thus studying
the expected rate over all possible user demand profiles can
be more useful towards modeling and developing practical
caching schemes. Some works have studied the expected rate,
e.g. [4]–[6], but not with multiple heterogeneous users.

Papers like [7]–[9] have addressed the significance of pre-
dicting users searching behavior according to their preferences.
This mirrors the current trend of online video streaming
companies like Hulu and Netflix which spend a considerable
amount of money investigating their customers’ habits and
categorizing them according to their streaming preferences.
The paper [10] addressed a system where the users are grouped
into classes with similar file interests. It proposed three coded
caching schemes for this scenario and studied their peak rate.
However, in practical systems, the peak rate is infrequently
achieved and the average rate is a preferred representation of
cost, speed, and overall performance.

In this paper, we aim to characterize the average rate of
the three schemes proposed in [10] and compare them asymp-
totically. In practical computer communication networks, the

number of files online is exceedingly larger than the number
of users and their storage capacity. The streaming experience
is remarkably affected by the shortage of local storage at
the users. This paper provides suggestions for choosing a
scheme in a system with heterogeneous user profiles where
the number of users and quantity of memory is much smaller
than the number of files. Furthermore, the heuristics in this
paper provide users with instructions on how to allocate their
limited cache memory.

This paper will be organized as follows: Section II –
system model and schemes utilized, Section III - calculating
average rate, Section IV - results, Section V – simulations,
and Section VI - conclusion.

II. SYSTEM MODEL

The average rate of a system with heterogeneous users was
addressed in [6], [11], [12], but just for the case of two users.
This paper considers a system with a single server connected
to K end users through an error-free broadcast link. The server
is storing N files of F bits and the end users have independent
cache storage of MF bits each. The N files are divided into
common files, which may be requested by all users, and unique
files, such as cartoon or sci-fi movies, which are only appealing
to a subset of the users. The K users are divided into G classes
according to the different types of files that they may request.
In this paper, we assume that the number of users and unique
files is the same for each class, and they do not overlap with
each other. Therefore, the number of users per class is K

G and
N = Nc + GNu, where Nc is the number of common files
and Nu is the number of unique files per class. This scenario
is illustrated in Figure 1 with only two classes.

A coded caching scheme contains a placement phase and
a delivery phase. In the placement phase, the server first
partitions all the files into segments of equal size and stores
them into some users’ cache. In the delivery phase each user
makes a file request, the server delivers coded segments to
satisfy users’ requests. In this paper, we assume that every
user requests a single file in the delivery phase to demonstrate
the congested time of the network system.

This paper adapts the centralized coded caching scheme
with uncoded prefetching proposed by Maddah-Ali and
Niesen [1], from this point on referred to as MN’s scheme,
to heterogeneous user profiles. In the placement phase, MN’s
scheme splits each file into

(
K
t

)
distinct segments, where

FIGURE 1: System Model with two distinct classes, A and B,
each having 2 users. Each user’s cache is divided into cache
for common or unique files.

t = KM
N . Each segment is cached by a distinct set of t users,

which results in each user caching
(
K−1
t−1
)

segments per file.
Specifically, this scheme can satisfy any vector of requests by
transmitting at most

(
K
t+1

)
messages of size

(
K
t

)
bits. The peak

rate (normalized by the file size F) is written as

RMN (K, t) =

(
K
t+1

)(
K
t

) =
K − t
t+ 1

. (1)

If only some of the users make a request and their requests
overlap, or the server only receives requests for m files, then
the transmission rate with MN’s scheme will become

R(K,m, t) =

(
K
t+1

)
−
(
K−m
t+1

)(
K
t

) , (2)

as was shown in [4].
In our simulations, we will introduce several approximations

to extend Eq. (2) into a continuous function over 0 ≤ t ≤ K,
which we now describe.

When t ≤ 1, the joint memory of the users is not enough to
cache every file in full. In that case, there will be a portion of
each file which is not cached anywhere, and therefore needs to
be transmitted uncoded whenever any user requests that file.
The rest of the file can be transmitted using coded caching
schemes. By denoting the fraction of each file being left out
as p, it can be written that KM = (1 − p)N . Therefore,
according to [13], the overall transmission rate when t ≤ 1 is

R = N(~d)p+ [Rate if t = 1](1− p), (3)

where N(~d) is the number of distinct files being requested.
When K − 1 < t ≤ K, there will be a portion of each

file which is cached by every user and thus never needs to
be transmitted. We use coded caching to transmit the rest.
Denoting the portion of file segment being cached by all the
users as γ, the transmission rate when t ∈ (K − 1,K] is

R = 0 · γ + [Rate if t = K − 1](1− γ). (4)

When t > 1 and is not an integer, Eq. (2) is not well defined
because the combinatorial expressions require the coefficients
to be strictly non-negative integers. Therefore, the Gamma
function was used to extend their domain. Since the Gamma

function satisfies Γ(n) = (n − 1)!, the binomial coefficients
in Eq. (2) can be interpolated continuously as(

n

k

)
=

n!

k!(n− k)!
=

Γ(n+ 1)

Γ(k + 1)Γ(n− k + 1)
(5)

without any error when they are integers.
The schemes utilized in this paper are based on MN’s

scheme and were first proposed in [10].
• Scheme 1: the system behaves as if all files are common.

It ignores the differences between all user profiles and
requires every user to cache segments from every file,
even if it would never request them.

• Scheme 2: the system decouples the caching and delivery
of common and unique files. Each user devotes a fraction
x of its cache to store segments from common files and
(1 − x) to unique files. The placement and delivery of
both common and unique files are done independently
according to MN’s scheme. This paper optimizes the ratio
x so that a minimum average rate is achieved.

• Scheme 3: the system treats all files as unique files. It
ignores the fact that some files can be requested by all
user classes and independently applies MN’s scheme for
placement and delivery phases within each class of users.

III. CALCULATING AVERAGE RATE

In the delivery phase, each user k makes a request dk to
the server and we denote the probability mass function (pmf)
of the random request dk as p[k]dk

.

Definition 1. The demand set for user k is defined as Sk ,{
n ∈ [Nc +GNu] : p

[k]
n > 0

}
, which represents the set of

distinct files that are demanded by user k with a positive
probability p.

Now we derive the average rate for the three schemes.
• Scheme 1: The average rate according to Eq. (2) is:

R(1)
avg =

∑
∀~d

p~d

(
K

t1+1

)
−
(
K−N1(~d)

t1+1

)(
K
t1

) , (6)

where N1(~d) denotes the number of distinct files re-
quested by the K users and t1 = KM

Nc+GNu
. This scheme

behaves as if any user can demand any of the Nc +GNu

files, despite each user only demands from a set of
Nc +Nu files corresponding to its class.

• Scheme 2: The average rate can be calculated as:

R(2)
avg = Rc +

G∑
i=1

Ru, (7)

consisting of the average transmission rate for transmit-
ting common files Rc and that for unique files Ru in each
class. According to Eq. (2), Rc is given by

Rc =
∑
∀~d

p~d

(
K

tc+1

)
−
(
K−Nc(~d)

tc+1

)(
K
tc

) , (8)

where Nc(~d) denotes the number of distinct common files
requested by the K users and tc = KMx

Nc
, with x denoting

the ratio of storage which the user allocates to common
file segments. Similarly, the average transmission rate for
unique files in each class is written as

Ru =
∑
∀~d

p~d

(K
G

tu+1

)
−
(K

G−Nui
(~d)

tu+1

)(K
G
tu

) , (9)

where tu = KM(1−x)
GNu

, and Nui
(~d) denotes the number

of distinct unique files requested by the K/G users in the
i-th class.

• Scheme 3: The average rate when considering all files as
unique is calculated by independently applying Eq. (2) to
each class of users, resulting in:

R(3)
avg =

G∑
i=1

∑
∀~d

p~d

(K
G

t3+1

)
−
(K

G−N3i
(~d)

t3+1

)(K
G
t3

) , (10)

where t3 = KM
G(Nc+Nu)

and N3i(
~d) represents the number

of distinct files requested by the K/G users in the i-th
class.

Henceforth we will focus on analyzing Scheme 2 when K
is very large, because as later proven, it is able to achieve a
lower average rate than Schemes 1 and 3 in the asymptotic
regime, i.e. , when Nc = Nu and both are much larger than
K and M . Now we derive approximations to Eq. (7).

To determine the cumulative distribution function (cdf) of
a random request, we assume that the users’ demands are
independent and uniformly distributed over the demand set.
When the number of users K is large enough, the number
of distinct files being requested is approximated to follow a
Gaussian distribution whose mean and variance can be derived
using the method of indicators.

Lemma 1. Under the previous assumptions, the expected
number of distinct files requested by K users from N distinct
files in the delivery phase of a coded caching system is

E[X] = N
[
1−

(N − 1

N

)K]
. (11)

Proof. See Appendix.

When the number of users and files is large, the number of
distinct files being requested becomes large and the variance of
the normal distribution is negligible. According to the law of
large numbers, the number of distinct files requested should be
close to the expected value. We will approximate the number
of distinct files being requested as a constant, and approximate
the variance as zero due to the large number of distinct files
being requested.

In Scheme 2, the number of distinct unique files requested
by each class of users can be approximated to be identical for
all classes when the number of classes is much smaller than

0 20 40 60 80 100 120

M

0

10

20

30

40

50

60

A
v
e

ra
g

e
 R

a
te

G=2 Actual Rate

G=2 Approximate Rate

G=4 Actual Rate

G=4 Approximate Rate

G=8 Actual Rate

G=8 Approximate Rate

FIGURE 2: Actual rate vs Approximate rate for Nc = 64, Nu =
64, and 8 users per class.

the number of unique files and users per class. With these
approximations, Eq. (7) becomes

R(2)
avg '

(
K

tc+1

)
−
(
K−E[Nc(~d)]

tc+1

)(
K
tc

) +G

(K
G

tu+1

)
−
(K

G−E[Nu(~d)]
tu+1

)(K
G
tu

) .

(12)
In this equation, tc = KMx

Nc
, tu = KM(1−x)

GNu
, and according

to Lemma 1,

E[Nc(~d)] = Nc

[
1−

(Nc +Nu − 1

Nc +Nu

)K]
, (13)

E[Nu(~d)] = Nu

[
1−

(Nc +Nu − 1

Nc +Nu

)K/G]
. (14)

Figure 2 compares the average rate from Eq. (7) and its
approximation in Eq. (12) for a system with Nc = 64, Nu =
64 and 8 users per class. The approximation error is within
2 percent of the exact value, even when the number of files
and users is small. Therefore, in Section IV we investigate
Eq. (12) instead of the exact rate.

IV. RESULTS

This section will attempt to optimize the distribution of
cache between common and unique files in Scheme 2 (namely
x) so that the average rate is minimal when the amount of
memory is small. It will also compare the asymptotic average
rate of the three schemes in Section III when Nc = Nu and
both are much larger than the number of users and their cache
capacity. It will consider different regimes where the number
of files of one type is excessively larger than that of the other,
and propose an optimal cache partition to reach a minimal
asymptotic average rate for Scheme 2.

First, we study how to optimally split the cache between
common and unique files in Scheme 2 (i.e, optimizing x) when
the local storage is relatively small.

Proposition 2. When utilizing Scheme 2, given the conditions
Nc ≥ K−1

4K GNu, the user should always devote all the cache
to common files (x = 1) when M ≤ GNu−2Nc

2K+GNu
Nc

so that the

average rate is minimized.

Proof. See Appendix.

Corollary 1. When the users’ devices have relatively small
storage compared to the amount of the files, and the number
of common files is larger than a quarter of the total number of
unique files, it is recommended for the users to devote all the
cache to common files and transmit the unique files uncoded.

The proposition above provides the optimal x when M is
relatively small. When M is greater than the threshold given,
we should decrease x to achieve the lowest average rate.

Now we turn our attention to asymptotic regimes where the
number of files is remarkably larger than the number of users,
as in a practical system.

Proposition 3. Scheme 2 achieves a lower average rate than
Schemes 1 and 3 when Nc = Nu → ∞, provided K and M
are large but much smaller than Nc (e.g. K = M =

√
Nc).

Proof. See Appendix.

Our simulation results, as well as the above proposition,
suggest that the following hypothesis might be true, but we
have been unable to prove it:

Hypothesis. When K < Nc,K < Nu and the users’ local
memory is very small, Scheme 2 achieves a lower average
rate of transmission than 1 or 3.

Furthermore, we extend the asymptotic regime to the situ-
ation when the number of common and unique files are not
equal. We will show that the optimal x also depends on the
comparison between Nc and Nu.

Proposition 4. In Scheme 2, we assume that G and K are
both much smaller than Nc and Nu, when Nu << Nc →∞,
the users should always cache all the common files (x = 1)
and transmit the unique files uncoded so that the average rate
is minimal. Contrarily, when Nc << Nu → ∞, the users
should always devote all the cache to unique files (x = 0) to
reach the minimal average rate.

Proof. See Appendix.

The specialty of Scheme 2 is that its flexibility to devote
the users’ cache to different files according to the parameters
of the system. The Proposition 4 demonstrates that when the
amount of files of one type is exceedingly larger than that
of the other, the system should devote all of its cache to the
dominant type of files, which aligns with our intuition.

V. SIMULATIONS

The minimal average rate of a coded caching system with
heterogeneous user profiles is unknown. In order to find an
approximate lower bound for the achievable rate, we define
a new scheme "MN with oracle", where the system knows
in advance whether each user will request a common or
unique file and populates the caches accordingly. Using MN’s

10 20 30 40 50 60

M

30

35

40

45

50

55

60

65

A
v
e

ra
g

e
 R

a
te

G = 8

All Common

Split

All Unique

MN with oracle

10 20 30 40 50 60 70 80

M

40

50

60

70

80

90

100

A
v
e

ra
g

e
 R

a
te

G = 12

All Common

Split

All Unique

MN with oracle

20 40 60 80 100

M

40

60

80

100

120

140
A

v
e

ra
g

e
 R

a
te

G = 16

All Common

Split

All Unique

MN with oracle

FIGURE 3: Actual rate vs Cache Size (M) for Nc = 1024,
Nu = 1024, and 8 users per class.

placement and delivery scheme for common and unique files
separately yields the following average rate for this scheme:

Rorc =
K∑

Kc=0

pKc

[
R(Kc,mc, toc)+GR

(K −Kc

G
,mu, tou

)]
,

(15)
where R(K,m, t) is defined in Eq. (2), Kc represents the
number of users that request common files, toc = KcM

Nc
,

tou = (K−Kc)M
GNu

, mc and mu are the expected number of
distinct common and unique files requested, respectively, and

pKc
=

(
K

Kc

)(Nc

Nc +Nu

)Kc
(Nu

Nc +Nu

)K−Kc

. (16)

5 10 15 20

Number of classes

0

2

4

6

8

10

12

14

A
v
e
ra

g
e
 R

a
te

2 users per class

All Common

Split

All Unique

5 10 15 20

Number of classes

0

5

10

15

20

A
v
e
ra

g
e
 R

a
te

8 users per class

All Common

Split

All Unique

FIGURE 4: Average rate vs number of classes for Nc = 64,
Nu = 64, and M = 64.

Figure 3 compares the average rate provided by the three
schemes in Section III with this lower bound for a system with
Nc = 1024, Nu = 1024 and 8 users per class. The storage of
each user is relatively small compared to the library of files.
The coefficients of the system are close to the asymptotic
regime in Section IV where M < K << Nc = Nu. The
figures illustrate that Scheme 2, which splits the placement
and delivery of common and unique files, achieves the lowest
average rate among all three schemes. This result aligns with
Proposition 3 and supports our hypothesis that Scheme 2
provides lower average rate than the other two for small M .

It is worth noting that these results are different from those
observed in [10] for the peak rate, where Scheme 2 presented
the highest peak rate among the three schemes for small M .

Figure 4 investigates the performance of the three schemes
as the number of classes grows. In this scenario, Nc = Nu =
64, and we set M = 64 to provide enough storage for each
user to cache half of the files it could request. The top plot
stands for the case with 2 users per class, and the bottom
plot for the case with 8 users per class. The figure shows that
Scheme 2 achieves a lower average rate than the other two
as G increases. This result aligns with the peak rate analysis
in [10] and with Prop. 3. However, when G is small, the
average rate with Scheme 2 is worse than that with the other
two schemes, since the number of files does not fulfill the
conditions of the aforementioned Proposition.

VI. CONCLUSION

The average rate is a critical metric for evaluating the
performance of a coded caching system, since peak rate is
scarcely reached during the system’s operation. This paper
derived the average rates for three caching schemes within
a system with heterogeneous user profiles. Assuming that
user requests are independent and uniformly distributed over
their own demand set, it was shown that decoupling caching
and delivery of common and unique files provides the lowest
average rate than the other two schemes when the cache
capacity is small. In addition, the comparison yields opposite
trends for average rate and peak rate when the storage is small.

Moreover, we showed that when the size of the users’ cache
is small and the number of common files is larger than one-
fourth of the total number of unique files, the users should
invariably cache all the common files and transmit the unique
files uncoded to achieve a minimal average rate. This scenario
reflects practical systems where the storage capacity of users
does not match up with the huge amount of online files.
In addition, when one type of files significantly outnumbers
the other, to reach the minimal average rate, the users are
recommended to devote all of their cache storage to those
files that are numerically larger.

APPENDIX

A. Proof of Lemma 1

Proof. We define the random variable Ij as the file demand
indicator for each of the N files,

Ij =

{
1 if at least one user requests jth file
0 otherwise.

(17)

The total number of distinct files being requested by K users
is then X =

∑N
j=1 Ij . Utilizing the linearity of expectation

and assuming K independent requests uniformly distributed
among the N files yields Eq. (11).

B. Proof of Proposition 2

Proof. The partial derivative of R(2)
avg with respect to x is,

∂R
(2)
avg

∂x
=
∂Rc

∂x
+
∂(GRu)

∂x
. (18)

In this equation, by using the chain rule to derive R(2)
avg with

respect to tc and tu and then respect to x, the term which
dominates the value of ∂Rc

∂x in terms of tc is

Y1 =

(
K

tc+1

)(
K
tc

) KM

Nc

[
ψ(tc + 1)− ψ(tc + 2)

]
, (19)

where ψ(x) is digamma function and tc = KMx
Nc

. Similarly,
the term that dominates the value of ∂(GRu)

∂x in terms of tu is

Y2 =

(K
G

tu+1

)(K
G
tu

) KM

Nu

[
ψ(tu + 2)− ψ(tu + 1)

]
, (20)

where tu = KM(1−x)
GNu

. Since ψ′(x) > 0, we can write that
Y1 < 0, ∀x ∈ [0, 1] and Y2 > 0, ∀x ∈ [0, 1]. |Y1| is minimal

when x = 1, |Y2| reaches maximum when x = 1. Hence, we

need to prove that |Y1| ≥ |Y2| when x = 1, so that
∂R(2)

avg

∂x ≤
0, ∀x ∈ [0, 1]. The inequality can be written as(

K
KM
Nc

+1

)
(

K
KM
Nc

) KM

Nc

[
ψ
(KM
Nc

+ 2
)
− ψ

(KM
Nc

+ 1
)]
≥ K2M

GNu
.

(21)
The left hand side is strictly increasing with tc = KM

Nc
. In this

inequality, as long as M ≤ Nc

K , we are able to let KM
Nc

= 1
which is the lowest tc eligible. Hence, the inequality can be
simplified to

M ≤ GNu − 2Nc

2K + GNu

Nc

. (22)

Note that the assumption is that M ≤ Nc

K , hence, the
inequality GNu−2Nc

2K+GNu
Nc

≤ Nc

K must be satisfied. By simplifying
the inequality, we are able to get the constraint which is
Nc ≥ K−1

4K GNu.

C. Proof of Proposition 3

Proof. Under the asymptotic regime being considered (Nc =
Nu →∞), it can be written that Nc(~d)→ 1

2K, Nu(~d)→ 1
2
K
G .

Therefore, by substituting both Nc(~d) and Nu(~d) in Eq. (12),
expanding the combinatorial terms and taking the limit when
K →∞, Rc is simplified as:

Rc =
K − tc −K(1

2)tc+1

tc + 1
. (23)

We write tu = tc
G

1−x
x , since Nc = Nu. Hence, Ru can be

written as:

Ru =
K − tc 1−x

x −K(1
2)

tc
G

1−x
x +1

tc
G

1−x
x + 1

. (24)

Hence, the average rate of Scheme 2 in asymptotic regime is:

R(2)
avg =

K − tc −K(1
2)tc+1

tc + 1
+
K − tc 1−x

x −K(1
2)

tc
G

1−x
x +1

tc
G

1−x
x + 1

.

For Scheme 1 and 3, it can be written that N1(~d)→ K and
N3(~d) → K/G. Therefore, by replacing N1(~d), N3(~d) and
taking the limit while K → ∞, the average rate for Scheme
1 and 3 can be written as:

R(1)
avg =

(
K

t1+1

)
−
(
K−N1(~d)

t1+1

)(
K
t1

) → K − t1
t1 + 1

→ K, (25)

R(3)
avg = G

(K
G

t3+1

)
−
(K

G−N3i
(~d)

t3+1

)(K
G
t3

) → G
K
G − t3
t3 + 1

→ K. (26)

R
(2)
avg’s minimum is reached when x = 1, which was

proved in the previous section. A simple calculation shows
that R(2)

avg < K when x = 1.

D. Proof of Proposition 4

Proof. When K << Nu << Nc → ∞, it can be expressed
that Nc(~d) → K, Nu(~d) → 0. Therefore, by substituting
Nc(~d) and Nu(~d) into Eq. (18), it can be calculated that

∂R
(2)
avg

∂x
=

(
K

tc+1

)(
K
tc

) KM

Nc

[
ψ(tc + 1)− ψ(tc + 2)

+ψ(K − tc)− ψ(K − tc + 1)
]
. (27)

Since ψ′(x) > 0, it can be written that
∂R(2)

avg

∂x < 0, ∀x ∈ [0, 1].
Therefore, choosing x = 1 will result in the minimal R(2)

avg.
When K << Nc << Nu → ∞, by replacing Nc(~d) → 0

and Nu(~d)→ K
G into Eq. (18), we get

∂R
(2)
avg

∂x
=

(K
G

tu+1

)(K
G
tu

) KM

Nu

[
ψ(tu + 2)− ψ(tu + 1)

+ψ
(K
G
− tu + 1

)
− ψ

(K
G
− tu

)]
. (28)

It can be derived that
∂R(2)

avg

∂x > 0, ∀x ∈ [0, 1]. Hence, choosing
x = 0 will contribute to the minimal R(2)

avg.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–
2867, 2014.

[2] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” IEEE Transactions on Information Theory, vol. 63, no. 2,
pp. 1146–1158, 2017.

[3] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded
caching,” IEEE/ACM Transactions on Networking (TON), vol. 24, no. 2,
pp. 836–845, 2016.

[4] T. Luo, V. Aggarwal, and B. Peleato, “Coded caching with distributed
storage,” arXiv preprint arXiv:1611.06591, 2016.

[5] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact
rate-memory tradeoff for caching with uncoded prefetching,” IEEE
Transactions on Information Theory, vol. 64, no. 2, pp. 1281–1296,
2018.

[6] C.-H. Chang and C.-C. Wang, “Coded caching with heterogeneous file
demand sets - the insufficiency of selfish coded caching,” IEEE Internat.
Symp. on Information Theory (ISIT), 2019.

[7] A. Hannak, P. Sapiezynski, A. Molavi Kakhki, B. Krishnamurthy,
D. Lazer, A. Mislove, and C. Wilson, “Measuring personalization of
web search,” in Proceedings of the 22nd international conference on
World Wide Web. ACM, 2013, pp. 527–538.

[8] A. McCallum, K. Nigam, J. Rennie, and K. Seymore, “A machine
learning approach to building domain-specific search engines,” in IJCAI,
vol. 99. Citeseer, 1999, pp. 662–667.

[9] E. Agichtein, E. Brill, S. Dumais, and R. Ragno, “Learning user
interaction models for predicting web search result preferences,” in
Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval. ACM, 2006,
pp. 3–10.

[10] S. Wang and B. Peleato, “Coded caching with heterogeneous user
profiles,” IEEE Internat. Symp. on Information Theory (ISIT), 2019.

[11] C.-H. Chang and B. Peleato, “On coded caching for two users with
overlapping demand sets,” to appear in IEEE International Conf. on
Comm. (ICC), 2020.

[12] C.-H. Chang, B. Peleato, and C.-C. Wang, “Coded caching with full
heterogeneity: Exact capacity of the two-user/two-file case,” submitted
to IEEE Transactions on Information Theory.

[13] T. Luo and B. Peleato, “The transfer load-i/o trade-off for coded
caching,” IEEE Communications Letters, vol. 22, no. 8, pp. 1524–1527,
2018.

