

Wei, F., Feng, G., Sun, Y., Wang, Y. and Liang, Y.-C. (2020) Dynamic Network Slice

Reconfiguration by Exploiting Deep Reinforcement Learning. In: 54th IEEE

International Conference on Communications (ICC), Dublin, Ireland, 7-11 June 2020,

ISBN 9781728150895 (doi:10.1109/ICC40277.2020.9148848)

There may be differences between this version and the published version. You are

advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/212843/

Deposited on 27 March 2020

Enlighten – Research publications by members of the University of Glasgow

http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/ICC40277.2020.9148848
http://eprints.gla.ac.uk/212843/
http://eprints.gla.ac.uk/

Dynamic Network Slice Reconfiguration by
Exploiting Deep Reinforcement Learning

Fengsheng Wei, Gang Feng, Senior Member, IEEE, Yao Sun, Yatong Wang, Ying-Chang Liang, Fellow, IEEE
University of Electronic Science and Technology of China

E-mail:fenggang@uestc.edu.cn

Abstract—It is widely acknowledged that network slicing can
tackle the diverse usage scenarios and connectivity services
that the 5G-and-beyond systems need to support. To guaran-
tee performance isolation while maximizing network resource
utilization under traffic uncertainty, network slice needs to be
reconfigured adaptively. However, it is commonly believed that
the fine-grained resource reconfiguration problem is intractable
due to the extremely high computational complexity caused by
the numerous variables. In this paper, we investigate network
slice reconfiguration with aim of minimizing long-term resource
consumption by exploiting Deep Reinforcement Learning (DRL).
To address the curse of dimensionality of the problem, we propose
to incorporate the Branching Dueling Q-network (BDQ) into
DRL, to avoid some unnecessary calculations of Q-value by
separating the Q-network into a shared value branch and a
number of distributed advantage branches. Furthermore, the
value branch and the advantage branch of each dimension are
aggregated to derive the corresponding dimension’s sub-Q-value.
Then the best reconfiguration action is composed of the sub-
actions in individual dimensions which are selected by ϵ-greedy
policy. Finally, we design an intelligent online network slice
reconfiguration policy based on BDQ and extensive simulation
experiments are conducted to validate the effectiveness of the
proposed slice reconfiguration policy.

I. INTRODUCTION

It is widely acknowledged that network slicing is a key
enabler to address the diverse requirements that the 5G-
and-beyond systems are envisioned to support. Unlike the
traditional wireless network, network slices not only need cus-
tomized capabilities that are crucial for corresponding services,
but also need the capability to adapt to the changing traffic
requirements [1]. Traffic load variations or traffic uncertainty
in network slice may degrade the resource utilization and
deteriorate the Quality of Service (QoS). On the one hand,
fluctuations in traffic demands will cause the optimal resource
allocation to lose its optimality, thereby reducing resource
utilization. On the other hand, it can also cause Slice Level
Agreement (SLA) violation and degrade the QoS of the slice.
Consequently, it is necessary to perform slice reconfiguration
that adjusts the resource allocation for a slice according to the
variations of traffic demand, so as to maintain high resource
efficiency while meeting slice service quality.

This work has been supported by the R&D Program in Key Areas of
Guangdong Province (Grant No. 2018B010114001), the General Program of
National Natural Science Foundation of China (Grant No. 61871099), and
the Fundamental Research Funds for the Central Universities (Grant No.
ZYGX2019J122).

Recently, a body of research work use a common paradigm
which periodically optimize Network Slice Reconfiguration
Problem (NSRP) instances to meet the instantaneous traffic
demands of the network slice [2], [3]. However, this class of
solutions may cause frequent reconfigurations to maintain the
optimality of resource allocation, due to the lack of a pre-
diction mechanism of future traffic requirements. In the long
run, these solutions may cause substantial overhead because
the reconfiguration itself incurs certain resource overhead,
such as control and management overhead in establishing and
adjusting the links, rerouting overhead in routing disturbance,
and retransmission overhead due to data loss [4], etc.

NSRP with long-term optimization objective is essentially a
sequential decision problem, which involves two interrelated
aspects of network slice reconfiguration. On the one hand,
the optimal network slice embedding should be addressed
based on the instantaneous traffic demands of the flows in the
network slice. On the other hand, future traffic demands should
be also taken into account to reduce the number of unnecessary
reconfigurations. Fortunately, recent emerging Reinforcement
Learning (RL) provides an effective tool to solve such sequen-
tial decision problems under complex environments. However,
for NSRP in a substrate network with non-trivial network slice,
traditional table-based RL is infeasible due to its complicated
state space and the multi-dimensional discrete action space.

In this paper, we resort to Deep Reinforcement Learning
(DRL) to solve NSRP. Since NSRP involves two interrelated
networks, i.e., the substrate network and network slice, it is
difficult to extract an effective set of features to represent
the environment [5]. To model NSRP as a Markov Decision
Process (MDP), we simplify the representation of the envi-
ronment based on the problem properties rather than directly
representing the networks. We first utilize depth-first-search
(DFS) to identify all the physical paths that can serve the
Service Function Chain (SFC). Then we use their capacities
together with virtual flow rates and history information of
reconfiguration to represent the state of the environment. After
a trial and error process of designing, we model the NSRP as
an MDP.

Nevertheless, it is still very challenging to solve NSRP by
employing the most commonly used DRL algorithms such as
Deep Q-Network (DQN) and Deep Deterministic Policy Gra-
dient (DDPG). Although these algorithms can be used to solve
MDPs with multi-dimensional state space, unfortunately they

fail in converging for the problems with multi-dimensional
action spaces, let alone the action is also discrete [6]. To
cope with this convergence issue, we exploit the Branching
Dueling Q-network (BDQ) to evaluate the state-action values
and propose an Intelligent Network Slicing Reconfiguration
Algorithm (INSRA).

The remainder of the paper is organized as follows. Section
II presents the system model and the formulation of NSRP. In
Section III, we present the MDP modeling for the NSRP and
elaborate our proposed INSRA. In Section IV, we present the
numerical results and we conclude the paper in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATIONS

We model the substrate network as a weighted directed
graph Gs = (Ns, Ls), where Ns and Ls denote the sets of
nodes and links respectively. The physical nodes, denoted by
Ns = {1, 2, · · · , n}, can be classified into two types: VNF-
capable nodes and common nodes. The former can provide
Network Functions (NFs) while the latter are only used for
packet forwarding. The VNF set is denoted by F . In partic-
ular, some common nodes can serve as source nodes and/or
destination nodes, which have no VNF functionality and are
denoted by S and D respectively. The residual computational
capacity of the node i ∈ Ns is denoted by Rs

c,t(i) and the
residual bandwidth capacity of the link (i, j) ∈ Ls is denoted
by Rs

b,t(i, j).
The service provided by the network slice is defined by its

SFC. We assume the SFC of the network slice consists of
h ordered VNFs denoted as f1 → · · · → fh. Suppose there
are N flows in the network slice. The kth flow is denoted
by (sk, dk, µk,t), which represent the source node, destination
node, and the rate of the flow, respectively. Note that we use
subscript t to denote the time throughout the paper.

To avoid coordination overhead caused by service splitting,
we assume that a flow receives each service function by
exactly one VNF-capable node as in [7]. Let the binary
variable xi,f (k) ∈ {0, 1} denote whether node i provides
function f for flow k (i.e., xi,f (k) = 1 if node i provides
function f for flow k, otherwise xi,f (k) = 0). To ensure that
only one physical node serves VNF f for flow k, we have the
following constraint:∑

i∈Ns

xi,f (k) = 1,∀k, ∀f ∈ F . (1)

To embed the network slice, each flow needs three types
of resources: the computational resources for VNF function,
the computational resources for packet forwarding, and the
bandwidth resources for packet transmission. Without loss of
generality, similar to that in [7], we assume that one unit
data flow consumes one unit computational resource, ωb units
bandwidth and ωf units forwarding resource.

As that in [7], the amount of computational resources for
the VNF required by flow k is:

Rc
k(t) =

∑
i∈Ns,f∈F

xi,f (k)µk,t. (2)

The amount of computational resources consumption for
VNF of node i is:

Rc(i) =
∑

1≤k≤N,f∈F

xi,f (k)µk,t. (3)

The required bandwidth and the forwarding resources are
related to the length of the path onto which the flow is mapped
[7]. We use rij(k) to denote the data rate of flow k on link
(i, j). Please note that the flows are not split in our model.
Therefore, rij(k) only takes two possible values for k. In
particular, flow k is mapped to the path that contains link
(i, j) if rij(k) = µk,t, otherwise rij(k) = 0. The variable
rij(k) should satisfy the flow conservation law on all nodes.
In particular, for the intermediate nodes, we have the following
constraint:∑

j∈Ns

rji(k)−
∑
j∈Ns

rij(k) = 0,∀i ∈ Ns,∀k. (4)

For source node sk and destination node dk of flow k, we
have ∑

j∈Ns

rij(k) = µk,t,∀k, i = sk (5)

and ∑
i∈Ns

rij(k) = µk,t,∀k, j = dk, (6)

respectively.
The amount of computational resources used for forwarding

flow k is:
Rf

k(t) =
∑

(i,j)∈Ls

ωfrij(k). (7)

Because the destination nodes do not forward flows, the
amount of resources used for forwarding on node i is:

Rf (i) =


∑

1≤k≤N,(i,j)∈Ls

ωfrij(k), if i /∈ D

0, otherwise.
(8)

The total bandwidth consumed by flow k is:

Rb
k(t) =

∑
(i,j)∈Ls

ωbrij(k). (9)

Similarly, the total bandwidth consumption of link (i, j) can
be computed as:

Rb(i, j) =
∑

k
ωbrij(k). (10)

To accommodate the traffic dynamics of flows in a network
slice, we need to adaptively reconfigure the network slice
with the aim to minimize the long-term resource consumption.
The resource consumption consists of two parts: the resource
for embedding the network slice and that for reconfiguring
the network slice. To formulate the NSRP, we define the
embedding cost and the reconfiguration cost for resource
provisioning of embedding the network slice and reconfiguring
the network slice, respectively.

To define the embedding cost, we assume the pricing
functions for computational and bandwidth resources are φc(·)

and φb(·), respectively [3]. Accordingly, the cost of embedding
the network slice, i.e., the embedding cost is defined as:

Cres(t)=φc

[
N∑

k=1

(
Rc

k(t)+Rf
k(t)

)]
+φb

[
N∑

k=1

Rb
k(t)

]
. (11)

The amount of reconfiguration resources is quantified as
a function of the state difference of a slice before and after
reconfiguration [3]. Similar as in [3], the state of a network
slice is reflected by the node mapping variable x and link
mapping variable r. To reflect the resource consumption for
reconfiguring the network slice, we define the reconfiguration
cost as

Cconf (t) = δTx · I(x− x′) + δTr · I(r − r′), (12)

where x′, r′ are the resource allocation variables at the previ-
ous time, δTx and δTr respectively are cost coefficients of the
reconfiguration on nodes and links, and I(·) is an indicator
function, i.e., if x ̸= 0, I(x) = 1; otherwise I(x) = 0.
Therefore, the total cost for an operation of reconfiguring the
network slice at time t is:

C(t) = Cres(t) + Cconf (t). (13)

Next, we formulate the NSRP as:

min
x,r

lim
T→∞

1

T

T∑
t=0

C(t) (14)

s.t. (1), (4)− (6) (14.1)
Rf (i) +Rc(i) ≤ Rs

c,t(i),∀i ∈ Ns (14.2)

Rb(i, j) ≤ Rs
b,t(i, j),∀(i, j) ∈ Ls (14.3)

rij(k) ∈ {0, µk,t},∀(i, j) ∈ Ls,∀k ∈ {1, · · · , N}. (14.4)
xi,f (k) ∈ {0, 1},∀i ∈ Ns,∀f ∈ F ,∀k. (14.5)

NSRP is an MIP which turns out to be NP-hard. The proof
is based on the polynomial time reduction from the multi-way
separator problem [8].

III. INSRA POLICY

In this section, we use MDP to model the long-term
decision-making problem NSRP, and then solve it by using
DRL.

A. Markov Decision Process Modeling for NSRP

An MDP is defined by ⟨ti, S, A, T,R⟩, where ti, S, A, T,R
denote the time step, state space, action space, state transition
and reward function, respectively [9]. Our MDP formulation
of NSRP is defined as follows. Under our model of NSRP,
the agent needs to make a decision upon traffic demand
variations of the flows in the network slice. To avoid frequent
reconfigurations, we define the decision time as the time when
there are W flows whose traffic variation exceeds ζ ·µ̄k, where
ζ is a predefined factor and µ̄k is the nominal rate of flow k.

State Space: We represent the state of NSRP by M+N+1
features, i.e.,

s(t) = {c1, · · · cM ;µ1, · · · , µN ;Cconf (t−1)}. (15)

The state contains three types of information. The first M
elements {c1, · · · cM} represent the capacities of the candidate
paths, and the subsequent N elements {µ1, · · · , µN} represent
the traffic demands of the N flows in the network slice. The
last element, i.e., Cconf (t−1) is the reconfiguration cost at
t− 1. Our motivations for constructing such a state for NSRP
are as follows.

First of all, the information of the substrate network is nec-
essary for decision making. However, the number of features
used to represent the substrate network is extremely large and
the time complexity of constructing a single feature is as high
as O(n3) [5]. Consequently, it is infeasible to address NSRP
by using DRL which represents the substrate network directly.
Instead, we propose a novel approach to simplify the complex
representation of the networks by exploiting the properties of
NSRP. Our approach is based on the following observations:

• The number of possible physical paths that can serve the
network slice, which we call the candidate path, is not
too large, especially for the network slice which is based
on coarse-grained NFV implementation [10].

• The essence of network slice reconfiguration is to find
an optimal mapping from the candidate paths for all the
flows.

We can find out all the candidate paths by DFS in polynomial
time. Suppose that all the M candidate paths have been found
by DFS. Then the substrate network can be represented by the
capacity of these paths, i.e., {c1, · · · cM}. In this way, NSRP is
equivalent to finding the optimal mapping from the candidate
paths for all the flows with the aim to minimize the long-term
cost.

Second, the information about the network slice is also
crucial to make decisions. Because the flow variation does
not change the source and the destination of the flow, we
only need to use the flow rate µk to represent a flow.
Therefore, the features that represent the network slice are
set as {µ1, · · · , µN}.

Third, the historical reconfiguration cost Cconf (t−1) reflects
the number of the traffic variations between two successive
time steps. This information is important for predicting future
slice changes and can help to reduce the future reconfiguration
cost. For this reason, it is included in the state as well.

Action Space: Note that the agent aims to select the optimal
mapping from the candidate paths for the N flows in the
network slice. Therefore, the action is an N -dimensional
vector, i.e.,

a(t) = (p1, p2, · · · , pN), (16)

where pi is the path onto which flow i is mapped. Since our
model contains N flows, the action space is therefore a N-
dimensional discrete space.

State Transitions: The state transition is considered to be
stochastic because the next state depends on not only the
selected action, but also the external factors which are not
controlled by the agent, such as stochastic flow variations,
random substrate node failure, etc.

Reward Function: The reward is defined as:

r(t) =

{− C(t), mapping succeeds

− σ, otherwise
(17)

We state that a mapping is successful if it does not violate
constraints (14.1) to (14.5). Recall that in NSRP, our objective
is to minimize the total resource consumption. However, under
the RL framework, the objective of the agent is to maximize
long-term reward. For this reason, we define the reward as
the negative of the long-term total cost. In addition, to avoid
constraint violation, we set the reward to −σ.

According to the above analysis, we see that the state space
of this MDP is a continuous space with M+N+1 dimensions
and the action space is an N-dimensional discrete space with
each dimension takes values in {1, · · · ,M}. Consequently, the
discrete-action reinforcement learning algorithm, the Dueling
Double Deep Q-Network (Dueling DDQN), is very suitable to
address this problem. However, Dueling DDQN becomes inef-
fective in solving NSRP as the number of the flows increases,
which leads to an exponentially increasing size of the action
space, i.e., |A| = MN . Thus, we propose to incorporate the
action branching architecture into Dueling DDQN to compress
the multi-dimensional discrete action space of the MDP and
propose INSRA in the following subsection.

B. Compression of Action Space with BDQ

According to the above modeling, both the state space
and the action space of the reinforcement learning model
for solving NSRP are very large. Since Dueling-DDQN can
automate the feature construction of the substrate network
through the powerful representation of the multi-layer neural
network, it can thus tackle MDPs with very large state space.
However, Dueling DDQN cannot address multi-dimensional
action spaces which are naturally discrete.

The action branching architecture proposed in [11] provides
an effective framework to solve MDPs with multi-dimensional
discrete action space. The core notion of the architecture
is to give a certain freedom of individual action dimension
while sharing a common state-value estimator between these
dimensions. Based on Dueling DDQN, the authors of [11]
proposed a novel agent, called BDQ as an implementation
of the action branching architecture. They verified the effec-
tiveness of BDQ in problems with action spaces that contain
as many as 6.5 × 1025 actions. However, the large discrete
action spaces of these environments are discretized from the
original continuous action spaces. The efficacy of the action
branching architecture is not verified in problems with multi-
dimensional action spaces which are inherently discrete. In
this section, we incorporate the action branch architecture to
Dueling DDQN to derive a discretized-BDQ which can be
used to compress the naturally multi-dimensional action space
of NSRP. The architecture of BDQ is illustrated in Fig. 1.
Based on Dueling DDQN, BDQ further splits the advantage
branch into N advantage branches while keeping a shared
representation of the input state. In this way, the BDQ provides
a certain degree of autonomy to each sub-action. Specifically,

path

capacities

flow rates

input layer

512

256

128

.
.
.

128

.
.
.

c
o
n
c
a
t

(1)confC t−
()V s

(,)
i id dsA a (,)

i id dsQ a

*a

Fig. 1. The BDQ network architecture used in solving NSRP

the action a of dimension N is split into N sub-actions
and treated separately. The advantage of each sub-action, i.e.,
Ad(s, ad), is trained with the common state value V (s) by
experience replay. Similar with that in Dueling DDQN, the Q-
value of each sub-action, Qd(s, ad), is derived by aggregating
the value branch and the corresponding advantage branch.

Formally, the action a = (a1, a2, · · · , aN) is split into
N sub-actions, and each sub-action has |Ad| = n discrete
choices. According to [11], the value of the dth sub-action
ad ∈ Ad at state s is expressed in terms of the common
state value V (s) and the corresponding sub-action advantage
Ad(s, ad) as:

Qd(s, ad) = V (s) + (Ad(s, ad))−
1

n

∑
a′
d∈Ad

Ad(s, a
′
d)). (18)

Alternatively, the ϵ-greedy policy of BDQ is to select a
random action with probability ϵ and with probability (1− ϵ)
to select:

a = (argmax
a′
d1

Qd1(s, a
′
d1;θ), · · · , argmax

a′
dN

QdN (s, a′dN ;θ)).

(19)
BDQ exploits a Temporal Difference-target (TD-target) sim-

ilar as that in Dueling DDQN to avoid maximization bias,
except that it is averaged across all the dimensions of the
action:

y = r + γ
1

N

∑
d

Q̂d(s
′, argmax

a′
d∈Ad

Qd(s
′, a′d)). (20)

The loss is the expected value of the mean squared error across
the branches, i.e.,

L(θ) = E(s,a,r,s′)∼D[
1

N

∑
d

[yd −Qd(s, ad;θ)]
2]. (21)

To incorporate prioritized experience replay, the prioriti-
zation error is set to the sum across a transition’s absolute,
distributed TD-errors [11]:

δi(s, a, r, s
′) =

∑
d

|yd −Qd(s, ad)|, (22)

where δi(s, a, r, s
′) denotes the TD-error used to prioritize

replay for experience (s, a, r, s′).
BDQ achieves a linear increase of the number of estimated

actions with the number of dimensions of the action space. In
particular, the number of the actions that need to be evaluated
can be reduced from MN to N · M in NSRP. As a result,

Algorithm 1 Intelligent network slice reconfiguration algo-
rithm (INSRA)
Input: M , N , ϵ, γ, α, β0

Output: Desirable a(t)
Establish two BDQ networks: trained network and target
network with weights θ and θ−, respectively. Initialize θ
and θ− randomly and enable θ−=θ, Cconf (0) = 0

2: for t = 1, 2, · · · do
Construct s(t): Run DFS to get (c1, · · · , cM). Construct
s(t) as in (15)

4: if t <= |Z| then
Randomly select an action a(t) to execute.

6: else
Choose an action a(t) with ϵ-greedy policy as in
(19). The agent gets reward r(t) and the state of the
environment transit to a new state s(t+1). The agent
stores the corresponding experience in the memory
Z .

8: Perform prioritized experience replay. The prioritiza-
tion error is computed as in (22).
Compute the TD-target as in (20). Perform a gradient
descent step on (21) w.r.t. θ.

10: Every Y steps set θ− = θ.
end if

12: end for

the time complexity of the training increases linearly with N ,
making it effective in solving NSRP. Therefore, we incorporate
action branching architecture into Dueling DDQN to derive
the BDQ network to solve NSRP and give our INSRA in
Algorithm 1.

IV. NUMERICAL RESULTS

In this section, we evaluate the performance of our pro-
posed INSRA. We also compare INSRA with three other
heuristic algorithms, namely cheapest path first (CPF), largest
flow chooses the cheapest path first (LF-CPF) and random
path mapping (RPM). Among all the paths that satisfy the
constraints, CPF chooses the path with the largest capacity
for each flow sequentially with the aim to avoid frequent
reconfiguration while LF-CPF chooses the path with largest
capacity for the largest flow. Additionally, RPM algorithm
randomly selects a path for each flow without constraint
violations.

A. Simulation Settings
For simulation experiments, we construct a substrate net-

work with 13 nodes and 19 direct links. There are four
types of VNFs in the system and 8 nodes are VNF-capable.
Please note the BDQ agent does not need to be modified to
fit different network scenarios1. The computing capacity of

1Since different network scenarios only lead to different number of can-
didate paths and/or different number of flows, thus we can preset the hyper-
parameter M and N in BDQ to a large value, say Mpre and Npre. Then if
the number of candidate paths Mact and/or the number of flows Nact are
less than the presets, we can set the rest Mpre −Mact and/or Npre −Nact

state components to zero.

0 20000 40000 60000 80000 100000 120000 140000

80

60

40

20

Fig. 2. Convergence of INSRA

each node is randomly set in [2, 10] units and the bandwidth
capacity of each link is uniformly distributed in [1, 8] units. Let
the network slice contain 20 flows with varying traffic rates.
The nominal traffic rate (i.e., µ̄k,t) of the flows is uniformly
generated in [0.5, 3] units. We use the widely used Gaussian
distributed [12], [13] variable η ∼ N(0, 1) to represent the
perturbation of the traffic. Since η may approaches to ∞, we
use a truncated version of η to simulate the traffic variation
by confining its value to [0, 5]. We set the penalty parameter
as σ = 50 when the resource constraints are violated. In
addition, we set ωb = 0.5 and ωf = 0.1. The pricing functions
for computational and bandwidth resources are both linear
functions. We set the cost coefficient parameter δx and δr
both to 2.

We use TensorFlow to build a BDQ whose architecture
is illustrated in Fig. 1. The front end of the network has
two fully connected layers, each with 512 and 256 neurons
respectively. The value branch consists of a fully connected
layer with 128 neurons and outputs the state value. Each
advantage branch has one fully connected layer with 128
neurons. Note that all the neurons use Rectified Linear Unit
(ReLU) as their activation functions. To balance exploration
and exploitation, we apply an adaptive ϵ-greedy policy. The
ratio of exploration, i.e. ϵ, is initialized as 0.5 and decreases
as ϵ(t+1) = max{0.05, (1− 0.0001)ϵ(t)}. We use the Adam
optimizer with α = 10−4, β1 = 0.9 and β2 = 0.999 to update
θ. To avoid correlation between the action-values and target
values, we copy the weights of evaluation network θ to the
weights of the target network θ− every 500 training steps. In
addition, we set the memory size as |Z| = 104 and the batch
size of gradient descent as 64. Furthermore, we use prioritized
replay with α = 0.6 and β annealed from 0.4 to 1 in 105 time
steps.

B. Numerical Results

First, we verify the convergence properties of our proposed
INSRA by depicting its learning curve (the curve of the
reward vs. the learning time steps). As shown in Fig. 2,
INSRA converges to the optimal policy within 105 scheduling
time steps. Therefore, it can be effectively realized as an
online network slice reconfiguration algorithm. Second, we
compare the long-term total resource consumption for INSRA,
LF-CPF, CPF and RPM in Fig. 3a. Please note that the
results of INSRA are obtained after convergence. We can

(a) (b)
Fig. 3. Long-term resource consumption and resource efficiency

observe that our proposed INSRA can maintain a fairly low
resource consumption compared with the baseline algorithms.
Therefore, it can minimize resource consumption effectively.
Furthermore, we verify the performance of INSRA by com-
paring the resource efficiency of these algorithms. We define
the resource efficiency as the ratio of embedding cost to the
long-term total cost. Formally,

reff (t) =

∑t
τ=0 Cres(τ)∑t
τ=0 C(τ)

(23)

As illustrated in Fig. 3b, the resource efficiency of INSRA
can be as high as 100%, which is much higher than that of
the baseline algorithms. Moreover, we find that although the
embedding cost of LF-CPF is the best, its resource efficiency
is the worst. Consequently, statically reconfigure the network
slice without considering the future information of the traffic
demands is not optimal. In contrast, our proposed algorithm
can not only predict the traffic variations implicitly, but also
reconfigure the resource allocation ahead of time.

Finally, we examine the performance of the proposed IN-
SRA with the baseline algorithms for different number of
flows. The reconfiguration cost coefficient is set to 2 and
the number of the flows in the network slice takes values
in {10, 20, · · · , 60}. The results are averaged in 1000 time
steps to avoid randomness which are plotted in Fig. 4. In
Fig. 4a, we can see the total resource consumption increases
approximately linearly with the number of flows among all
the algorithms. Notably, the slop of the curve of INSRA
is the lowest compared with the baseline algorithms, which
suggests INSRA can effectively minimize the total resource
consumption even in the network slice with a large number
of flows. In Fig. 4b, it can be observed that INSRA can keep
high resource efficiency compared with baseline algorithms.
Moreover, these results indicate that our proposed INSRA
can effectively tackle the system with 10 candidate paths
and 60 network flows, leading to an action space as large
as MN = 1060. In short, this experiment demonstrates the
effectiveness of INSRA in large-scale network slice.

V. CONCLUSION

Network slicing is one of the most promising architectural
technologies to meet the diversified requirement in future
wireless networks. Intelligently automating the reconfiguration
of the network slice is one of the most urgent problems in

(a) (b)
Fig. 4. Long-term resource consumption and resource efficiency vs. the
number of flows

network slicing. In this paper, we have modeled the NSRP as
an MDP and solved it by exploiting DRL. To address its multi-
dimensional discrete action space, we utilize the BDQ network
to compress its action space and then propose the INSRA algo-
rithm. Numerical results reveal that the proposed algorithm can
avoid unnecessary reconfigurations by implicitly predicting the
future traffic demands of the flows in the network slice thus
to minimize the long-term resource consumption.

REFERENCES

[1] S. Zhang, “An Overview of Network Slicing for 5G,” IEEE Wireless
Communications, vol. 26, no. 3, pp. 111–117, Jun. 2019.

[2] R. Wen, G. Feng, J. Tang, T. Q. S. Quek, G. Wang, W. Tan, and S.
Qin, “On Robustness of Network Slicing for Next-Generation Mobile
Networks,” IEEE Transactions on Communications, vol. 67, no. 1, pp.
430–444, Jan. 2019.

[3] G. Wang, G. Feng, T. Q. S. Quek, S. Qin, R. Wen, and W. Tan, “Recon-
figuration in Network Slicing - Optimizing the Profit and Performance,”
IEEE Transactions on Network and Service Management, vol. 16, no. 2,
pp. 591–605, 2019.

[4] M. H. Fan, Jinliang and Ammar, “Dynamic topology configuration in
service overlay networks: A study of reconfiguration policies,” in Pro-
ceedings IEEE INFOCOM 2006. 25TH IEEE International Conference
on Computer Communications, Apr. 2006, pp. 1–12.

[5] A. Blenk, P. Kalmbach, P. van der Smagt, and W. Kellerer, “Boost
online virtual network embedding: Using neural networks for admission
control,” in 2016 12th International Conference on Network and Service
Management (CNSM), Oct. 2016, pp. 10–18.

[6] C. Qi, Y. Hua, R. Li, Z. Zhao, and H. Zhang, “Deep Reinforce- ment
Learning With Discrete Normalized Advantage Functions for Resource
Management in Network Slicing,” IEEE Communications Letters, vol.
23, no. 8, pp. 1337–1341, Aug. 2019.

[7] N. Zhang, Y. F. Liu, H. Farmanbar, T. H. Chang, M. Hong, and Z. Q.
Luo, “Network slicing for service-oriented networks under resource con-
straints,” IEEE Journal on Selected Areas in Communications, vol. 35,
no. 11, pp. 2512–2521, Nov. 2017.

[8] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
and Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[9] R. S. B. SUTTON, REINFORCEMENT LEARNING : an introduction.
MIT press, 2018.

[10] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
Slicing in 5G: Survey and Challenges,” IEEE Communications Maga-
zine, vol. 55, no. 5, pp. 94–100, May. 2017.

[11] P. Tavakoli, Arash and Pardo, Fabio and Kormushev, “Action Branching
Architectures for Deep Reinforcement Learning,” in AAAI Conference
on Artificial Intelligence, 2018, pp. 4131–4138.

[12] R. Li, Z. Zhao, J. Zheng, C. Mei, Y. Cai, and H. Zhang, “The Learning
and Prediction of Application-Level Traffic Data in Cellular Networks,”
IEEE Transactions on Wireless Communications, vol. 16, no. 6, pp.
3899–3912, Jun. 2017.

[13] V. Sciancalepore, X. Costa-Perez, and A. Banchs, “RL-NSB: Reinforce-
ment Learning-Based 5G Network Slice Broker,” IEEE/ACM Transac-
tions on Networking, vol. 27, no. 4, pp. 1543–1557, Aug. 2019.

