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Efficient Power Sharing at the Edge by Building a
Tangible Micro-Grid – the Texas Case

Nikos Kouvelas1, R. Venkatesha Prasad1, Akshay U Nambi2

1Embedded and Networked Systems, TU Delft, 2Microsoft Research India

Abstract—Information and Communication Technology (ICT)
is now touching various aspects of our lives. The electricity
grid with the help of ICT is transformed into Smart Grid
(SG) which is highly efficient and responsive. It promotes two-
way energy and information flow between energy distributors
and consumers. Many consumers are becoming prosumers by
also producing energy. The trend is to form small communities
of consumers and prosumers leading to Micro-grids (MG) to
manage energy locally. MGs are parts of SG that decentralize
the energy flow by allocating the produced energy within the
community. Energy allocation amongst them needs to solve
issues viz., (i) how to balance supply/demand within micro-grids;
(ii) how allocating energy to a user affects his/her community. To
address these issues we propose six Energy Allocation Strategies
(EASs) for MGs – ranging from simple to optimal. We maximize
the usage of the energy generated by prosumers within MG. We
form household-groups sharing similar characteristics to apply
EASs by analyzing thoroughly energy and socioeconomic data
of households. We propose four metrics to evaluate EASs. We
test our EASs on the data from 443 households over a year. By
prioritizing specific households, we increase the number of fully
served households up to 81% compared to random sharing.

I. INTRODUCTION

Traditionally, the energy distribution network (grid) is

centralized. Substations are primarily used to interface cen-

tralized generators to a large number of end-users. Further,

the electricity grid, utilizing ICT, is now transformed into a

highly efficient and responsive grid, also known as Smart Grid

(SG). Apart from drawing energy from the power line some

consumers generate energy using renewable sources and are

called prosumers. To manage the requirements of prosumers

and consumers efficiently, SG employs intelligent monitoring,

control, and bidirectional communication. This enhanced the

efficiency, reliability and sustainability of the electricity grid.

SGs deploy large numbers of smart meters. These Internet-

enabled devices collect fine-grained data regarding energy

usage and offer real-time information to enhance efficiency

in energy generation and distribution and bring consumption-

awareness. Prosumers generate power using solar (mostly),

wind, hydro, etc., which can be allocated to other customers

in the vicinity. This makes SGs dynamic and less dependent on

the substation. However, renewable sources of energy are in-

termittent and require forecasting. Thus, the presence of power

distribution lines of substations as stable electricity suppliers is

imperative. Micro Grids (MGs) are small communities of con-

sumers and prosumers that have evolved to support distributed

control from SGs. MGs allocate energy between consumers

and prosumers while complying with policies prioritizing

Fig. 1: Models of MG with Central Controller (CC); (left) CC used
only for communication; (right) CC also has storage.

certain users. The energy redistribution at a local level is also

economically beneficial (see Fig. 1). Buying energy from the

substation is more expensive compared to getting it from the

neighbourhood while selling back to the substation is less

lucrative compared to selling directly to neighbours [1]. To

share energy at a neighborhood level, storage point coalitions

of utility companies and municipalities are used. They keep

the generated excess energy and supply it according to the ser-

vice priorities and policies of their respective MGs. However,

allocating energy among prosumers and consumers is non-

trivial because of several constraints: (i) individual consumers

present varying energy requirements over time, and hence

allocation mechanisms need to be adaptive; (ii) prioritizing

certain households causes bias in the community, therefore it

is essential to develop rigorous Energy Allocation Strategies

(EASs); (iii) the predictability of the generated energy is

limited; and (iv) socioeconomic characteristics (often private)

affect consumption and generation of energy (e.g., size of

households, income, and age of residents) [2], [3]. We propose

EASs aiming to achieve fairness, defined for particular groups

of consumers or over entire MGs. Specifically, encompassing

the above issues we answer the general question: How to
optimize the allocation of produced energy excess between
the members of a community under various constraints?

To this end, (a) we propose three optimal EASs to maximize

energy sharing and minimize the energy borrowed from the

substation based on game theoretic and information theoretic
formulations [4]; (b) we propose three simple EASs for

MGs without centralized energy storage; (c) we demonstrate

the efficacy of our proposed algorithms on a real-world

dataset collected over a year from 443 households located in

Texas [5]. Though we use some commonly used methodology
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well-known in communications, the metrics and treatment

are different and novel. This work targets the problem of
sharing the energy locally and the intricacies involved
therein rather than the grid related issues.

II. RELATED WORKS

Morstyn et al. propose a virtual power plant created through

P2P transactions among prosumers in order to incentivize

them to coordinate and trade their excess energy [6]. Sim-

ilarly, in [7] individual households control the energy they

generate through renewables by an energy sharing coordinator.

Prosumers of a micro-grid store their excess energy in a

common storage unit for later usage in [8], and a function that

accounts for the historical consumption data of the households

is designed to re-allocate the stored energy in households and

to schedule their consumption. The problem of online energy

management in networked MGs is considered in [9]–[11].

Shi et al. propose a stochastic model of the power flow in MGs

for real-time energy management based on Lyapunov opti-

mization [9]. Online energy management of MGs by applying

the Alternating Direction Method of Multipliers (ADMM) on

the historical data of the generated energy is proposed in [10],

[11]. Liu et al. consider a centralized operator per MG that

constructs and controls an energy exchange network between

prosumers and the power grid, while Ma et al. consider

privately owned MGs exchanging energy with adjacent MGs

based on power flow constraints using the power line. Game-

theoretic approaches are considered in [12], [13]. Motivated

by the cooperative game theory, Du et al. form coalitions

of MGs, which coordinate sharing of surplus in electrical

and thermal energy in order to minimize their operational

costs [12]. The economic benefits for households applying

a game-theoretic peer-to-peer energy trading scheme are an-

alyzed in [13], where the aforementioned coalitions among

different prosumers are proven to be stable. The majority of

works above use community-simulators and numerical case

studies to apply energy allocation strategies [8]–[10], [12],

[13], however, we incorporate many methods well-known in

ICT domain with new metrics on a real-case data set to

propose new energy sharing strategies.

III. SYSTEM MODEL

Fig. 1 depicts an abstract model of an MG neighborhood-

community. From an energy perspective, MGs are sets of

households with different energy needs, equipped with a

number of electrical appliances. In addition, among the

households, some are prosumers generating energy through

renewable sources. Note that if the households cannot cover

their own needs by generating energy, the deficit is drawn

from the power distribution line of the substation. In an MG

community of c consumers and p prosumers, let the group

of consumers be C = {C1, C2, ..., Cc} and, similarly, P =
{P1, P2, ..., Pp} representing prosumers. Both C and P are

connected to the power line of the substation, which is also

mandatory for energy transactions between them, as C and

P do not possess the infrastructure required to share energy

directly. To this end, the role of applying EASs between

households is the responsibility of a central controller (CC),

owned by the MG-operator (utility companies). In Fig. 1, the

CC is connected to all the households, to route information

about the energy needs of consumers and the amounts of

energy generated by the prosumers. The decisions of CC

about any energy transition are forwarded to the involved

prosumers and consumers. However, apart from the MG

models in which the CC is solely a communication point,

there are also models in which it connects to the power line

of the substation, to store and forward the excess energy from

prosumers to (members of) C using the EAS-algorithms (cf.,

right part of Fig. 1) [4]. Since prosumers have their own

energy needs, they cannot allocate all their generated energy to

consumers. Once the total produced excess energy is stored

in CCs, the CCs are informed by the consumers regarding

their energy requirements, Ea = {Ea,1, Ea,2, ..., Ea,c}, and

then, the dictated allocation strategy (EAS) is applied. As

a result, every consumer i ∈ [1, c] receives an amount of

energy represented by Eg = {Eg,1, Eg,2, ..., Eg,c}, to cover

his/her needs partially, Eg,i < Ea,i, or totally, Eg,i = Ea,i,

depending on his/her priority of service within the MG. In this

work, MG communities with users having their own battery

storage are not considered. Using batteries in houses incurs

capital and maintenance costs. Furthermore, battery round-

trip efficiency has to be taken into account, i.e., power losses

during charging-discharging. We assume that the aforemen-

tioned costs and losses are undertaken by the utility (company,

business operator) that controls CC. In addition, in our study

case, we assume a small neighborhood where we consider

neither the losses when CC stores/distributes energy nor the

physical limitations of the distribution grid (seen in larger

residential areas).

IV. METHODOLOGY

A. Characterization

We use fine-grained data regarding consumption of ap-

pliances and generation by renewable energy sources. Us-

ing the consumption/generation data, we compute the de-

ficiency/excess of energy for every household. To achieve

convergence, we smooth the daily (and hourly) differences in

energy by averaging the measurements over weekly intervals.

To associate every household with the others in its community,

we use clustering to distribute households into different groups

(clusters). In this paper, we use the Expectation-Maximization
(EM) algorithm to define the exact number of clusters that can

best accommodate the households regarding their attributes

(e.g., consumption, generation), and distribute every house-

hold uniquely to one cluster (c). To acquire energy consump-

tion/generation perspective of households over longer periods

of time (e.g., yearly), the metrics of temporal membership

and adaptability are used. Cluster membership refers to the

presence of a household in one of the clusters that are defined

for an energy attribute and cluster adaptability refers to the

transition between different clusters of the same attribute in

consecutive time intervals (clustering periods) [4], [14]. The
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terms temporal membership and temporal adaptability assess

the probability that a household is a member of a cluster or

performs a cluster transition. For the analysis, we considered

anonymized data.

B. Energy Allocation Strategies (EAS)

To show the evaluation of strategies, we mention simple

strategies but delve more into the optimal strategies and

provide in-depth discussion. All EASs are found in [4].

Simple allocation strategies create prosumer-consumer

pairs, and the energy flows from the prosumer to the consumer

of each pair, using the power line. CC is used only for routing.

Random strategy: Every prosumer sends information about

his/her available energy to the CC and the CC chooses

randomly a consumer to allocate the energy. If the consumer

is covered fully, the remaining energy is allocated randomly

to another.

Greedy strategy: The CC lists consumers in a priority se-

quence and they are served as the sequence dictates. Energy is

transferred by every prosumer to its corresponding consumer-

pair by First-In-First-Served. In the greedy approach, the order

of service is the same for every time interval. This order rela-

tion results in consumers being served in the same sequence

at every time interval, leading to dissatisfied consumers in the

community. To ensure fair energy allocation, we propose the

λ level of service. λ is a percentage limit of service, imposed

on every household. When this limit is reached the following

household will be served, and consequently more households

will be served with the same amount of energy.

Round-robin strategy: This mechanism ensures that served

households in an interval are moved to the end of the service

sequence. This sequence is initially created by the priority

policy at T = 1. At T = 2, the algorithm moves the previously

served households to the end of the service sequence (and

redefines it). This mechanism continues until a predefined

limit of time intervals, called Time-Limit (TL), is reached. TL
reveals the number of service rounds until reinitialization; it

resets the service sequence at T mod TL = 0. Consequently,

TL defines the depth of service diversity.

In optimal allocation strategies, CC, besides routing,

stores energy too; and computes the amount to be distributed

to every consumer. Optimal EASs define Relations of Weight
when serving the consumers. Weights are assigned to the

members of C. The exact amount of energy to be received

by a consumer is found using his/her weight as follows,
p∑

i=1

Ee,i = x
c∑

j=1

wj , where at first, the total amount of

energy that is saved by the prosumers during a time interval

is gathered at CC. Then, by using the weights w given

to every consumer of C, the single unit of energy, x, is

computed, and every consumer, j, receives an amount of

energy corresponding to xwj [4]. Within the community,

weight-ratios between consumers dictate differences in the

amounts of energy that they are entitled to. As the ratio

between the assigned weights of two consumers increases,

(a) Game Theoretic (b) Water Filling

Fig. 2: Optimal Energy Allocation Strategies

the difference in the amount of energy allocated to each of

them also increases.

Weighted strategy: The total excess energy, on every T du-

ration, is gathered by the central controller (CC). The CC

splits consumers C into N subgroups, C = ∪N
n=1Cn. To

each subgroup, it assigns a weight, wn, same for all the

consumers of a subgroup (n). The highest weights are as-

signed to the subgroups of prioritized consumers. The priority

policies used by this EAS are based on size and energy

(deficiency) attributes, for increased accuracy of prioritization.

The excess energy from p prosumers is distributed according

to
p∑

i=1

Ee,i = x
N∑

n=1
(wnCn).

Algorithm 1: Game Theoretic (GT)
consumer and prosumers are indexed by k and i
At the beginning:

1: CC assigns weights wk∀k ∈ [1, c] according to a CPP
At each time interval

Initialization phase:
2: CC collects excess energy from prosumers,

∑p
i=1 Ee,i

3: Consumers C send their deficiencies Ea to the CC
4: CC defines the heights of service H using H = Ea/w

Energy Allocation phase:
5: while

∑c
k=1 Hk > 0 do

6: CC chooses non-zero minimum height of service, min(H)nz
7: if (min(H)nz

∑c
k=1 wk) ≤

∑p
i=1 Ee,i then

8: Ea,k ← Ea,k − min(H)nzwk, ∀k ∈ [1, c]
9:

∑p
i=1 Ee,i ←

∑p
i=1 Ee,i − (min(H)nz

∑c
k=1 wk)

10: Consumer with min(H)nz is fully served
11: wmin(H)nz

= 0

12: H ← H − min(H)nz
13: else

14: min(H)nz ←
∑p

i=1 Ee,i∑c
k=1 wk

15: Ea,k ← Ea,k − min(H)nzwk, ∀k ∈ [1, c]
16: Break
17: end if
18: end while

Game Theoretic strategy (GT): In GT all the consumers seek

energy according to their weights from the CC simultaneously,

as shown in Fig. 2a. They withdraw only when they are fully

served. The concept behind this algorithm relies on Game

Theory, and specifically on the existence of an equilibrium
based on the choices of non-cooperative consumers-players

on energy allocation, where everyone is bound to a certain

decision. After assigning a different weight, w, to each
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Algorithm 2: Water-Filling (WF)
Prosumers are indexed by i
j, l represent the indices of the most and least prioritized
consumer being served simultaneously
At the beginning:

1: CC assigns weights wk∀k ∈ [1, c] according to a CPP
At each time interval

Initialization phase:
2: CC collects the excess energy from prosumer,

∑p
i=1 Ee,i

3: C send info on their deficiencies Ea to the CC
4: CC defines initial heights of service by H = Ea/w and forms

them in ascending order, Hini
5: j = 1, l = 1
6: H ← Hini

Energy Allocation phase:
7: while j � c do
8: Perform GT algorithm for energy allocation phase on the

following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

group of (l + 1− j) consumers with weights assigned in

step 1 with
∑p

i=1 Ee,i and additional heights h⎧⎪⎪⎪⎨
⎪⎪⎪⎩

if l + 1 � c, hk =

{
Hl+1 −Hk, if Hl+1 < 2Hini,k
2Hini,k −Hk, otherwise

else hk = 2Hini,k −Hk

for k : [j, l]

After GT algorithm:
9: Total excess decreased,

∑p
i=1 Ee,i updated

10: Individual deficiencies of (l + 1 − j) households decreased
or covered, Ea,k updated ∀k ∈ [j, l]
Updating the Heights of service:

11: a ← j
12: for k : [a, l] do
13: Hk ← Hk + hk,
14: if Hk = 2Hini,k then
15: j ← j + 1
16: end if
17: end for
18: if ( Hl = Hl+1 or Hl = 2Hini,l ) and l + 1 � c then
19: l ← l + 1
20: end if
21: end while

consumer according to the imposed priority policy, the CC,

holding information about the deficiency of all the consumers,

defines the ratios of deficiency and weight, termed Levels
of Service, H , with H = Ea/w. The amounts of energy

that are individually received fit into the specific energy and

socioeconomic characterization of each consumer.

Water-Filling strategy (WF): At the beginning, different

weights are given to each consumer by the CC depending

on the priority policy that is followed. Then, being informed

regarding the deficiency of each consumer, the CC defines

their H . However, in this EAS, the CC arranges the H of the

consumers in ascending order, which becomes their order of

service. The difference between this algorithm and the GT is

that some consumers can ask for energy before others. Many

consumers often have to wait until the prioritized households

are fully covered, as can be seen in Fig. 2b. Let us assume

that the transferred energy is added on top of the H of

every consumer, as additional service-level, h = Eg/w. As

the CC starts sharing energy with the first consumer in the

order of service, its level, h1 increases until h1 = H2 −H1.

Then, assuming there is enough excess energy stored, the CC

starts transferring to the second consumer in the order too;

until h2 = H3 −H2 = h1 − (H2 −H1) ⇒ h1 = H3 −H1.

This procedure continues until the need of every consumer is

covered or the energy is depleted. A consumer j is withdrawn

from service only when fully covered (hj = Hj). For two

consumers, j and l, with Hl > Hj , it is also possible that

Hl − Hj � Hj , and thus the consumer j is fully covered

before l starts requesting for energy. A number of consumers

can be served simultaneously at any time instance, as long

as they have equal sums of H and h (cf. Fig. 2b).

V. EXPERIMENTAL EVALUATION

To test our EASs, we employed the readily available and

standard Pecan Street dataset, which is located in Texas

Austin and composed of 443 households. Among them, 180

households generate energy using solar panels. We used one

year of consumption and generation data (in kW) from the

smart meters of all the households, and we computed the

deficiency and excess of energy for every household. The

smart meters offered fine-grained data for accurate analysis.

We only selected those households having data for more than

300 days. At first, we analyzed the metrics that focus on

households being served. These metrics refer to the consumers

of an MG community. Thus, for a consumer k, we answer with

1 (true) or 0 (false) the following questions; (a) Is k served

fully?, (b) Is k not served at all?, (c) Is it the first time that

k is served in timespan T ?

To quantify the potential of a strategy in covering com-

pletely the needs of (a group of) consumers c within a

community, we define the Served Ratio (SR) metric for T as,

SR =
c∑

k=1

Cserved,k/c. To evaluate the efficiency of prosumers

in serving (a group of) consumers during T , we define the

Prosumers Beneficial Ratio (PBR), PBR =
c∑

k=1

CnotServed,k/p.

Low values of PBR imply efficient prosumer usage. For the

EASs that use priority sequences for consumer service, we use

Uniqueness Ratio (UR), which quantifies the service diversity

of a sharing strategy for (a group of) consumers for any

set of consecutive time intervals, denoted as Tb − Ta, with

Ta, Tb ∈ [1, Tmax], UR =
Tb∑

T=Ta

c∑

k=1

CT
unique,k/c.

To quantify satisfaction regarding the service offered to a

consumer during a timespan T , we use the ratio of the amount

of energy given to a household (or a group) and its total

energy sought. We term this ratio Energy Ratio (ER) and, for a

consumer k, during T , the ER is defined as ERk = Eg,k/Ea,k.

When ER = 0, no energy is received. However, to evaluate

fairness in service we have to consider the priority that

every household possesses within its group. Under a priority

policy, the coverage of deficiency of every household impacts

differently the community. Prioritized households are more

important in terms of service and should receive higher
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(a) Membership (b) Adaptability

Fig. 3: Temporal energy behaviors

amounts of energy than the rest. For a consumer k, applying a

weight that mirrors his/her significance in the community turns

ER into its weighted form, ERw,k = wkERk. To evaluate it,

we use the log2 relation to define the Social Welfare (SW) for

any consumer k, SWk = wklog2(1 + ERk). However, SWk

cannot be characterized as high or low and thus fairness in

serving consumers according to their significance cannot be

evaluated by SW. It needs to be compared with the maximum

possible value of SWk. Obviously, when a consumer is fully

served ERk = 1, and then SWk,max = wk. Thus the metric to

characterize every consumer regarding the fairness in energy

allocation is the Social Welfare Ratio (SWR), defined as

SWRk = SWk/wk. In order to expand the individual-SW

to group-SW, or further, to SW for a whole community of c

consumers, we have, SWRc =
c∑

k=1

log2(1 + ERk).

VI. IMPLEMENTATION RESULTS

We evaluate the temporal energy behavior of households

using membership and adaptability. In Fig. 3a, the x-axis

shows the clusters in terms of consumption; c1 represents low

consumption and c5 high. Further, the position of the clusters

on x-axis represents cluster centroids. The yearly membership

ratio for a household being in a particular cluster is θm.

In Fig. 3a, about 400 households consumed low amounts

of energy, out of which, 115 households were in c1 for

more than 75% of the year (white). This result implies that

115 households can be prioritized by policies that focus on

low deficient consumers. In Fig. 3b, the x-axis presents the

beneficial cluster transitions in consumption. For a household,

the ratio of particular cluster transitions (x-axis) over all the

performed transitions is θt. Direct transitions between two

non-consecutive clusters (e.g., c3 to c1) are rare, because they

demand higher energy regulation potential from the house-

holds. As shown in Fig. 3b, most of the households regulate

their consumption between c1, c2, and c3; this explains the

higher numbers of households in these clusters (Fig. 3a).

In Fig. 4a and Fig. 4b, we present SR for different target

groups of consumers, created based on energy deficiency and

size. These groups are served for three consecutive months,

using round-robin and greedy EASs. As seen in Fig. 4b,

round-robin EAS serves households from different groups–

not only from the prioritized ones. Moreover, under the round-

robin strategy, because of the repositioning of highly deficient

(a) Greedy (b) Round-robin

Fig. 4: Average SR according to different priority policies

(a) PBR (b) UR

Fig. 5: Prosumer usage – Service diversity (week 38-49)

consumers at the end of the service sequence, high deficiency

and large size priority policies serve more households. The

opposite happens for the policies prioritizing small and less

deficient consumers. In Fig. 5a and Fig. 5b, we evaluate how

efficiently the prosumers are used (PBR) and how diverse

is the consumer service. Note that the lowest values present

the most efficient behaviors as the PBR metric is related to

the consumers not served weekly by the prosumers. Among

the EASs that serve consumers in sequential order, the WF

sharing approach utilizes the prosumers more efficiently than

the other approaches, keeping at the same time a satisfactory

UR (� 0.5, Fig. 5b). Because of no priority in serving, the

random approach has much lower PBR (Fig. 5a) and high

diversity; serving almost 85% of the consumers (Fig. 5b).

Service-fairness in a community is described by the SWR

metric. In Fig. 6a, the advantage of optimal algorithms against

the simple approaches on energy sharing is clear –they provide

higher fairness in service for every particular priority policy.

Further, generally by choosing policies that prioritize the less

deficient consumers we manage to serve more households

than by promoting the highly deficient ones, because the

prioritized households are easily served. On the contrary,

high deficiency policy aims to serve those in high needs

requiring large amounts of excess energy. The performance

of the random policy stays between other policies, as it gives

priority to none. Specifically, for the WF and GT EASs, under

the same policy, weights, deficiency, and stored energy, WF

EAS manages higher SWR. Focusing only on these two EASs,

in Fig. 6b and Fig. 6c, their impact on different groups of

households (which have been assigned with the same priority
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(a) Overall

(b) Game Theoretic (c) Water Filling

Fig. 6: Community social welfare ratio (yearly)

weights) is observed. WF prioritizes the targeted household

groups stricter –maximizing SW for the members of these

groups. On the other hand, in GT strategy the social welfare

results for different groups of households are closer because

all households receive energy simultaneously. Note here that

the big-sized or the highly deficient groups of households

present deficiencies that are not covered easily, thus the impact

of their weights in SWR is lower than the impact of other

groups when they are prioritized. The WF approach presents

overall higher SWR results per priority policy, as confirmed

by Fig. 6a. Further, the GT EAS is more stable than WF,

because in WF we observe more outliers.

VII. CONCLUSION

With the growing adoption of renewable energy sources,

consumers and prosumers are able to redistribute energy

efficiently. ICT infrastructures provide communication needed

between consumers and prosumers to share the available

energy locally, avoiding energy transportation losses. In ad-

dition, prosumers have higher economic benefits by selling

excess energy locally compared to selling it to the central

stations. In this paper, we proposed and evaluated six EASs

that could be easily computed at the edge of SGs, which

control the allocation of excess energy in an MG community.

We considered many novel approaches such as using both

fine-grained energy-data and social attributes to exploit the

temporal energy dynamics of communities. Our approach is

novel in the way we characterize an MG community. We

clustered households into multiple groups thereby making it

easy to analyze the complex behaviour of the community.

We show that there is no “one-size-fits-all” strategy when

prioritizing households and distributing the excess energy in

an MG since the energy needs of households in a community

keep varying while energy harvested also varies. We analyzed

one year of data from 443 houses to test our algorithms and

their impact. The most optimal allocation strategy was WF,

having the highest social welfare ratio, higher by a factor

of 2.5 compared to greedy approaches. This work provides

many knobs to control energy allocation under various sce-

narios with different focuses. This work is one of the highly

comprehensive studies of energy sharing in MGs of small

consumers/prosumers. Expecting every household to be a

prosumer in future it will be interesting to evaluate the scaling

potential of our EASs in a system of distributed MGs.
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