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Abstract—This paper investigates the joint design of hybrid
transmit precoder and analog receive combiners for single-group
multicasting in millimeter-wave systems. We propose LB-GDM, a
low-complexity learning-based approach that leverages gradient
descent with momentum and alternating optimization to design (i)

the digital and analog constituents of a hybrid transmitter and (ii)

the analog combiners of each receiver. In addition, we also extend
our proposed approach to design fully-digital precoders. We show
through numerical evaluation that, implementing LB-GDM in
either hybrid or digital precoders attains superlative performance
compared to competing designs based on semidefinite relaxation.
Specifically, in terms of minimum signal-to-noise ratio, we report
a remarkable improvement with gains of up to 105% and 101%

for the fully-digital and hybrid precoders, respectively.

Index Terms—max-min fairness, hybrid precoding, multicast,
millimeter-wave, learning, semidefinite relaxation.

I. INTRODUCTION

Wireless multicasting has a long-standing record for effi-

cient utilization of spectrum resources to disseminate common

information. Looking at the unprecedented growth in number

and variety of multicast applications (e.g., high-definition

video streaming, mobile video, content distribution in au-

tonomous vehicular networks), multicast is outlined as a key

player in emerging 5G millimeter-wave (mmWave) networks

to sustain these demands [1]. With the recent advancements

in antenna arrays architectures (e.g., digital-analog designs),

particularly for mmWave systems, continuous investigation on

beamforming techniques is crucial to ensure high performance.

Indeed, a vital aspect to ensure high spectral efficiency lies in

the optimal design of the beamformer or precoder. Neverthe-

less, the optimization problems derived from this context are at

best non-convex quadratically constrained quadratic programs

(QCQP), which have been proven NP-hard [2]. Therefore,

many ongoing works are devoted to exploring alternative low-

complexity schemes that yield near-optimality.

A. Related work

An initial work that addresses the NP-hardness of multicast

optimization problems (e.g., quality-of-service (QoS) and max-

min fairness (MMF)) in single-group scenarios is [2], where

non-convex QCQPs are reformulated as semidefinite relaxation

(SDR) programs. It is shown that SDR yields an approximate

solution that, if feasible, is not necessarily optimum. To find

feasible solutions, three types of Gaussian randomization are

evaluated. In [3], an iterative algorithm based on second-order

conic programming (SOCP) is proposed for the QoS problem

in single-group multicasting. The single-group MMF problem

is studied in [4]. Furthermore, the QoS and MMF problems in

multi-group multicast contexts are studied in [5]–[11].

The above-mentioned works consider beamforming using

fully-digital precoders. In such an architecture, each antenna

requires a dedicated baseband and a radio frequency (RF)

chain, which is deemed impractical in many multi-antenna

systems (e.g., mmWave) due to high design complexity, hard-

ware cost, and power consumption. Consequently, industry

and academia scrutinize antenna designs based on a digital-

analog (hybrid) architectures which allow the use of a large

number of antennas with a limited amount of RF chains

[12]. While fully-digital precoders for physical layer mul-

ticasting has been widely researched, the design of hybrid

precoders remains understudied. The existing literature on

hybrid precoding includes investigations on the MMF (in

[13], [14]) and QoS (in [15], [16]) problems for single-group

and multi-group multicasting. However, the designs proposed

therein are either (i) constrained due to simplified premises or

(ii) unimplementable in the existing multi-antenna hardware,

for the following reasons. In [14], the propounded solution

requires a specially connected network of phase shifters for

optimal operation. On the other hand, the proposed scheme in

[16] is restricted to implementations with only four different

phase shifts. In [15], the analog phase shifters are replaced

by high-resolution lens arrays with adjustable power, thus

circumventing the actual problem of phase shift selection.

Finally, in [13], it is required to test several codewords in

order to design the analog precoder, thus demanding additional

memory storage that scales with the number of antennas.

Our objective is to provide a low-complexity scheme for

already available off-the-shelf devices (e.g., TP-Link TALON

AD7200), which reckon with a primitive network of phase

shifters, limited memory storage, and moderate computational

capabilities [17]. To address all these requirements, we propose

a learning-based scheme that only requires matrix multiplica-

tions/additions with controllable complexity and performance

that depend on customizable input parameters. Furthermore,

in contrast to prior literature on multicasting, we include the

design of analog multi-antenna combiners at the receivers.

B. Our contributions

We design the first learning-based hybrid precoder for

single-group multicasting while considering analog multi-
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antenna receivers. The details of our contributions are sum-

marized as follows:

• We investigate the MMF problem subject to power con-

straints at the transmitter and receivers. Precisely, our

solution can handle an arbitrary number of constant-

modulus phase shifts for the analog precoder in contrast

to the existing designs that only consider a limited num-

ber of phase shifts. Moreover, the idea is extended for

designing the analog combiners at the receivers.

• Our proposed learning-based scheme has lower com-

plexity than SDR-based approaches. While SDR-based

solutions require expensive vector-lifting that expands the

variables into higher dimensional spaces, our proposed

scheme, namely LB-GDM, only uses matrix multiplica-

tions/additions and a number of low-dimensional matrix

inversions. Furthermore, the exploration and exploitation

phases of our algorithm promote the search for optimal

solutions while preventing getting trapped in local optima.

Specifically, LB-GDM leverages gradient descent with

momentum and alternating optimization.

• We consider analog multi-antenna receivers. We show

that, by endowing the receivers with only two antennas,

the minimum SNR improves by 75.7% compared to om-

nidirectional receiving patterns (i.e., single antenna case).

• Since the SDR method in [2] is only applicable to

fully-digital implementations, we propose a novel scheme

called SDR-C, capable of handling the constant-modulus

constraints of the hybrid precoder and analog receivers.

Inspired by [18], SDR-C exploits SDR and Cholesky

matrix factorization. A similar technique was used by [19]

to solve the QoS problem for multi-group multicasting.

We extend the idea in [19] to the MMF problem.

• We perform extensive simulations to evaluate the per-

formance of LB-GDM and SDR-C in terms of minimum

SNR and spectral efficiency. We provide valuable insights

on the fully-digital and hybrid precoders design under

various system parameters (i.e., the number of transmit

and receive antennas, the number of RF chains, and the

number of iterations). We show that LB-GDM substan-

tially outperforms state-of-the-art SDR-based solutions

such as SDR-C, achieving up to 105.6% and 101.4% gains

in digital and hybrid precoders, respectively.

II. SYSTEM MODEL

We consider a mmWave system where a next generation

Node B (gNodeB) serves a set of K multicast users denoted by

K = {1, 2, . . . ,K}. The gNodeB is equipped with Ntx transmit

antennas and NRF
tx radio frequency (RF) chains, where NRF

tx ≤
Ntx. The downlink signal is represented by x = Fms, where

F ∈ C
Ntx×NRF

tx and m ∈ C
NRF
tx ×1 are the analog and digital

components of the hybrid precoder. The data symbol s has unit

power in average, i.e., E {ss∗} = 1. Every element of the analog

precoder is a phase rotation with constant modulus, i.e., [F]q,r ∈

F =

{
√
δtx, . . . ,

√
δtxe

j
2π(Ltx−1)

Ltx

}
, where q ∈ Q = {1, . . . , Ntx},

r ∈ R =
{
1, . . . , NRF

tx

}
and Ltx is the number of allowed phase

rotation values. Each user is endowed with Nrx ≪ Ntx antennas

and an analog combiner wk ∈ CNrx×1 with NRF
rx = 1, such that

[wk] ∈ W =

{
√
δrx, . . . ,

√
δrxe

j
2π(Lrx−1)

Lrx

}
, l ∈ L = {1, . . . , Nrx}

and Lrx is the number of allowed phase rotation possibilities at

the receivers. Under the assumption of narrowband flat-fading,

the signal received by the k-th user is

yk = wH
k HkFms

︸ ︷︷ ︸
multicast signal

+wH
k nk︸ ︷︷ ︸
noise

, (1)

where Hk ∈ CNrx×Ntx denotes the channel between the k-

th user and the gNodeB, whereas nk ∼ CN
(
0, σ2I

)
denotes

additive white Gaussian noise. The SNR at user k is given by

γk =

∣∣wH
k
HkFm

∣∣2

σ2 ‖wk‖22
. (2)

III. PROBLEM FORMULATION

The objective is to design a hybrid precoder that maximizes

the minimum SNR among all K users, subject to power

constraints at the transmitter and receiver. We define

Phyb
0 : max

F,m,{wk}Kk=1

min
k∈K

∣∣wH
k
HkFm

∣∣2

σ2 ‖wk‖22
(3a)

s.t. ‖Fm‖22 = Pmax
tx , (3b)

‖F‖2F = 1, (3c)

[F]q,r ∈ F , q ∈ Q, r ∈ R, (3d)

‖wk‖22 = Pmax
rx , k ∈ K, (3e)

[wk]l ∈ W , l ∈ L,∀k ∈ K, (3f)

where (3b) restricts the transmit power of the hybrid precoder,

(3c) imposes a power normalization on the phase rotations,

(3d) enforces every phase rotation of the analog precoder

to be in F , (3e) restrains the receive power whereas (3f)

constrains the phase rotations of the combiners to W. The

constraints (3d) and (3f) denote non-convex feasible sets due

to their combinatorial nature. Also, due to parameter coupling,

(3b) is non-convex. The objective function (3a) is defined as

the ratio of two quadratic expressions, where the numerator

exhibits coupling of three parameters. Thus, Phyb
0 is a non-

convex problem. Note that (3c) and (3e) can be circumvented

as they are only employed to calculate δtx = 1/NRF
tx Ntx and

δrx = Pmax
rx /Nrx.

Remark: When Nrx = 1, {wk}Kk=1 = 1, and F = I, Phyb
0

collapses to the problem investigated in [2], which is

known to be NP-hard. Since (3) has additional non-

convex constraints, Phyb
0 is thus NP-hard as well. Addi-

tionally, when Nrx = 1 and {wk}Kk=1 = 1, Phyb
0 is equivalent

to the problem studied in [13].

IV. PROPOSED SCHEME

In order to solve (3), we adopt an alternating optimization

approach that allows us to decouple the unknown parameters

F, m, and {wk}Kk=1. Thus, Phyb
0 in (3) is decomposed into

three sub-problems Phyb
1 , Phyb

2 , and Phyb
3 defined in (4), (9),

and (11), respectively. Moreover, for each of the sub-problems

we propose a learning-based algorithm that leverages gradient



Algorithm 1: Optimization of the analog precoder

Input: The precoders F
(t−1) , m(t−1) and receive combiners

{
w

(t−1)
k

}K

k=1

Output: The analog precoder F(t)

Execute:
1: Calculate the weights c

(t)
k

, ∀k ∈ K.

2: Compute ∇JF
=

∑
K
k=1 c

(t)
k
∇FJF

k /
∥∥∥∇FJF

k

∥∥∥
F

.

3: Compute the normalized gradient ∇J̃
(t)
F

= ∇JF /
∥∥∥∇JF

∥∥∥
F

.

4: Compute F
(t)

= F
(t−1)

+ ρFF
(t−1)
best

+ αF∇J̃
(t)
F

.

5: Project
[
F

(t)
]

q,r
← ΠF

[
F

(t)
]

q,r
onto F to satisfy (8b).

descent with momentum, i.e., LB-GDM. Conversely to [20],

where the momentum term affects the most recent gradient,

in our case the momentum is associated with the fittest

known solution (at each iteration). Furthermore, we include

two parameters, Nxpr and Nxpt, that control exploration and

exploitation of the learning process, respectively.

A. Optimization of the analog precoder F

Assuming that m and {wk}Kk=1 are known, we optimize F,

Phyb
1 :max

F

min
k∈K

∣∣wH
k
HkFm

∣∣2

σ2Pmax
rx

(4a)

s.t. ‖Fm‖22 = Pmax
tx , (4b)

[F]q,r ∈ F , q ∈ Q, r ∈ R. (4c)

In order to reduce the number of constraints, we incorporate

(4b) into the objective function (4a). Specifically, we replace∣∣∣wH
k

HkFm

∣∣∣
2

σ2Pmax
rx

= ψ

∣∣∣wH
k

HkFm

∣∣∣
2

‖Fm‖22
, where ψ =

Pmax
tx

σ2Pmax
rx

. Notice that ψ

can be disregarded as it is constant for all the users. Thus,

Phyb

1 :max
F

min
k∈K

mHFHHH
k
wkw

H
k
HkFm

mHFHFm
(5a)

s.t. [F]q,r ∈ F , q ∈ Q, r ∈ R. (5b)

Instead of approaching (5), we propose to solve the sur-

rogate problem (6), which consists of a weighted sum of all

τF
k

=
m

H
F
H

H
H
k

wkw
H
k

HkFm

mHFHFm
, as shown in (6)

P̂hyb
1 : max

F

K∑

k=1

ck
mHFHHH

k
wkw

H
k
HkFm

mHFHFm
(6a)

s.t. [F]q,r ∈ F , q ∈ Q, r ∈ R, (6b)

where ck ≥ 0 denotes the k-th weighting factor. On the other

hand, note that τF
k

is upper-bounded by

τFk ≤ λmax

((
FHF

)−1
FHHH

k wkw
H
k HkF

)

= wH
k HkF

(
FHF

)−1
FHHH

k wk

︸ ︷︷ ︸
JF
k

, (7)

where λmax(·) extracts the maximum eigenvalue of matrix(
FHF

)−1
FHHH

k
wkw

H
k
HkF. Upon replacing τF

k
in (6) by its

upper bound JF
k

, the problem collapses to

P̃hyb
1 : max

F

K∑

k=1

ckw
H
k HkF

(
FHF

)−1
FHHH

k wk, (8a)

s.t. [F]q,r ∈ F , q ∈ Q, r ∈ R. (8b)

Since (8a) is an upper bound for (6a), an optimal solution

to (8), in general, may not be optimal to (6). Notice that the

performance of the system in (8) will be determined by the

Algorithm 2: Optimization of the digital precoder

Input: The precoders F
(t) , m(t−1) and receive combiners

{
w

(t−1)
k

}K

k=1

Output: The digital precoder m
(t)

Execute:
1: Calculate the weights d

(t)
k

, ∀k ∈ K.

2: Compute ∇JM
=

∑
K
k=1 d

(t)
k
∇mJM

k /
∥∥∥∇mJM

k

∥∥∥
2

.

3: Compute the normalized gradient ∇J̃
(t)
M

= ∇JM/
∥∥∥∇JM

∥∥∥
2

.

4: Compute m
(t)

= m
(t−1)

+ ρMm
(t−1)
best

+ αM∇J̃
(t)
M

.

5: Normalize m
(t) ←

√
Pmax

tx m
(t)/

∥∥∥Fm
(t)

∥∥∥
2

.

minimum JF
k

, which can be regarded as a utility function of the

k-th user. In order to solve (8), we first compute the gradient

of
∑K

k=1 ckJ
F
k

to update F. Then, we scale the modulus of

each [F]q,r and approximate its phase by the closest available

option in F in order to comply with (8b), as detailed in

Algorithm 1. The gradient of JF
k

with respect to F is ∇FJ
F
k

=(
I −FF†

)T (
F†HH

k
wkw

H
k
Hk

)T
, where F† =

(
FHF

)−1
FH (see

Appendix for derivation). In Step 1, the weights are computed

according to c
(t)
k

=
(
1 + ξ

(
γ
(t−1)
max − γ

(t−1)
k

)
/γ

(t−1)
max

)2
for each

iteration t, where γ
(t)
k

is the SNR attained by user k, γ(t)max =

maxk∈K γ
(t)
k

and ξ > 0. In Step 2, the weighted sum of the unit-

power gradients ∇FJ
F
k
/
∥∥∇FJ

F
k

∥∥
F

is computed. In Step 3, the

unit-power aggregate gradient ∇J̃(t)
F

is obtained. In Step 4, the

current F(t−1) is updated using ∇J̃(t)
F

. Also, F(t)
best

represents the

best known solution until iteration t, whereas ρF and αF are the

momentum and learning factors associated to F, respectively.

Finally, Step 5 enforces (8b). The weights are bounded to

1 ≤ c
(t)
k

≤ (1 + ξ)2 and increase inversely proportional to the

attained SNR γ
(t)
k

. Thus, the gradient of the user with minimum

SNR is weighted with the largest c(t)
k

, whereas the gradient of

the user with maximum SNR is assigned the smallest c(t)
k

= 1.

Remark: To motivate the connection between (5) and (6),

we assume that (6) can be solved iteratively, and in each

iteration we are capable of predicting k⋆ = argmink∈K τ
F
k

.

Thus, if we assigned binary values ck⋆ = 1 and ck 6=k⋆ = 0

at each iteration instance, we would indirectly be solving

a problem closely related to (5), where the minimum

SNR is maximized. However, due to the intractability

of predicting such k⋆, we propose to simultaneously

maximize a subset of the smallest SNRs by considering

non-binary positive weights c(t)
k

that can be adapted based

on the SNR values (obtained after each iteration), thus

controlling the priorities of τF
k

or JF
k

. This proposed

approach also facilitates to keep track of several gradi-

ents simultaneously, preventing the search from getting

trapped in local optima.

B. Optimization of the digital precoder m

When F and {wk}Kk=1 are known, the problem collapses to

Phyb
2 :max

m
min
k∈K

∣∣∣wH
k HkFm

∣∣∣
2

(9a)

s.t. ‖Fm‖22 = Pmax
tx . (9b)



Algorithm 3: Optimization of the k-th combiner

Input: The precoders F
(t) , m(t) and the receive combiner w

(t−1)
k

Output: The receive combiner w
(t)
k

Execute:
1: Compute ∇wk

JW
k .

2: Compute ∇wk
J̃

(t)
W

= ∇wk
JW
k /

∥∥∥∇wk
JW
k

∥∥∥
2

.

3: Compute w
(t)
k

= w
(t−1)
k

+ ρWw
(t−1)
best,k

+ αW∇wk
J̃

(t)
W

.

4: Project
[
w

(t)
k

]

l
← ΠW

[
w

(t)
k

]

l
onto W , ∀l ∈ L to satisfy (12b).

Similarly as in (5) and (6), we recast (9) as

P̃hyb
2 : max

m

K∑

k=1

dk

∣∣∣wH
k HkFm

∣∣∣
2

(10a)

s.t. ‖Fm‖22 = Pmax
tx , (10b)

where dk is the weight corresponding to JM
k

=
∣∣wH

k
HkFm

∣∣2.

Compared to P̃hyb
1 , where an upper bound JM

k
for τF

k
was

derived, finding such a bound by means of the same procedure

is not feasible in this case, as it involves computing the inverse

of a rank-1 matrix M = m∗mT . Thus, we assume JM
k

= τM
k

.

P̃hyb
2 is iteratively solved employing Algorithm 2, where a

similar procedure as in Algorithm 1 is used to compute m.

Moreover, we assume that d
(t)
k

are computed in the same

fashion as c
(t)
k

. The gradient of JM
k

with respect to m is

∇mJM
k

= mHFHHH
k
wkwkHkF. The main difference between

Algorithm 1 and Algorithm 2 is Step 5, which restricts the

transmit power to Pmax
tx .

C. Optimization of the combiners wk

Assuming that F and m are given, we optimize {wk}Kk=1

Phyb
3 : max

{wk}Kk=1

min
k∈K

∣∣wH
k
HkFm

∣∣2

σ2 ‖wk‖22
(11a)

s.t. [wk]l ∈ W , l ∈ L,∀k ∈ K. (11b)

Note that (11) can be decomposed into K parallel and

independent sub-problems, whereby users will adapt their

corresponding wk in order to maximize their own SNR. Also,

since ‖wk‖22 is an scalar, each sub-problem reduces to

P̃hyb

3,k :max
wk

∣∣∣wH
k HkFm

∣∣∣
2

(12a)

s.t. [wk]l ∈ W , l ∈ L, (12b)

∀k ∈ K. As in P̃hyb
2 , we assume JW

k
= τW

k
=

∣∣wH
k
HkFm

∣∣2.

Moreover, each sub-problem in (12) is similar to (8) ex-

cept that each user optimizes their own utility function JW
k

.

We employ Algorithm 3 to find {wk}Kk=1, where ∇wk
JW
k

=

wH
k
HkFmmHFHHH

k
.

For completeness, LB-GDM is summarized in Algorithm 4.

The exploration phase is based on randomization of F, m

and {wk}Kk=1 (line 17). The exploitation phase harnesses F
(t)
best

,

m
(t)
best

, and
{
w

(t)
best,k

}K

k=1
as the momentum terms, which preserve

the fittest known solutions until iteration t and are updated

once per exploration instance (line 16). On the other hand,

Fopt, mopt, and
{
wopt,k

}K

k=1
retain the fittest solutions after each

exploitation instance (line 10). These parameters are updated

more frequently since they execute a finer scanning of the

search space. Further, to refine the potential solutions in this

phase, the learning factors αF , αM and αW are progressively

Algorithm 4: Proposed LB-GDM scheme

Initialize:

1: Assign
[
F

(0)
]

q,r
← δ, q = {1, . . . , Ntx}, r ← mod

(
q,NRF

tx

)
+1,

m
(0) ←

[
1 0

1×(NRF
tx −1)

]T
, w

(0)
k
←

[
1 01×(Nrx−1)

]T
, ∀k ∈ K.

2: Assign Fbest ← 0, mbest ← 0 and {wbest,k} ← 0.

3: Assign αF ← αF0 , αM ← αM0 , αW ← αW0 .

4: Assign t← 0, γT ← 0.
Execute:

5: for ixpr = 1, . . . , Nxpr do (exploration phase)

6: for ixpt = 1, . . . , Nxpt do (exploitation phase)

7: Compute F
(t) , m(t) ,

{
w

(t)
k

}K

k=1
via Algorithms 1, 2, 3.

8: Find the minimum SNR, γmin, among all users.

9: if γmin ≥ γT

10: Assign Fopt ← F
(t) , mopt ← m

(t) ,
{
wopt,k

}K

k=1
←

{
w

(t)
k

}K

k=1
.

11: Assign γT ← γmin.

12: end if

13: Update αF ← 0.98 αF , αM ← 0.98 αM , αW ← 0.98 αW .

14: Increment t← t + 1.

15: end for

16: Assign F
(t)
best
← Fopt, m

(t)
best
← mopt,

{
w

(t)
best,k

}K

k=1
←

{
wopt,k

}K

k=1
.

17: Randomize F
(t) , m(t) and

{
w

(t)
k

}K

k=1
enforcing (3b) - (3f).

18: Assign αF ← αF0 , αM ← αM0 , αW ← αW0 .

19: end for

decreased as the exploration phase advances (line 13). How-

ever, these learning factors are reset to their original values

when a new exploration instance begins (line 18). A proper

balance between exploration and exploitation allows LB-GDM

to produce more suitable precoders than SDR.

V. SIMULATION RESULTS

We consider the geometric channel model with Np = 5

propagation paths between the transmitter and each user. Also,

Pmax
tx = 1 (30 dBm), Pmax

rx = 0.01 (10 dBm), σ2 = 1 (30

dBm), while F and W consist of Ltx = 8 and Lrx = 4

different phase shifts, respectively. In the following scenarios,

we compare the performance of LB-GDM and SDR-C for fully-

digital and hybrid precoders in terms of the minimum SNR

(among all users) and the spectral efficiency (SE), computed

as the sum-capacity of the whole system. We evaluate several

configurations of Ntx, NRF
tx , Nrx, Nxpr, Nxpt, and K. For

LB-GDM, we set ρF = ρM = ρW = 0.9, αF0
= 1, αM0

= 1,

αW0
= 1 and vary Nxpr, Nxpt to control the fitness of the

solutions. In the case of SDR-C, we control the number of

randomizationsNrand. Furthermore, the numerical results show

the average over 100 channel realizations.

A. Impact of exploration (Nxpr) and exploitation (Nxpt)

In this scenario we evaluate the performance of LB-GDM for

different values of Nxpr and Nxpt, under a particular channel

realization. We consider K = 30, Ntx = 15, Nrx = 2, when

Nxpr and Nxpt are varied in the range [1, 100]. For the fully-

digital and hybrid precoders, we assume NRF
tx = Ntx = 15

and NRF
tx = 6, respectively. We observe in Fig. 1 that the

minimum SNR improves for increasing values of Nxpr and

Nxpt in both precoders. Further, Nxpr is more relevant than

Nxpt in improving this metric for this particular realization.

Nevertheless, both of these phases are important. Exploration

is the capability of effectively sampling/scanning the search

space to find potentially fitter solutions, whereas exploitation
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Figure 1: Impact of exploration (Nxpr) and exploitation (Nxpt)

phases on the system performance.

capitalizes on already known solutions to further refine them.

By doing so, our proposed LB-GDM avoids getting trapped

in local optima. As expected, the fully-digital precoder out-

performs its hybrid counterpart due to a larger number of RF

chains and less stringent constraints (constant-modulus phase

shifts). The former attains a minimum SNR of 1.77 whereas

the latter achieves 1.49. Besides, the hybrid precoder attains

11.5% lower SE than that of the fully-digital precoder.

Remark: While the minimum SNR monotonically increases

for both precoders, the SE performance does not exhibit the

same behavior. This is because the optimization criterion of

LB-GDM is to enhance the minimum SNR (MMF), without

considering the spectral efficiency. Nevertheless, the general

trend shows that higher Nxpr and Nxpt yield SE improvement.

B. Impact of the number of antennas Ntx and Nrx

In this scenario, we evaluate the performance of hybrid

and fully-digital precoders based on LB-GDM for a different

number of transmit and receive antennas. We consider K = 50,

Ntx = {8, 12, 16}, and Nrx = {1, 2, 3, 4, 5}. For the hybrid

precoder, we assume NRF
tx = 2. Fig. 2 depicts the improvement

of the minimum SNR when increasing Ntx and Nrx, for both

types of precoders. Since the transmit and receive power are

limited, endowing users with multiple antennas is beneficial

to improve the SNR. In particular, in the fully-digital case,

when Ntx = 8, the minimum SNR improves from 0.37 to 0.65

when the number of receive antenna increases from Nrx = 1

to Nrx = 2, which essentially indicates a 75.7% gain. Similarly,

the gain for the hybrid precoder is 100%. We also observe

a considerable improvement of the minimum SNR as Ntx

increases from 8 to 16, in which we attain a gain of up to 72.9%

and 58.6% for fully-digital and hybrid precoders, respectively.

Further, the SE also achieves 25.5% and 32.9% gain, for the

fully-digital and hybrid precoders, respectively (when Ntx = 8,

for Nrx = 1 and Nrx = 2). In general, the hybrid precoder attains

a SE at worst 11.8% lower than its fully-digital counterpart (for

Ntx = 8 Ntx = 12 Ntx = 16
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Figure 2: Performance evaluation of LB-GDM for varying Ntx

and Nrx in fully-digital (D) and hybrid (H) precoders.
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Figure 3: Performance comparison between LB-GDM and

SDR-C in terms of the minimum SNR.

all the cases). We also observe that with only NRF
tx = 2, the

hybrid transmit precoder is at worst 25.5% below the optimality

attained by the fully-digital in terms of the minimum SNR.

Remark: This scenario sheds lights on the relevance of reck-

oning with multiple antennas at the receivers when constrained

by power at both ends. Specifically, we obtain improvements

up to 72.9% and 58.6% by increasing the number of receive

antennas from Nrx = 1 to Nrx = 2. On the other hand, in this

case where NRF
tx = 2, the complexity of LB-GDM is even more

affordable as F† =
(
FHF

)−1
FH requires no actual inversion

of FHF, since a 2× 2 matrix can be inverted directly.

C. Performance comparison with an SDR-based scheme

We compare the performance of LB-GDM and SDR-C,

when implemented in fully-digital and hybrid precoders. We

consider Ntx = 20, Nrx = 3, with a wide range of users

K = {25, 50, 75, 100}. For the hybrid precoder NRF
tx = 6, whereas

for the fully-digital counterpart NRF
tx = Ntx. For LB-GDM, we

assume that Nxpt = Nxpr = 120. For SDR-C, the number of

randomizations are Nrand = {1, 10, 50, 100, 500, 1000}. To ensure

a fair comparison, we refine the solutions of SDR-C by



optimizing sequentially F, m, and {wk}Kk=1 over NSDR
iter = 3

iterations. In each iteration, Nrand randomizations are evalu-

ated. Fig. 3 depicts a notable improvement of LB-GDM over

SDR-C in both fully-digital (see Fig. 3b) and hybrid (see Fig.

3a) implementations, for all K. Specifically, the SDR-C results

are shown in the format 〈SDR-C | Nrand〉. We observe a more

prominent improvement for larger K. For instance, in the case

of the fully-digital precoder, when K = 50, the minimum SNR

obtained by LB-GDM is 79.3% higher than that of SDR-C

although a wide range of Nrand were tested. The gain is even

higher (i.e. 105.6%) for K = 100. We observe a similar trend for

LB-GDM-based hybrid precoder, with gains of up to 101.4%.

VI. DISCUSSION

SDR-C: This scheme is based on the approach in [19], where

the QoS problem is researched. We extended the approach

therein for the MMF problem. In this paper, SDR-C solves the

sub-problems Phyb
1 , Phyb

2 , Phyb
3 in alternate manner over NSDR

iter =

3 iterations. The initialization of m and {wk}Kk=1 are the same

as for LB-GDM (see line 1 of Algorithm 4). The SDR-C

scheme is discussed in Appendix B.

Optimality: The proposed schemes, LB-GDM and SDR-C,

cannot ensure global optimality. However, by observing Fig.

1 and Fig. 3 we corroborate that the approaches converge to

a local optima for increasing Nxpr, Nxpt or Nrand.

Impact of number of constraints: It is well known that the

optimality-gap of SDR degrades with increasing number of

constraints (i.e., number of users K). As a result, we observe

that for large K, the performance difference between LB-GDM

and SDR-C increases, which indicates that LB-GDM is more

robust and less sensitive to the number of constraints.

VII. CONCLUSION

In this paper, we investigated the design of fully-digital

and hybrid precoders for single-group multicasting using a

learning-based scheme. With the aim of maximizing the min-

imum SNR, our proposed low-complexity LB-GDM uses only

matrix multiplications/additions and low-dimensional matrix

inversion operations. We compare the performance of pre-

coders based on SDR-C and LB-GDM under diverse simulation

settings. The numerical results show a substantial gain, where

LB-GDM outperforms SDR-C by up to 105.6% and 101.4%

for digital and hybrid precoders, respectively. In addition,

we demonstrate the importance of incorporating more receive

antennas, where we achieve 75.7% and 100% gains in terms

of the minimum SNR by increasing the number of receive

antennas from one to two.
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APPENDIX A

GRADIENT OF JF
k

IN ALGORITHM 1

Let us define u = FHHH
k
wk and Y = FHF. Then, the

following differentials are computed: du = dFHHH
k
wk, dY =

FH dF, duH = wH
k
Hk dF and dY−1 = −Y−1 dYY−1. Thus, the

differential of JF
k

= uHY−1u is given by

dJF
k =

(
duH

)
Y−1u+ uH

(
dY−1

)
u+ uHY−1

(
du

)

=
(
wH

k Hk dF
)
Y−1u− uH

(
Y−1 dYY−1

)
u

=
(
wH

k Hk dF
)
Y−1u− uH

(
Y−1FH dFY−1

)
u

= Tr
{
Y−1uwH

k Hk dF
}
− Tr

{
Y−1uuHY−1FH dF

}

= Tr
{(

Y−1uwH
k Hk −Y−1uuHY−1FH

)
dF

}

The Frobenius inner product of two matrices P and

Q is defined as P : Q ≡ Tr
{
PTQ

}
. Thus, dJF

k
=(

Y−1uwH
k
Hk −Y−1uuHY−1FH

)T
: dF. Upon replacing u in

the expression above, we obtain

∇FJ
F
k =

(
I−FF†

)T (
F†HH

k wkw
H
k Hk

)T

, (A.1)

where F† =
(
FHF

)−1
FH . Note that the Wirtinger derivative of

JF
k

with respect to F∗ is zero, i.e., ∇F∗JF
k

= ∇
FH J

F
k

= 0.

APPENDIX B

SDR-C SCHEME

B.1. Optimization of F

Assuming that {wk}Kk=1 and m are known, notice that we

can express Fm = Pf , where P = mT ⊗ I and f = vec (F).

Furthermore, if we assign t = mink∈K

∣∣∣wH
k

HkFm

∣∣∣
2

σ2Pmax
rx

, then Phyb
1

in (4) can be equivalently expressed as,

Phyb
1 : max

t,F
t (B.1a)

s.t.
∣∣∣wH

k HkPf

∣∣∣
2
≥ t, (B.1b)

‖Pf‖22 = Pmax
tx , (B.1c)

[f ]n ∈ F , n ∈ N , (B.1d)

where N =
{
1, 2, . . . , NtxNRF

tx

}
. In (B.1), realize that ‖Pf‖22 =

Tr (XD), with X = PHP and D = ffH . Also, [D]n,n = δtx

since [f ]n ∈ F . By noticing that
∣∣wH

k
HkPf

∣∣2 = Tr (RkD), with

Rk = PHHH
k
wkw

H
k
HkP, (B.1) can be recast in its SDR form

as shown in (B.2)

Phyb
SDR,1 :max

t,D
t (B.2a)

s.t. Tr {RkD} ≥ t, (B.2b)

[D]n,n = δtx, n ∈ N , (B.2c)

D < 0, (B.2d)

where the constraint rank (D) = 1 has been dropped. Also,

(B.2d) enforces D to be Hermitian positive semidefinite (PSD).

Note that (B.2d) is linear in the PSD domain, and thus can be

effectively approached by optimization solvers such as SDPT3.

Upon obtaining D, f is recovered in three stages.

Stage 1: Observe that any element (n1, n2) of matrix D

can be represented as [D]n1,n2
= [f ]n1

[f ]∗n2
. Now, let us

define a vector u ∈ C
NRF
tx ×1 such that ‖u‖22 = uHu = 1.

Thus, we can express [D]n1,n2
in terms of u, i.e., [D]n1,n2

=



(
[f ]n1

uT
)(

[f ]∗n2
u∗

)
. Assuming that qn = [f ]n u, D can be

recast as D = QTQ∗ with Q =

[
q1,q2, . . . ,qNtxN

RF
tx

]
.

Stage 2: If the solution returned by Phyb
SDR,1 is denoted by D̂.

Then, via Cholesky decomposition we can obtain D̂ = Q̂T Q̂∗,

where Q̂ =

[
q̂1, q̂2, . . . , q̂NtxN

RF
tx

]
. In the previous stage, the

premise was that each qn could be obtained from the same u,

since qn = [f ]n u. However, we cannot guarantee that every q̂n

in D̂ has the same stem û. Although we have found D̂, f and

û remain unknown.

Stage 3: The objective is to find some û such that it

originates the least error in the 2-norm sense, i.e.,

Phyb
LS,1 : min

û,[f ]n,∀n∈N

NtxN
RF
tx∑

n=1

∥∥q̂n − [f ]n û
∥∥2

2
(B.3a)

s.t. ‖û‖22 = 1, (B.3b)

[f ]n ∈ F , n ∈ N . (B.3c)

Minimizing simultaneously over both q̂n and û is challeng-

ing. If we assume that û is known such that (8b) is satisfied,

then we are required to solve

P̃hyb
LS,1 : min

[f ]n,∀n∈N

NtxN
RF
tx∑

n=1

∥∥q̂n − [f ]n û
∥∥2
2

(B.4a)

s.t. [f ]n ∈ F , n ∈ N . (B.4b)

By expanding (B.4a), we realize that
∥∥q̂n − [f ]n û

∥∥2

2
=

q̂H
n q̂n − 2Re

(
[f ]n q̂H

n û
)
+

∣∣[f ]n
∣∣2 ûH û. Thus, (B.4) is

P̃hyb
LS,1 : max

[f ]n,∀n∈N

NtxN
RF
tx∑

n=1

Re

(
[f ]n q̂H

n û
)

(B.5a)

s.t. [f ]n ∈ F , n ∈ N . (B.5b)

Note that (B.5) can be decomposed into NtxNRF
tx

independent sub-problems. Thus, since zn = q̂H
n û is known,

we need to select [f ]n such that the real part of (B.5a) is

maximized. This is equivalent to choosing [f ]n with the closest

phase to z∗n. After finding f , it can be reshaped to obtain F.

B.2. Optimization of m

We assume herein that F and {wk}Kk=1 are known. Thus, the

SDR form of Phyb
2 is given by

Phyb
SDR,2 : max

t,M
t (B.6a)

s.t. Tr (ZkM) ≥ t, (B.6b)

Tr (YM) = Pmax
tx , (B.6c)

M < 0, (B.6d)

where Y = FHF, Zk = FHHH
k
wkw

H
k
HkF and M = mmH .

B.3. Optimization of wk

Now, we assume that F and m are given. Therefore, SDR

form of Phyb
3 is

Phyb
SDR,3 : max

t,{Wk}Kk=1

t (B.7a)

s.t. Tr (CkWk) ≥ t, (B.7b)

Tr (Wk) = Pmax
rx , (B.7c)

Wk < 0, k ∈ K, (B.7d)

where Wk = wkw
H
k

and Ck = HkFmmHFHHH
k

. The problems

Phyb
SDR,1, Phyb

SDR,2 and Phyb
SDR,3 can be straightforwardly recast as

linear programs and can therefore be efficiently solved by

numerical solvers. In our case, we employed CVX and SDPT3.
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