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Abstract—This paper considers the support of grant-free ma-
ssive access and solves the challenge of active user detection and
channel estimation in the case of a massive number of users. By
exploiting the sparsity of user activities, the concerned problems
are formulated as a compressive sensing problem, whose solution
is acquired by approximate message passing (AMP) algorithm.
Considering the cooperation of multiple access points, for the
deployment of AMP algorithm, we compare two processing
paradigms, cloud computing and fog computing, in terms of their
effectiveness in guaranteeing ultra reliable low-latency access.
For cloud computing, the access points are connected in a cloud
radio access network (C-RAN) manner, and the signals received
at all access points are concentrated and jointly processed in
the cloud baseband unit. While for fog computing, based on fog
radio access network (F-RAN), the estimation of user activity and
corresponding channels for the whole network is split, and the
related processing tasks are performed at the access points and
fog processing units in proximity to users. Compared to the cloud
computing paradigm based on traditional C-RAN, simulation
results demonstrate the superiority of the proposed fog computing
deployment based on F-RAN.

Index Terms—Massive access, fog computing, active user
detection, structured sparsity, approximated message passing.

I. INTRODUCTION

With the advent of the Internet-of-Things (IoT) era, massive

machine-type communications (mMTC) has been identified as

one of the core services in future wireless networks [1]. In this

context, the future base stations (BSs) are required to enable

connectivity for billions of user equipments. However, the

support of low-latency massive access for massive connectivity

is still challenging in current wireless networks [2]. Due to

the massive number of users, traditional grant-based random

access (RA) protocols would suffer from unacceptably high

access latency and require extremely complicated collision

resolution schemes [3], [4]. Hence, the grant-free RA protocol

is recently proposed as a promising alternative, where each

active user directly transmits its pilots and data to the BS

without access scheduling in advance [5]. Furthermore, a key

characteristic of mMTC is the sporadic traffic of users, i.e.,

out of many potential users, only a small number are activated

and want to access the network in any given time interval [6].

Thus, in grant-free RA, the BS has to detect the active users

and estimate their channels, which are vital for the subsequent

data detection [7]. However, due to the large number of users

and the limited channel coherence time, it is not possible to

assign orthogonal pilot sequences to all users and the active

user detection (AUD) is emerging as a new challenge [6].

By leveraging the sparsity of users’ traffic, for grant-free

massive access, several compressive sensing (CS)-based meth-

ods have been proposed to simultaneously detect active users

and their data [8]–[10], while assuming only single-antenna

BS and the availability of perfect channel state information. To

jointly perform AUD and channel estimation (CE), the authors

in [11] developed an approximate message passing (AMP)-

based access scheme, where the BS equipped with a massive

number of antennas was employed. On this basis, the virtual

angular domain sparsity of massive multi-input multi-output

(MIMO) channels was leveraged for further enhanced perfor-

mance [12]. Moreover, this work was investigated extensively

under the cloud radio access network (C-RAN), where two

cloud-centric approaches were proposed to support grant-free

massive access [13], [14]. In [15], based on fog radio access

network (F-RAN), the authors developed a fog computing

deployment for AUD and CE, which splits the corresponding

computation into multiple units and solves the problem in

a distributed manner. Besides, the pros and cons of cloud

computing and fog computing paradigms are analyzed in [16].

In this paper, we investigate massive access under two

promising network architectures, C-RAN and F-RAN, where

the practical processing deployment for AUD and CE is

considered. Since the IoT users are usually power limited, the

access points should be densely distributed to serve a vast area

and to save the transmit power of users. For cloud computing

with C-RAN, quantities of remote radio heads (RRHs) are

distributed in the network and are connected to the cloud

baseband unit (BBU) through fronthual links, as illustrated

in Fig. 1. To reduce the cost of access point deployment,

the RRHs are only designed for receiving and transmitting

signals, thus the AUD and CE are performed in cloud BBU.

Specifically, by exploiting the sporadic traffic of users, the

AUD and CE are formulated as a multiple measurement

vector (MMV) CS problem, and a MMV-AMP algorithm is

developed to acquire the solution. Motivated by alleviating the

burden on BBU and reducing the network congestion, the fog

computing paradigm is further investigated for faster response

time, which brings cloud capabilities closer to the edge of the

network, i.e., closer to the users. In fog computing with F-

RAN, the RRHs are replaced with fog access points (F-APs)

having computation capabilities, and several neighboring F-
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Fig. 1. Users exhibit sporadic traffic in massive access, where

the C-RAN is employed to cover a vast area and each RRH

serves a small cell.

APs are connected to a fog processing unit for cooperation,

as illustrated in Fig. 2. On this basis, the estimation of user

activity and related channels for the whole network is split,

and the corresponding processing tasks are performed at the

F-APs and fog processing units.

Notations: Throughout this paper, scalar variables are de-

noted by normal-face letters, while boldface lower and upper-

case letters denote column vectors and matrices, respectively.

The transpose and complex conjugate operators are denoted

by (·)T and (·)∗, respectively. [X]k,m is the (k,m)-th element

of matrix X∈ CK×M ; [X]k,: and [X]:,m are the k-th row

vector and the m-th column vector of matrix X∈ CK×M ,

respectively. |K|c is the number of elements in set K, [K]
denotes the set {1, · · · ,K}, and supp {·} is the support set of

a vector or a matrix. Finally, CN (x;µ, v) denotes the complex

Gaussian distribution of a random variable x with mean µ and

variance v.

II. SYSTEM MODEL

Consider a uplink massive access scenario in C-RAN or F-

RAN, where the network serves BKc users distributed in B
hexagonal cells, as illustrated in Fig. 1 and Fig. 2. Each cell

contains one access point, i.e., RRH or F-AP, located at the

center, serving Kc single-antenna users uniformly distributed

in its coverage. Here, the access point is equipped with Mc-

antenna uniform linear array. Defining K = BKc, for the t-th
time slot, the signal rtb,k ∈ C

Mc×1 received at the b-th access

point from the k-th user can be expressed as1

r
t
b,k =

√
Pkhb,ks

t
k + n

t
b, (1)

where Pk denotes the transmit power of the k-th user, hb,k ∈
CMc×1 is the channel associated with the k-th user and the

b-th access point, stk ∈ CN (stk; 0, 1) is the uplink access pilot,

and n
t
b denotes the additive white Gaussian noise (AWGN).

For typical mMTC, within a given time interval, only a small

number of users are activated to access the network. The user

activity indicator is denoted as αk, and is equal to 1 when the

k-th user is active and 0 otherwise. Meanwhile, we define the

set of active users as A = {k|αk = 1, 1 ≤ k ≤ K}, and the

1Here, k = (b − 1)Kc + c with b ∈ [B] and c ∈ [Kc].
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Fig. 2. An illustration of F-RAN, with F-APs having the ability

to perform processing tasks. Furthermore, every neighboring

three F-APs can cooperate in a fog processing unit.
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Fig. 3. The frame structure of the uplink signals.

number of active users is denoted by Ka = |A|c. Hence, the

signal received at the b-th access point from all active users

is given as follows

r
t
b =

∑

k∈A

√
Pkhb,ks

t
k + n

t
b

=

K∑

k=1

αk

√
Pkhb,ks

t
k + n

t
b.

(2)

By considering the large-scale fading and small scale fading,

we can model hb,k as hb,k = ρb,kh̃b,k, where ρb,k is the large-

scale fading caused by path loss, and h̃b,k is the small scale

fading. Here, the path loss from the b-th access point to the k-

th user, ρb,k, is given by the standard Log-distance path loss

model as ρb,k = 128.1 + 37.6lg(db,k), in which db,k is the

distance measured in km [17]. Furthermore, the small scale

fading channel, h̃b,k, is modeled as follows [12]

h̃b,k =

L∑

l=1

βl
b,kaR

(
φl
b,k

)
, (3)

where L denotes the number of multi-path components

(MPCs), βl
b,k is the complex path gain of the l-th

MPC. The array response vector aR

(
φl
b,k

)
is given by

aR

(
φl
b,k

)
=

[
1, e−j2πφl

b,k , · · · , e−j2π(M−1)φl
b,k

]
, where

φl
b,k = d̃

λ
sin

(
ϕl
b,k

)
. Here, ϕl

b,k is the angle of arrival of the

k-th UE’s l-th MPC seen from the b-th access point, λ is the

wavelength, and d̃ = λ/2 is the antenna spacing.

III. ACTIVE USER DETECTION AND CHANNEL

ESTIMATION BASED ON TWO PROCESSING PARADIGMS

This section details the design of AUD and CE schemes

under cloud computing and fog computing paradigms, re-

spectively. To avoid complicated collision resolutions and the
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associated latencies, the grant-free random access protocol is

adopted, whose frame structure is illustrated in Fig. 3. A frame

consists of T time slots, where the first G time slots are used to

transmit pilots, and the remaining (T −G) time slots are used

for data transmission only. Here, we assume T is small than the

channel coherence time, and the activity of users during the T
time slots remains unchanged. For facilitating the acquisition

of user activity and related channel state information, at the

access points, the received signals in G successive time slots

are collected as

Rb = SHb +Nb, ∀b ∈ [B], (4)

where Rb =
[
r
1
b , r

2
b , · · · , rGb

]T ∈ CG×Mc , S =[
s
1, s2, · · · , sG

]T ∈ C
G×K , st = [st1, s

t
2, · · · , stK ]

T ∈ C
K×1,

Hb =
[
α1

√
P1hb,1, α2

√
P2hb,2, · · · , αK

√
PKhb,K

]T ∈
CK×Mc , and Nb =

[
n
1
b ,n

2
b , · · · ,nG

b

]T
. In the following,

based on received signals Rb, ∀b, and pilot matrix S, we

present the procedure of AUD and CE based on two processing

paradigms, respectively.

A. Cloud Computing Based Massive Access

The procedure of the proposed cloud computing based

uplink massive access scheme can be summarized as follows.

• Step 1: During the pilot phase of each frame in Fig. 3,

all active users A directly transmit their non-orthogonal

access pilot sequences sk ∈ CG×1, ∀k ∈ A to the RRHs.

• Step 2: Each RRH collects the received signals over G
successive time slots, and sends the collected signal Rb

to the cloud via fronthaul links.

• Step 3: Jointly processing the received signals from all

RRHs, Rb, ∀b, the BBU pool in the cloud performs AUD

and CE for the whole network with known random access

pilot matrix S.

It is clear that, for cloud computing paradigm, the RRHs close

to users are working as relays, and the related processing is

performed in the cloud, which is faraway from the users. At

the cloud processing units, the received signals from all RRHs

are concentrated as

Y = [R1,R2, · · · ,RB]

= SX+N,
(5)

where N = [N1,N2, · · · ,NB] and X ∈ CK×M is expressed

as
X = [H1,H2, · · · ,HB]

=




α1η1,1h̃1,1 · · · α1ηB,1h̃B,1

...
. . .

...

αKη1,K h̃1,K · · · αKηB,K h̃B,K


 .

(6)

Here, ηj,k =
√
Pkρj,k and M = BMc.

The channel matrix X exhibits some individual sparsity

properties, which may be useful for achieving ultra reliable

low-latency massive access. Due to the sporadic traffic of

users, only a small number of users are active, i.e., Ka ≪ K
and most of the activity indicators αk are equal to 0. Thus, the

channel vector [X]:,m observed at a specific receive antenna

of the RRHs, i.e., the m-th column of X, is sparse as

∣∣∣supp
{
[X]:,m

}∣∣∣
c
= Ka ≪ K. (7)

Moreover, given the user activity, i.e., the value of αk, all

elements of the k-th row of X will be zero or non-zero si-

multaneously, thus all RRH antennas exhibit the same sparsity

supp
{
[X]:,1

}
= supp

{
[X]:,2

}
= · · · = supp

{
[X]:,M

}
.

(8)
In grant-free based massive access, the active users and the

corresponding channels have to be acquired. These two targets

will be simultaneously realized by estimating channel matrix

X based on the noisy measurements Y and pilot matrix S,

where AUD is actually to find the indices of non-zero rows of

X. Due to the massive numbers of users and limited channel

coherence time, it is unlikely to assign orthogonal pilots to

each user, thus G is far less than K . This makes estimating

X based on (5) an under-determined problem, whose solution

is hard to be obtained. By exploiting the sparsity described in

(7), the concerned problems can be formulated as a MMV CS

problem. In this paper, a computationally efficient MMV-AMP

algorithm is developed for CS recovery, where the sparsity

structure in (8) is leveraged to further enhance the recovery

performance, as will be detailed in the following.

The MMV-AMP algorithm adopted in this paper belongs

to the family of AMP algorithms [6], which is developed

under the Bayesian framework. An intuitive explanation of

AMP is that, in the large system limit, i.e., K → ∞, while

γ = Ka/K and κ = G/K are fixed, the matrix estimation

problem based on (5) can be approximately decoupled into

KM scalar estimation problems [12], as

Y = SX+N → Cq
k,m = xk,m + nq

k,m, ∀k,m, (9)

where Cq
k,m ∼ CN

(
Cq

k,m;xk,m, Dq
k,m

)
is the equivalent

measurement of xk,m obtained in the q-th AMP iteration,

and nq
k,m ∼ CN

(
nq
k,m; 0, Dq

k,m

)
denotes the effective noise.

Under Bayesian framework, estimating xk,m is to acquire the

posterior mean of xk,m. Hence, representing the model (5) by

a bipartite graph, the posterior distributions of xk,m, ∀k,m are

approximated as

p (xk,m|Y) ≈ p
(
xk,m|Cq

k,m, Dq
k,m

)

≈ 1

Z̃
p0 (xk,m) CN

(
xk,m;Cq

k,m, Dq
k,m

)
,

(10)

where p0 (xk,m) denotes the a priori distribution of xk,m, and

Z̃ is the normalization factor. In (10), Dq
k,m and Cq

k,m are

updated at the variable nodes of the bipartite graph as

Dq
k,m =

[
∑

g

|sg,k|2
σ + V q

g,m

]−1

, (11)

Cq
k,m = x̂q

k,m +Dq
k,m

∑
g

s∗g,k
(
yg,m − Zq

g,m

)

σ + V q
g,m

, (12)

where V q
g,m and Zq

g,m are updated at the factor nodes of the

bipartite graph as

V q
g,m =

∑
k
|sg,k|2 vqk,m, (13)

Zq
g,m =

∑
k
sg,kx̂

q
k,m − V q

g,m

σ + V q−1
g,m

(
yg,m − Zq−1

g,m

)
. (14)
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Moreover, in this paper, we consider a flexible spike and slab

a priori distribution, i.e.,

p0 (X) =

M∏

m=1

K∏

k=1

p0 (xk,m)

=
M∏

m=1

K∏

k=1

[(1 − γk,m)δ(xk,m) + γk,mf(xk,m)] ,

(15)

which can well match the actual distribution of channel matrix

X. In (15), 0 < γk,m < 1 is the sparsity ratio, i.e., the

probability of xk,m being non-zero, δ (·) is the Dirac delta

function, and the widely used Gaussian a priori distribution for

the channel gains is adopted, i.e., f (xk,m) = CN (xk,m;µ, τ)
[12]. By exploiting this a priori model in (10), the posterior

distribution of xk,m is obtained as

p
(
xk,m|Cq

k,m, Dq
k,m

)
=

(
1− πq

k,m

)
δ (xk,m)

+ πq
k,mCN

(
xk,m;Aq

k,m, Bq
k,m

)
,

(16)

where

Aq
k,m =

τCq
k,m + µDq

k,m

Dq
k,m + τ

, Bq
k,m =

τDq
k,m

τ +Dq
k,m

, (17)

πq
k,m =

γk,m
γk,m + (1− γk,m) exp (−L) , (18)

L =
1

2
ln

Dq
k,m

Dq
k,m + τ

+

∣∣∣Cq
k,m

∣∣∣
2

2Dq
k,m

−

∣∣∣Cq
k,m − µ

∣∣∣
2

2
(
Dq

k,m + τ
) , (19)

and πq
k,m is referred to as the belief indicator. The posterior

mean and variance of xk,m can now be explicitly calculated

as

ga

(
Cq

k,m, Dq
k,m

)
= πq

k,mAt
k,m, (20)

gc

(
Cq

k,m, Dq
k,m

)
= πq

k,m

(∣∣∣Aq
k,m

∣∣∣
2

+Bq
k,m

)
− |ga|2 , (21)

respectively.

Equations (11)-(21) make up the basic steps of MMV-

AMP algorithm, while assuming the full knowledge of the

sparsity ratio γk,m, ∀k,m and the noise variance σ, which

may be difficult to obtain in practice. Hence, the expectation

maximization algorithm is exploited to learn the unknown

hyper-parameters as [12], ∀k,m:

γq+1
k,m = πq+1

k,m =
γq
k,m

γq
k,m + (1− γq

k,m) exp (−L) , (22)

σq+1
k,m =

1

G

∑
g




∣∣yg,m−Zq
g,m

∣∣2
∣∣∣1+V q

g,m/σq
k,m

∣∣∣
2 +

σq
k,mV q

g,m

σq
k,m+V q

g,m


. (23)

In Algorithm 1, the sparsity ratio γk,m is the probability

that the (k,m)-th element of X is non-zero. In line 6, γk,m
are updated independently for all k and m according to (22),

which indicates that the common sparsity pattern described in

(8) is not exploited. To fully exploit the structured sparsity

of the channel matrix, we assume that the channel elements

associated with the same user have a common sparsity ratio,

Algorithm 1 MMV-AMP Algorithm

Input: Noisy observation Y, pilot matrix S, the maximum

number of iterations Tmax and termination threshold ε.

Output: Estimated channel matrix X̂ and the related belief

indicators πk,m, ∀k,m.

1: ∀k,m: Set iteration index q to 1, initialize the hyper-

parameters, γk,m and σk,m, as in [12], and initialize other

parameters as V 0
g,m = 1, Z0

g,m = yg,m, x̂1
k,m = 0,

v1k,m = τ .

2: repeat

3: ∀g,m: Update V q
g,m and Zq

g,m according to (13) and

(14) at the factor nodes.

4: ∀k,m: Update Dq
k,m and Cq

k,m according to (11) and

(12) at the variable nodes.

5: ∀k,m: Compute the posterior mean and variance as

x̂q+1
k,m = ga(C

q
k,m, Dq

k,m), vq+1
k,m = gc(C

q
k,m, Dq

k,m).

6: ∀k,m: Update the hyper-parameters γq+1
k,m and σq+1

k,m as

in (22) and (23).

7: ∀k,m: Refine the update rule for the sparsity ratio,

γq+1
k,m = 1

|Nk,m|
c

∑
(o,u)∈Nk,m

πq+1
o,u .

8: q = q + 1.

9: until q > Tmax or

∥∥∥X̂q − X̂
q−1

∥∥∥
2

F
< ε

∥∥∥X̂q−1
∥∥∥
2

F
.

10: return X̂
q and πk,m, ∀k,m.

and further propose to refine γk,m as in line 7, where we use

Nk,m={(o, u) |o = k;u = 1, · · · ,M}.

With the estimate of X, the estimated active user set and the

corresponding channel vectors can be simultaneously acquired.

Specifically, for AUD, we design a user activity detector based

on the belief indicators πk,m, ∀k,m, as follows. We first define

a threshold function r (x; εbi), where r (x; εbi) = 1 if |x| >
εth, otherwise r (x; εbi) = 0.

Definition 1: Since the belief indicator πk,m tends to be 1 for

x̂k,m 6= 0 and 0 for x̂k,m = 0 after the convergence of MMV-

AMP algorithm2, a belief indicator-based activity detector (BI-

AD) is proposed as

α̂k = α̂b,c =

{
1, 1

Mc

∑i+Mc

m=i+1 r (πk,m; εbi) ≥ pbi,

0, 1
Mc

∑i+Mc

m=i+1 r (πk,m; εbi) < pbi,
(24)

where k = (b−1)Kc+c and i = (b−1)Mc+1. We set εbi =
0.5 to make the missed detection and false alarm probabilities

identical, and set pbi = 0.9 based on empirical experience3.

Finally, if the k-th user is declared active, its channel to all

RRHs is estimated as X̂k,:, otherwise, X̂k,: = 01×M .

B. Fog Computing Based Massive Access

In this section, based on F-RAN illustrated in Fig. 2, we

develop a fog computing deployment for massive access,

in which the cloud capabilities are extended closer to the

edge of the network. Specifically, for the whole network, the

estimation of user activity and related channels is split, and

2The related proof please refer to [12].
3Given the estimated channel between the (b, c)-th user to the b-th RRH,

if more than 90% of its elements are decided to be non-zero, the (b, c)-th
UE is declared active.
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Fig. 4. In cloud computing based massive access, the proce-

dure of MMV-AMP algorithm applied to the model (5).

the corresponding computations are executed at F-APs and

fog processing units in close proximity to users. The split

strategy is that each F-AP performs AUD and CE locally based

on its own received signal, while several neighboring F-APs

cooperate at a fog processing unit for enhanced performance.

The details are summarized in Algorithm 2.

The difference between C-RAN based and F-RAN based

massive access processing is detailed as follows. For cloud

computing paradigm, the detailed procedure of MMV-AMP

algorithm applied to the model (5) is summarized in Algorithm

1 and illustrated in Fig. 4. It is clear that, in lines 3-6 of

Algorithm 1, the signals received at B RRHs are processed in

parallel, and only jointly processed in line 7. Intuitively, Line

7 leverages the structured sparsity described in (8) to refine the

update rule of sparsity ratio γk,m, where the channel elements

of the same user is assumed to have a common sparsity ratio.

Hence, in fog computing, we propose to replace the RRHs in

C-RAN with the F-APs having computation capabilities. On

this basis, for a specific iteration of MMV-AMP algorithm,

each F-AP executes the lines 3-6 locally based on its own

received signal, and γk,m in line 7 is jointly refined via F-APs

cooperation.

Algorithm 2 Fog Computing Deployment

1: Set iteration index q to 1, and initialize related parameters.

2: repeat

3: ∀b: Replacing Y with Rb, the b-th F-AP executes lines

3-6 of Algorithm 1 locally based on its own received

signal Rb and known pilot matrix S.

4: ∀b: At the b-th F-AP, refine the sparsity ratios locally,

π̃q+1
k,b = 1

Mc

∑bMc

m=(b−1)Mc+1 π
q+1
k,m , ∀k ∈ [K].

5: ∀k: At the fog processing units, jointly refine the

sparsity ratios, γq+1
k,m = 1

|Bk|c

∑
b∈Bk

π̃q+1
k,b .

6: q = q + 1.

7: until q > Tmax.

8: ∀b: With X̂
q
Kb,Mb

and πq
k,m, ∀k ∈ Kb, ∀m ∈ Mb, the b-th

F-AP performs AUD and CE for the users in its coverage

as in (24). Here, Kb = {(b − 1)Kc + 1, · · · , bKc} and

Mb = {(b− 1)Mc + 1, · · · , bMc}.

On the other hand, this paper considers a huge size of

network to serve a vast area, the channel strengths from

a specific active user to far away F-APs are approximate
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Fig. 5. An illustration of F-APs cooperation for fog computing

deployment, in which Nco = 3 is considered.

zero because of the large scale fading. This reveals that,

forwarding average belief indicators π̃k,b obtained at all F-

APs to a function node (such as cloud BBU) for jointly

refining sparsity ratios, which turns out to be the same effect

of line 7 of Algorithm 1, is not an efficient way. To make the

cooperation of F-APs more flexible, every Nco neighboring

F-APs are connected to a fog processing unit. For a specific

user surrounded by these F-APs, its sparsity ratios are jointly

refined at the associated fog processing unit. To illustrate the

aforementioned F-APs cooperation, as an example, Nco = 3
is considered in Fig. 5. The sparsity ratios of users in Area 1

are jointly refined by F-APs 1-3, while that of users in Area

2 are jointly refined by F-APs 3-5. We describe the F-AP and

user association from a user-centric perspective, in which user

selects Nco closest F-APs for cooperation. For user k, the set

of selected F-APs is denoted as Bk ⊆ [B] with |Bk|c = Nco.

IV. SIMULATION RESULTS

For the presented simulation results, we consider a network

comprising B = 7 hexagonal small cells placed in two tiers.

Each cell contains Kc = 500 users uniformly distributed in

the coverage with radius 1 km, among which five percent

are active. Hence, there are in total K = 3500 users, and

Ka = 175 users are active. Under the C-RAN architecture, we

assume one RRH equipped with Mc antennas is located at the

center of each cell. While for F-RAN, the RRHs are replaced

with F-APs, and every Nco neighboring F-APs are connected

to a fog processing unit for cooperation. The transmit power

of users is 23 dBm, and the background noise power is −174
dBm/Hz over 10 MHz. For channel model, the complex gain

is generated by βl
b,k ∼ CN (βl

b,k; 0, 1), and the number of

MPCs L varies from 8 to 14 [12]. Furthermore, Tamp = 200,

ε = 10−5, and the simulation results are obtained by averaging

over 3× 103 simulation runs.

For performance evaluation, we consider the detection error

probability Pe for AUD and the normalized mean square error

(NMSE) in dB for CE, which are respectively defined as
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Fig. 6. Comparison of detection error probabilities for the

proposed massive access schemes and the baseline scheme.
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Fig. 7. NMSE performance comparison of the proposed

schemes and baseline scheme.

Pe =

∑
k |α̂k − αk|

K
, NMSE = 10log10

∥∥∥X̂−X

∥∥∥
2

F

‖X‖2F
. (25)

To verify the superiority of the proposed schemes, a massive

access solution based on traditional network architecture is

employed as the baseline scheme, where each BS only seeks

to detect the users from its own cell while treating the inter-

cell interference as noise [17]. Because unless BSs cooperate,

it is unlikely that each BS can obtain knowledge about the

out-of-cell users.

Fig. 6 compares the AUD performance of massive access

based on cloud computing and fog computing paradigms, as

well as the baseline scheme. As can be observed, the two

proposed schemes outperform the baseline scheme. Since the

inter-cell interference can be recovered via the cooperation of

access points. Moreover, all the three schemes can achieve

a better detection performance by equipping more antennas

at the access point (RRH, F-AP or BS), as a larger Mc can

enhance the structured sparsity observed from multiple receive

antennas.

In Fig. 6, for the performance comparison of two processing

paradigms, it is clear that, by increasing the number of F-APs

for cooperation, i.e., Nco, the fog computing will approach

the performance of cloud computing. It is worth noticing

that fog computing even outperforms cloud computing when

Nco = 3. This is because the channel strengths from a specific

active user to far away access points are approximate zero, it

may cause some performance loss by considering these access

points when the sparsity ratio is refined as line 7 of Algorithm

1. Furthermore, there is a tradeoff between the performance

and the cost of practical access point deployment. The fog

computing can reap a faster response time and a better per-

formance while increases the cost of access point deployment.

Fig. 7 depicts the CE NMSE performance of the considered

schemes, which further demonstrates the superiority of the

proposed fog computing based scheme.

V. CONCLUSION

This paper investigates the support of grant-free massive

access, and proposes two AUD and CE schemes based on

cloud computing and fog computing paradigms, respectively.

Considering the cooperation of multiple access points, the

proposed schemes can achieve a better performance than the

solution based on traditional network architecture. Further-

more, compared to cloud computing, the fog computing will

reap a fast response time and even a better AUD and CE

performance, but increase the cost of access point deployment.
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