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Abstract—In this paper, we study the problem of optimal
scheduling of content placement along time in a base station with
limited cache capacity, taking into account jointly the offloading
effect and freshness of information. We model offloading based
on popularity in terms of the number of requests and information
freshness based on the notion of age of information (AoI). The
objective is to reduce the load of backhaul links as well as the AoI
of contents in the cache via a joint cost function. For the resulting
optimization problem, we prove its hardness via a reduction from
the Partition problem. Next, via a mathematical reformulation,
we derive a solution approach based on column generation and
a tailored rounding mechanism. Finally, we provide performance
evaluation results showing that our algorithm provides near-
optimal solutions.

Index Terms—Age of information, base station, caching, time-
varying popularity.

I. INTRODUCTION

Content caching at the network edge is considered to be an

enabler for future wireless networks. This technique strives to

mitigate the heavy burden on backhaul links via providing the

users with their contents of interest from the network edge

without the need of going to the core networks.

In designing effective caching strategies, previous works

have focused on content popularity, whereas another important

aspect is information freshness. Popularity of a content is de-

fined as the number of users requesting the content. Popularity

may vary over time [1]. Thus, some contents may be added

to or removed from the cache as they become popular or

unpopular. Freshness of contents in the cache refers to how

recent the content has been obtained from the core network.

The longer a content is stored in the cache without an update,

the higher risk is that the cached content becomes obsolete.

Hence, we would like to refresh the cached contents often,

which however leads to higher load on the backhaul. Freshness

of contents naturally arises in applications such as news, traffic

information, etc., and it may have a great impact on user

satisfaction. We model freshness of contents using the notion

of age of information (AoI). For content caching, AoI is

defined as the amount of time elapsed since the time that the

content is refreshed. In this paper, we use a joint cost function

to address the trade-off between the benefit of offloading via

caching and AoI.

The works such as [2]–[5] took into account only the pop-

ularities of contents in designing cache placement strategies.

The works in [2], [3] considered content caching with known

popularities of contents. The studies in [4], [5] showed that the

popularites of contents can be estimated via learning-based

algorithms. However, in the mentioned works popularity of

a content are time-invariant. In [6], [7], caching with time-

varying popularity profiles are investigated. In [7] an algo-

rithm is proposed to estimated the time-varying popularities

of contents. The studies in [8], [9] considered information

freshness but not popularity of contents in their caching

problems. Recently, a few works [10]–[12] have considered

both popularity and freshness of contents. However, these

works have the following limitations. In [10], the downloading

cost of contents from the server is neglected. In [11], only one

content of the cache could be updated in each time slot. In

[12], it is assumed that the cache capacity is unlimited.

In this paper, we study optimal scheduling of content

caching along time in a base station (BS) with limited storage

capacity taking into account jointly offloading via caching

and freshness of contents. The objective is to mitigate the

load of backhaul links via minimizing a penalty cost function

related to content downloading, content updating, and AoI

costs subject to the cache capacity. The main contributions

of this work are summarized as follows:

• The caching scheduling problem is formulated as an

optimization problem. Specifically, it is formulated as

an integer linear program (ILP) and the hardness of the

problem is proved based on a reduction from the Partition

problem.

• Via a problem reformulation, a column generation algo-

rithm (CGA) is developed. We prove that the subproblem

of CGA can be converted to a shortest path problem

that can be solved in polynomial time. In addition, the

CGA provides an effective lower bound (LB) of global

optimum .

• The solution obtained from CGA could be fractional, thus

an advanced and problem-tailored rounding algorithm

(RA) is derived to construct integer solutions.

• Simulations show the effectiveness of our solution ap-

proach by comparing the obtained solutions to the LB

as well as the conventional algorithms. Our algorithm

provides solutions within 1% of global optimum.

II. SYSTEM SCENARIO AND PROBLEM FORMULATION

A. System Scenario

The system scenario consists of a content server, a BS and a

set of users U = {1, 2, . . . , U} within the coverage of the BS.

The server has all the contents, and the BS is equipped with

a cache device of capacity S. The contents are dynamic, i.e.,

the information they contain may change over time. Denote
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by F = {1, 2, . . . , F} the set of the contents. We assume

the server has always the up-to-date version of the contents.

Denote by lf the size of content f . Each content is either fully

stored or not stored at all at the BS. The system scenario is

shown in Figure 1.

Server

Content

Cache

User

Figure 1. System scenario.

We consider a slotted time system of T = {1, 2, . . . , T }
time slots. At the beginning of each time slot, the contents

to be stored in the cache need to be determined by an

updating/placement action. Namely, some stored contents may

be removed from the cache, some contents may be added to

the cache, and some contents may be re-downloaded from the

server. The freshness of a content may decrease along time.

We use AoI to model the freshness of contents. A content

that is newly downloaded from the cache has AoI 0, and for

each time slot it remains in the cache without re-downloading,

its AoI increases with one time slot. Denote by pf(i) the cost

associated with an AoI of i time slots for content f . A content

has AoI i time slots when the content has been stored in the

cache for i continuously time slots without any update.

In our model, user u ∈ U requests at most Ru contents

within the T time slots based on its interest. The set of requests

for user u is denoted by Ru = {1, . . . , Ru}. The downloading

process of a content starts as soon as the request is made. The

content can be downloaded either from the cache if the content

is in the cache, or otherwise from the server. We assume the

time of each request is known or can be predicted via using a

prediction model, e.g., the one in [7]. For user u and its r-th

request, the requested content and the time slot of request are

denoted by h(u, r) and o(u, r), respectively.

B. Cost Model

Denote by xtf a binary optimization variable which equals

one if and only if the f -th content is stored in time slot t.

Denote by cs and cb the costs for downloading one unit of

data from the server and the cache to a user, respectively. We

have cs > cb to encourage downloading from the cache. The

downloading cost for user u to obtain its r-th request, denoted

by Cur, is expressed as:

Cur = lh(u,r)[cbxo(u,r)h(u,r) + cs(1− xo(u,r)h(u,r))]. (1)

The downloading cost for completing all requests of all users,

denoted by Cdownload, is Cdownload =
∑U

u=1

∑Ru

r=1Cur .

Denote by binary variable atfi, i ∈ {0, 1, . . . , t − 1},

whether or not content f is in the cache and has AoI i time

slots. The overall AoI cost is expressed as:

CAoI =
F∑

f=1

T∑

t=1

t−1∑

i=1

pf(i)mtfatfi, (2)

where mtf is the number of users requesting content f in time

slot t. Updating contents in the cache incurs an updating cost.

The updating cost, denoted by Cupdate, is expressed as:

Cupdate =

T∑

t=1

F∑

f=1

lf (cs − cb)atf0, (3)

where atf0 means that the content is just downloaded from

the server and has cost lf (cs − cb). Here (cs − cb) is the

downloading cost unit from the server to the cache. Finally,

the total cost is denoted by Ctotal and expressed as:

Ctotal = Cdowlad + Cupdate + λCAoI . (4)

Here, λ is a weighting factor between CAoI and Cupdate.

Larger λ means frequently updating the contents of the cache

and consequently smaller AoI for cached contents.

C. Problem Formulation

The update-enabled caching problem (UECP) is formulated

as an ILP, and shown in (5). Constraints (5b) indicate that

(UECP) min
x,a

Cdownload + Cupdate + λCAoI (5a)

s.t.

F∑

f=1

xtf lf ≤ S, t ∈ T , (5b)

t−1∑

i=0

atfi = xtf , t ∈ T , f ∈ F , (5c)

atfi ≥ xtf + a(t−1)f(i−1) − atf0 − 1,

t ∈ T \ {1}, f ∈ F , i ∈ {1, . . . , t− 1}, (5d)

xtf , atfi ∈ {0, 1}, t ∈ T , f ∈ F , i ∈ {0, . . . , t− 1}.
(5e)

used storage space is less than or equal to the cache capacity

in each time slot. Constraints (5c) state that if the content

is in the cache, it has to have one of the AoIs 0, . . . , t − 1.

Constraints (5d) indicate content f in time slot t has AoI i if

and only if the content is in the cache in time slot t, has not

AoI 0 in time slot t, and has AoI i − 1 in time slot t− 1.

Even though this ILP can be solved by a standard solver, it

needs significant computational time. Exploiting the structure

of the problem, we develop an solution method based on

column generation.

D. Complexity Analysis

Theorem 1. UECP is NP-hard.

Proof. The proof is established by a polynomial reduction

from the Partition problem that is NP-complete [13]. Con-

sider a Partition problem with a set of N integers, i.e.,

N = {n1, . . . , nN}. The task is to decide whether it is possible

to partition N into two subsets N1 and N2 with equal sum.



The reduction is constructed as follows. We set the cache

capacity as S = 1
2

∑N

i=1 ni, the set of contents to F =
{1, . . . , N}, size of content f ∈ F to lf = nf , and the number

of time slots to one, i.e., T = 1. As T = 1, there is no updating

or AoI costs. The time slots of all requests are set to 1, i.e.,

o(u, r) = 1, u ∈ U , r ∈ Ru. We set m1f = 2 for f ∈ F ,

cs = 2, and cb = 1. By this setting, if the cache stores content

f , 4lf − lf − 2lf = lf gain is achieved. As the cache capacity

is S = 1
2

∑N
i=1 ni, a maximum possible of 1

2

∑N
i=1 ni gain

can be achieved. Now, the question is if this maximum gain

can be achieved. This question can be answered by solving

UECP which also will answer the Partition problem. Hence

the conclusion.

III. REFORMULATION OF UECP

We provide a reformulation of the problem that enables a

CGA. We define the caching and updating decisions for con-

tent f across the T time slots as tuple (xf ,af) in which xf =
[x1f , x2f , . . . , xTf ]

T and af = [a1f0, a2f0, . . . , aTf(t−1)]
T.

In total, 3T of such tuples exist and one of them is used in a

solution. Denote by K = {1, 2, . . . , 3T } the index set for all

possible solutions. We refer to a possible solution as a column.

The cost of column k ∈ K for content f ∈ F is denoted by

Cfk and can be calculated by the formula in (6).

Cfk =

T∑

t=1

lfmtf [cbx
(k)
tf + cs(1 − x

(k)
tf )]

+

T∑

t=1

lf (cs − cb)a
(k)
tf0 + λ

T∑

t=1

t−1∑

i=1

pf (i)mtfa
(k)
tfi.

(6)

In (6), x
(k)
tf and a

(k)
tfi are constants and represent the values of

xtf and atfi with respect to k-th column, respectively. Now,

ILP (5) can be reformulated as (7).

min
w

∑

f∈F

∑

k∈K

Cfkwfk (7a)

s.t.
∑

f∈F

∑

k∈K

lfx
(k)
tf wfk ≤ S, t ∈ T (7b)

∑

k∈K

wfk = 1, f ∈ F (7c)

wfk ∈ {0, 1}, f ∈ F , k ∈ K. (7d)

Here, wfk is a binary variable where wfk = 1 if and only

if the k-th column of content f is selected, otherwise it is

zero. Constraints (7b) are the cache capacity constraints, and

constraints (7d) indicate that only one of the columns is used.

IV. ALGORITHM DESIGN

In this section, we present our solution method which

consists of two algorithms. Algorithm 1 is a column generation

algorithm (CGA) applied to the continuous version of (7).

Algorithm 2 is a rounding algorithm (RA) applied to the

solution obtained from CGA if the solution is fractional. These

algorithms are applied alternately until an integer solution is

constructed. The solution method is shown in Algorithm 1.

The term RMP in the algorithm will be discussed later.

Algorithm 1: CGA and RA

1: STOP ← 0
2: while (STOP= 0) do
3: Apply CGA to RMP and obtain w∗

4: if (w∗ is an integer solution) then
5: STOP ← 1
6: else
7: Apply RA to w∗

A. Column Generation Algorithm

In column generation, the problem is decomposed into a

so called master problem (MP) and a subproblem (SP). The

algorithm starts with a subset of columns and solves alternately

MP and SP. Each time SP is solved a new column that possibly

improves the objective function is generated. The benefit of

CGA is to exploit the fact that at optimum only a few columns

are used.

1) MP and RMP: MP is the continuous version of formu-

lation (7). Restricted MP (RMP) is the MP but with a small

subset K′
f ⊂ K for any content f ∈ F . RMP is expressed in

(8). Denote by K ′
f the cardinality of K′

f .

(RMP) min
w

∑

f∈F

∑

k∈K′
f

Cfkwfk (8a)

s.t.
∑

f∈F

∑

k∈K′
f

lfx
(k)
tf wfk ≤ S, t ∈ T , (8b)

∑

k∈K′
f

wfk = 1, f ∈ F , (8c)

0 ≤ wfk ≤ 1, f ∈ F , k ∈ K′
f . (8d)

2) Subproblem: The SP uses the dual information to gener-

ate new columns. Denote by w
∗ = {w∗

fk, f ∈ F and k ∈ K′
f}

the optimal solution of RMP. Denote by π∗ and β∗ the corre-

sponding optimal dual variables of (8b) and (8c), respectively,

i.e., π∗ = [π∗
1 , π

∗
2 , . . . , π

∗
T ]

T and β∗ = [β∗
1 , β

∗
2 , . . . , β

∗
F ]

T.

After obtaining w
∗, we need to check whether w

∗ is the

optimal solution of RMP. This can be determined by finding

a column with the minimum reduced cost for each content

f ∈ F . If all these values are nonnegative, the current solution

is optimal. Otherwise, we add the columns with negative

reduced cost to corresponding sets.

Given π∗ and β∗ for content f ∈ F , the reduced cost of

column (xf ,af) is Cf −
∑T

t=1 lfπ
∗
t xtf − β∗

f where Cf can

be computed using expression (6) in which constants x
(k)
tf and

a
(k)
tfi are replaced with optimization variables xtf and atfi,

respectively. To find the column with minimum reduced cost

for content f ∈ F , we need to solve subproblem SPf , shown

in (9). Denote by (x∗
f ,a

∗
f ) the optimal solution of SPf . If the

reduced cost of (x∗
f ,a

∗
f) is negative, we add it to K′

f .

Even though (9) is an ILP, in the following, we show that

it can be solved as a shortest path problem using for example

Dijkstra’s algorithm [14] in polynomial time.

Theorem 2. For content f ∈ F , SPf can be solved in

polynomial time as a shortest path problem.



(SPf ) min
(xf ,af )

Cf −
T∑

t=1

lfπ
∗
t xtf − β∗

f (9a)

s.t.

t−1∑

i=0

atfi = xtf , t ∈ T , f ∈ F , (9b)

atfi ≥ xtf + a(t−1)f(i−1) − atf0 − 1,

t ∈ T \ {1}, f ∈ F , i ∈ {1, . . . , t− 1}, (9c)

atfi ≤ a(t−1)f(i−1), t ∈ T \ {1}, f ∈ F ,

i ∈ {1, . . . , t− 1}, (9d)

xtf ∈ {0, 1}, t ∈ T , f ∈ F , (9e)

atfi ∈ {0, 1}, t ∈ T , f ∈ F , i ∈ {0, . . . , t− 1}.
(9f)

Proof. Consider content f ∈ F . We construct an acyclic

directed graph where finding the shortest path from the source

to distention is equivalent to solving SPf . The objective

function (9a) can be rewritten as (10). Denote by C the

total cost for downloading content f via the server for all

users requesting the content over all time slots, i.e., C =
∑T

t=1 lfmtfcs. Denote by vit = pf (i)mtf the scenario where

mtf users request content f in time slot t and the content has

AoI i. Denote by c1 = lf (cs − cb) the downloading cost from

the server to the cache. Denote by gt = lfmtf (cs−cb)− lfπ
∗
t

the reduction in C due to storing content f .

The graph is constricted as follows. Nodes S and D are

used to represent the source and destination. Node V00 is used

to represent x0 = 0. For time slot t, there are t+ 1 vertically

aligned nodes. Using node Vt0 means that the content is not in

the cache, and using node V i
t1, i ∈ {0, . . . , t− 1}, means that

the content is in the cache and has AoI i. From node S to V00

there is an arc with weight C. For each node Vt0 there are two

outgoing arcs one to V(t+1)0 which means that the content is

not stored in the next time slot and has weight 0, and the other

to V 0
(t+1)1 which has weight c1−gt and means that the content

is downloaded to the cache in the next time slot and has AoI

0. For each node V i
t1 there three outgoing arcs to V(t+1)0,

V 0
(t+1)1, and V

(i+1)
(t+1)1, respectively. Using the first arc means

that the content is deleted for the next time slot and has weight

0. Using the second arc means the content is re-downloaded

from the cache and has AoI 0 with weight c1 − gt. Using the

third arc means that the content is kept and its AoI increases

with one unit and has weight v(i+1)(t+1)−g(t+1). Finally, there

are T arcs from VT0 and V i
T1 for i ∈ {0, . . . , T − 1} to D

each with weight −βf .

Given any solution of (9), by construction of the graph,

the solution directly maps to a path from the source to the

destination with the same objective function. Conversely, given

a path we construct an ILP solution. For time slot t, if flow

is in node Vt0 then we set xtf = 0. If the flow is in V i
t1, we

set xt1 = 1 and atfi = 1. The resulting ILP solution has the

same objective function value as length of the given path in

terms of the arcs’s weights. Hence the conclusion.

Algorithm 2: Column Generation Algorithm (CGA)

Input: S, cb, cs, λ, lf , f ∈ F , o(u, r) and h(u, r), u ∈ U ,
r ∈ Ru

Output: w
∗

1: K′
f ← {(0

T,0T)} for f ∈ F
2: STOP ← 0
3: while (STOP= 0) do
4: Solve RMP and obtain w

∗, π∗, and β∗

5: STOP ← 1
6: for f = 1 to F do
7: Solve SPf and obtain (x∗

f ,a
∗
f )

8: if Cfk∗ −
∑T

t=1 lfπ
∗
t x

∗
tf − β∗

f < 0 then

9: K′
f ← K

′
f ∪ {(x

∗
f ,a

∗
f )}

10: STOP ← 0

B. Rounding Algorithm

The solution of CGA could be fractional. Thus, we need a

mechanism to construct integer solutions. We design a round-

ing algorithm (RA) to achieve this. RA repeatedly fixes the

caching decisions of contents over time slots until an integer

solution is constructed. The caching decision for content f

and time slot t is determined based on value ztf , defined as

ztf =
∑

k∈K′
f
x
(k)
tf w∗

fk. This value indicates how likely it is

optimal to store content f in time slot t. In the following we

prove a relationship between z and w and then give the RA.

Theorem 3. For any content f ∈ F , w∗
fk is binary for any

k if and only if every element of zf = [z1f , z2f , . . . , zTf ] is

binary.

Proof. For necessity, for any content f ∈ F , if w∗
fk is binary

for any k, k ∈ K′
f , it is obvious from the definition that all

elements of zf are binary. Now, we prove the sufficiency.

For any content f ∈ F , assume that every element in zf
is binary. Assume that w∗

fk > 0 for k ∈ K ′′
f ⊆ K ′

f , then

ztf =
∑

k∈K′′

f
x
(k)
tf w∗

fk. To satisfy that element ztf for t ∈ T

is binary, elements x
(k)
tf for k ∈ K′′ either are all zero or all

one. Otherwise, as
∑

k∈K′′ w∗
fk = 1, one of the ztf becomes

fractional. This means that all columns corresponding to w∗
fk

for k ∈ K ′′
f must be the same. Having two vectors with the

same values violates the condition that the columns of any two

w∗
fk are different. Therefore, for any content f , f ∈ F , if ztf

is binary for any t, t ∈ T , then w∗
fk is an binary for any k,

k ∈ K′
f . Hence the proof.

RA consists of three main steps which are shown in Al-

gorithm 3. First, for content f ∈ F in time slot t ∈ T , the

decision is to store the content if ztf = 1. All columns that

do not comply with this caching decision will be discarded.

These are done by Lines 2-3. Second, the element of z being

closest to zero or one is found and rounded. Based on the

rounding outcome, the caching decision is determined and

non-complying columns are discarded. These are done via

Lines 4-16. Finally, the algorithm fixes the decisions of the

contents across the time slots to zero if there is no remained

spare space in the cache to store them in these time slots. This

is done by Lines 20-23. The caching decisions made until now

will be remained fixed in all subsequent iterations. Note that



Cf −
T∑

t=1

lπ∗
t xtf =

T∑

t=1

lfmtf [cbxtf + cs(1− xtf )] +

T∑

t=1

lf (cs − cb)atf0 +

T∑

t=1

t−1∑

i=1

pf(i)mtfatfi −
T∑

t=1

lfπ
∗
tfxtf

=
T∑

t=1

lfmtfcs

︸ ︷︷ ︸

C

+
T∑

t=1




lf(cs − cb)
︸ ︷︷ ︸

c1

atf0 +
t−1∑

i=1

pf (i)mtf
︸ ︷︷ ︸

vit

atfi −
[
lfmtf (cs − cb)− lfπ

∗
tf

]

︸ ︷︷ ︸
gt

xtf




 .

(10)
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Figure 2. Graph of the shortest path problem for subproblem.

with these fixings SPf can still be solved as a shortest problem.

If xtf is set to 0, nodes V i
t1 for i ∈ {0, . . . , t − 1} and their

connected arcs will be deleted from the graph. If xtf is set to

1, node Vt0 and its connected arcs will be deleted.

Algorithm 3: Rounding Algorithm (RA)

Input: w∗ and (x,a)
1: Compute z = {ztf , t ∈ T , f ∈ F} where

ztf =
∑

k∈K′
f
x
(k)
tf w∗

fk

2: Fix xtf = 1 in SPf if ztf = 1, t ∈ T , f ∈ F

3: Fix wfk = 0 in RMP if x
(k)
tf = 0, k ∈ K′

f , t ∈ T , f ∈ F
4:

¯
z ← min{ztf |ztf > 0 and ztf < 1}

t∈T ,f∈F

5: (
¯
t,
¯
f)← argmin{ztf |ztf > 0 and ztf < 1}

t∈T ,f∈F

6: z̄ ← min{1− ztf |ztf > 0 and ztf < 1}
t∈T ,f∈F

7: (t̄, f̄)← argmin{1− ztf |ztf > 0 and ztf < 1}
t∈T ,f∈F

8: if (
¯
z < z̄) then

9: Fix x
¯
t
¯
f = 0 in SP

¯
f

10: Fix w
¯
fk = 0 if x

(k)

¯
t
¯
f = 1, k ∈ K′

¯
f

11: else if (lf̄ ≤ S′) then
12: Fix xt̄f̄ = 1 in SPf̄

13: Fix wf̄k = 0 if x
(k)

t̄f̄
= 0, k ∈ K′

f̄

14: else
15: Fix xt̄f̄ = 0 in SPf̄

16: Fix wf̄k = 0 if x
(k)

t̄f̄
= 1, k ∈ K′

f̄

17: for t = 1 to T do
18: F ′ ← {f ∈ F|xtf is set to one}
19: S′ ← S −

∑
f∈F′ lf

20: for f ∈ F\F ′ do
21: if lf > S′ then
22: Fix xtf = 0 in SPf

23: Fix wfk = 0 in RMP if x
(k)
tf = 1, k ∈ K′

f

V. PERFORMANCE EVALUATION

We compare CGA to the LB and two conventional

caching algorithms: random-based algorithm (RBA) [15] and

popularity-based algorithm (PBA) [16]. Both algorithms treat

contents one by one. In RBA, the contents are considered

randomly, but with respect to their total numbers of requests;

a content with higher number of requests will be more likely

selected for caching. In PBA, popular contents, i.e., contents

with higher number of requests, will be considered first. For

the content under consideration, if the content was not in

the cache in the previous time slot, it is downloaded with

AoI zero. Otherwise, if AoI cost has reached fifty percent of

downloading cost, the content is re-downloaded. Otherwise,

the content is kept and the AoI increases by one.

The content popularity distribution is modeled by a ZipF

distribution [17], i.e., the probability that a user requests the

f -th content is f−γ
∑

i∈F
i−γ . The popularities of contents are

changed randomly across the time slots. We set U = 600,

F = 200, and T = 24 with length of one hour for each time

slot [18]. The sizes of files are uniformly generated within

interval [1, 10]. The cache capacity is set as S = ρ
∑

f∈F
lf .

Here, ρ ∈ [0, 1] shows the size of cache in relation to the total

size of all contents. The number of requests for each user is

randomly generated in [1, 15].
The performance results are reported in Figures 3-5. The

deviation from global optimum is bounded by the deviation

from the LB, as LB is always less than or equal to the global

optimum. We refer to the deviation from LB as optimality

gap. The CGA provides solutions within 1% gap from LB

and outperforms the conventional algorithms. Figure 3 shows

the impact of U . When U increases from 400 to 800 the

cost nearly linearly increases, however, the optimality gap of

algorithms decreases. The reason is that with larger number

of users, more contents from the content set are requested by

users. As the cache capacity is limited, the only way to get



many of requested contents is from the server by all algorithms

which leads to a lower optimality gap.

Figure 4 shows the impact of F . Recall that the cache

capacity is set to 50% of the total size of the files. For CGA,

when F = 50 the capacity of cache is extremely limited

and as F is small, almost all contents will be requested by

users. These together imply that many requests need to be

satisfied from the server which leads to a high cost. When F

increases to 150, the cost decreases. Because as F increases

the cache capacity increases, and CGA is able to efficiently

utilize the cache capacity. However when F further increases

to 300, the cost increases. The reason is that even though

the capacity increases with F but the diversity of requested

contents becomes too large, and consequently some of them

need to be satisfied from the server which leads to a higher

cost.

Figure 5 shows the impact of λ. Recall that larger λ means

higher backhaul load but smaller AoI. From the figure, it can

be seen that when λ grows, PBA and RBA push down the

average AoI of contents to almost zero but incur substantial

amount of load on the backhaul. In contrast, the solutions of

CGA achieve a much better balance between the backhaul load

and AoI of contents with respect to λ. Note that the backhaul

load and average AoI are normalized to interval [0, 100].
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Figure 3. Impact of U on cost when T = 24, F = 200, λ = 0.5, ρ = 0.5,
γ = 0.54, cs = 10, and cb = 1.
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Figure 4. Impact of F on cost when T = 24, U = 600, λ = 0.5, ρ = 0.5,
γ = 0.54, cs = 10, and cb = 1.

VI. CONCLUSIONS

This paper has investigated scheduling of content caching

along time where jointly offloading effect and freshness of the

contents are accounted for. The problem is formulated as an

ILP and NP-hardness of the problem is proved. Next, via

a mathematical reformulation, a solution approach based on

column generation and a rounding mechanism is developed.

Via the joint cost function, it is possible to address the

trade-off between the updating and AoI costs. The numerical
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Figure 5. Impact of λ on backhaul load and average AoI when T = 24, U =

600, F = 200, ρ = 0.5, cs = 10, and cb = 1.

results show that our algorithm is able to balance between the

two costs. Simulation results demonstrated that our solution

approach provides near-optimal solutions.
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