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Abstract—SC-Flip (SCF) decoding algorithm shares the atten-
tion with the common polar code decoding approaches due to
its low-complexity and improved error-correction performance.
However, the inefficient criterion for locating the correct bit-
flipping position in SCF decoding limits its improvements. Due
to its improved bit-flipping criterion, Thresholded SCF (TSCF)
decoding algorithm exhibits a superior error-correction perfor-
mance and lower computational complexity than SCF decoding.
However, the parameters of TSCF decoding depend on multiple
channel and code parameters, and are obtained via Monte-Carlo
simulations. Our main goal is to realize TSCF decoding as a
practical polar decoder implementation. To this end, we first
realize an approximated threshold value that is independent of
the code parameters and precomputations. The proposed approx-
imation has negligible error-correction performance degradation
on the TSCF decoding. Then, we validate an alternative approach
for forming a critical set that does not require precomputations,
which also paves the way to the implementation of the Fast-TSCF
decoder. Compared to the existing fast SCF implementations, the
proposed Fast-TSCF decoder has 0.24 to 0.41 dB performance
gain at frame error rate of 10−3, without any extra cost.
Compared to the TSCF decoding, Fast-TSCF does not depend on
precomputations and requires 87% fewer decoding steps. Finally,
implementation results in TSMC 65nm CMOS technology show
that the Fast-TSCF decoder is 20% and 82% more area-efficient
than the state-of-the-art fast SCF and fast SC-List decoder
architectures, respectively.

I. INTRODUCTION

Polar codes, introduced by Arıkan, are a class of linear block

codes that can provably achieve channel capacity of binary

memoryless symmetric channels [1], discrete and continuous

memoryless channels [2] under successive cancellation (SC)

decoding, which have simple encoding/decoding properties.

Due to such attractive properties of polar codes, they have

been selected as the coding scheme for the control channel for

enhanced mobile broadband (eMBB) use case within the 5th

generation wireless communication protocol (5G) [3]. How-

ever, at practical code lengths, SC decoding yields mediocre

error-correction performance. Besides, its sequential decoding

nature is a limiting factor for throughput. To improve the error-

correction performance of polar codes, enhanced decoding

algorithms that use SC decoding as a base algorithm have been

proposed. Among such algorithms, SC-List (SCL) decoding

uses a list of SC decoders in parallel to keep track of up to L
best decoding paths throughout the decoding process [4]. As

a tradeoff for the improved error-correction performance, the

list size L adversely affects the computational complexity of

SCL decoding [5].

SC-Flip (SCF) decoding algorithm [6] uses additional SC

decoding attempts in series in the case when an initial SC

decoding fails due to a single channel-induced error. During

the course of the initial SC decoding, a set of bit-flipping

indices are calculated and stored based on a selection criterion.

The average computational complexity of SCF is similar to

that of SC at moderate-to-high signal-to-noise ratio (Eb/N0)

values and has improved error-correction performance com-

parable to SCL decoding with small list sizes. However, it

was shown in [7] that the bit-flipping criterion of SCF decod-

ing is suboptimal, adversely impacting its average decoding

complexity and error-correction performance. To address this

issue, Thresholded SCF (TSCF) decoding was introduced in

[8] which uses a subset of indices that are most probable to

hold an erroneous decision, called the critical set, to reduce the

computational effort on finding the correct bit-flipping index

in the polar code. Moreover, a pre-computed and optimized

threshold value serving as a criterion for finding the correct bit

flipping position is shown to have improved error-correction

performance compared to SCF decoding. Though, the main

obstacles to the practical implementation of TSCF decoding

are its lengthy, off-line precomputations that are required to

establish a critical set and to find the optimum threshold

value. Moreover, the current scheme of TSCF decoding has

its optimum threshold value depends on code and channel

parameters.

To tackle the problem of limited throughput of SC decoders,

the identification of special bit-patterns that are found in polar

codes are addressed in [9], [10]. Fast decoding of such special

bit-patterns is then extended to SCF decoding in [11], [12].

With the Fast-SCF decoding implementation in [12], it was

also shown that the special bit-patterns are also useful for

limiting the search span of bit-flipping indices.

Our goal in this work is to realize TSCF decoding as

a practical polar decoder implementation. To this end, we

first observe how the code length, code rate and Eb/N0

impacts the optimum value of the threshold, using the 5G

polar codes. Based on the developed insight on the impact of

the threshold value on the error-correction performance, we

show that an approximation with negligible performance loss

is possible. In return, the approximated threshold is a linear

function of Eb/N0, and is independent of code parameters

and the precomputations. Then, by utilizing the theoretical

performance bound of SC decoding as an evaluation metric,

we show that an alternative non-empirical method for con-

structing a critical set can be replaced by the existing one.

This adaptation does not only make the critical set of TSCF

independent of associated lengthy precomputations but also

paves the way towards the incorporation of fast decoding
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techniques within TSCF, to create the Fast-TSCF decoder.

Finally, we implement the Fast-TSCF decoder with all the

proposed simplifications and adaptations, using TSMC 65nm

CMOS technology process. Compared to the state-of-the-art

Fast-SCF decoder implementation, the proposed decoder has

up to 0.29 dB performance gain, is marginally faster, and

has 20% better area-efficiency. Compared to the baseline

TSCF decoder, the proposed Fast-TSCF decoder requires an

average of 8.2× less decoding steps while exhibiting a similar

error-correction performance, and does not require lengthy

precomputations.

The rest of this work is organized as follows: Polar codes

and decoding algorithms are detailed in Section II. Approxi-

mation on the threshold value and validation of the critical set

construction for TSCF decoding are described in Section III.

Details on how to implement TSCF decoding for special

nodes to establish Fast-TSCF is explained in Section IV.

Comparative simulation and hardware synthesis results are

depicted in Section V, followed by concluding remarks in

Section VI.

II. PRELIMINARIES

A. Polar Codes

A polar code PC(N,K) utilizes the phenomenon of chan-

nel polarization, that splits N channels into K reliable ones

used to transmit the information bits, and N −K unreliable

ones, which are frozen to a known constant, usually to zero.

The rate of a polar code is calculated as R = K/N . The set

of frozen and non-frozen indices are represented with AC and

A, respectively.

The encoding of a polar code can be explained with a matrix

multiplication, such that

x0:N−1 = u0:N−1G
⊗n, (1)

where x0:N−1 = {x0, x1, . . . , xN−1} is the encoded vector,

u0:N−1 = {u0, u1, . . . , uN−1} is the input vector, and the

generator matrix G⊗n is the n-th Kronecker product (⊗) of

the binary polar code kernel G = [ 1 0
1 1 ]. In this context,

N = 2n, n ∈ Z
+, and a polar code with length N can

be reinterpreted as a composition of two polar codes of

length N/2. Throughout this work, we use the 5G polar code

sequence, defined in [3].

B. Successive Cancellation Decoding

In SC decoding the bit estimation is performed in a sequen-

tial fashion, beginning from û0 towards ûN−1. This is because

the estimation of each bit depends on the channel observation

y and previously estimated bits û0:i−1, such that

ûi =







0, if Pr[y, û0:i-1|ui = 0] ≥ Pr[y, û0:i-1|ui = 1];
0, if i ∈ AC ;
1, otherwise.

(2)

SC decoding of polar codes can be translated as a binary

tree search starting from the root node located at stage S = n
and priority given to the left branch, as depicted in Fig. 1.

û0 û1 û2 û3 û4 û5 û6 û7 û8 û9 û10 û11 û12 û13 û14 û15

S=4

S=3

S=2

S=1

S=0

Rate-0 Rep SPC Rate-1

Fig. 1. Successive cancellation decoding tree for PC(16, 8). Stages (S) for
each level and the sub-codes with special frozen bit-patterns (Rate-0, Rate-1,
Rep, SPC) are outlined for reference.

The noisy channel observation, quantified in log-likelihood

ratio (LLR) form, is located at the root node. The LLRs are

propagated towards the leaf nodes using

αl
i = sgn(αv

i ) sgn(α
v
i+2S−1 )min(|αv

i |, |αv
i+2S−1 |), (3)

αr
i = αv

i+2S−1 + (1− 2βl
i)α

v
i . (4)

where αv is the LLR of the parent node located at stage S,

αl and αr are the LLRs of the left and right child nodes,

respectively. The partial sums β observed from the left and

right child nodes are passed to their parent nodes as

βv
i =

{

βl
i ⊕ βr

i , if i ≤ 2S−1

βr
i−2S−1 , otherwise.

(5)

where ⊕ denotes bitwise XOR operation, and 0 ≤ i < 2S .

It was shown in [9] and [10] that dedicated fast decoding

techniques at special sub-trees (i.e. nodes) with unique frozen

leaf node patterns improves the throughput of SC decoding

tremendously. Within the 5G polar code sequence, identified

special frozen leaf node patterns for polar codes are Rate-

0 (where all indices are frozen) Rate-1 (where no indices

are frozen), Rep (where only the rightmost index is non-

frozen), single parity check (SPC) (where only the leftmost

index is frozen) and two other unique nodes with patterns

(0011),(0101) for which 0 and 1 represent frozen and non-

frozen indices, respectively [12], [13].

C. SC-Flip Decoding

When SC decoding fails, the bit-wise mismatches in the esti-

mated codeword are either due to channel noise, or propagated

errors induced by an earlier error in the sequential decoding

process. With correcting the first channel-induced error, its

associated propagated errors also disappear from the estimated

codeword, and the error-correction performance is improved.

To this end, SCF decoding uses an outer cyclic redundancy

check (CRC) in the encoding and decoding of polar codes,

to tell whether an initial SC decoding has failed. In case of

a failed decoding, a set of non-frozen flipping indices, are

sorted and stored based on their LLR magnitude information,

in increasing order. This is followed by a new attempt in

decoding. At each extra decoding, the flipping index with

the next lowest LLR magnitude is flipped, in an attempt to



correct a single channel-induced error. The additional decoding

attempts continue until either the CRC passes, or a maximum

number (Tmax) is reached.

The main problem of the SCF decoding is that the LLR

magnitude information at the non-frozen leaf indices is not

sufficient for efficient identification of the first channel-

induced error in the codeword. As such, different SCF-based

algorithms have emerged to tackle this problem. In [14], [15],

partitioned SCF decoding was introduced that divides the

codeword into several partitions, each of which is equipped

with CRC and SCF is executed within the partitions separately.

This approach was shown to improve the error-correction

performance and to reduce the average number of iterations.

In [16], [17], dynamic SCF decoding introduced an improved

metric that can efficiently identify the bit-flipping positions,

and an algorithm to build the bit-flip list dynamically so that

more than a single channel-induced error can be targeted.

However, its metric calculation requires transcendental com-

putations that are not suitable for practical implementations.

In [18], [19], a subset of indices that are more likely to incur

an error than others is created. Called critical set, the indices

are gathered using the first index of each Rate-1 node found

in the decoding tree, and they substantially reduce the search

span for the bit-flipping location. An independent but similar

approach is taken in [7] by considering a critical set based

on the empirically-observed probabilities of channel-induced

errors.

Thresholded SCF (TSCF) decoding algorithm, introduced

in [8], uses a critical set based on empirical studies. When

the initial SC decoding fails, only the indices within the

constructed critical set are evaluated for flipping. To reduce the

search span further, a soft-value threshold Ω is applied, such

that the indices that hold an LLR magnitude larger than Ω are

not considered for bit-flipping. This approach was shown to

improve the efficiency of the identification of first channel-

induced error greatly, which in return improves the error-

correction performance and reduces the average number of

iterations. However, both the critical set and the threshold

value are obtained using Monte-Carlo simulations which lim-

its the practical implementation and flexibility of the TSCF

algorithm.

D. Fast-SCF Decoding

The identification of the special nodes and their fast SC

decoding techniques reported in [9], [10] were first embodied

in SCF decoding in [11], and were improved in [12], [20].

The main challenge on fast node decoding techniques is to

identify and flip indices from the top of these special nodes

and without explicitly traversing them. In [12], it was shown

that the fast decoding techniques specialized to support bit-

flipping maintain a similar error-correction performance to

SCF decoding. This idea was inspired after [18], where a

critical set is created using the first index of each Rate-1 node

in the decoding tree. The LLR magnitude of the first index

can also be found directly as the minimum LLR magnitude

at a top index of a Rate-1 node, and flipping the top-node
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Fig. 2. An example on the impact of Ω on the FER of TSCF decoding,
using PC(256, 128) and select Eb/N0 values. CRC length is C = 16 and
Tmax = 10. Triangle markers at each curve represent Ωopt, and their associated
range bars scale the range for Ω when a loss of up to 10% from the optimum
FER is tolerable.

index holding the minimum LLR magnitude is sufficient to

establish a decoding performance identical to SCF decoding.

This approach is then extended to SPC nodes with flipping

up to three indices, with which a similar error-correction

performance is maintained. The computational complexity of

the sorter unit is the main beneficiary of these simplifications,

which often poses as a power and/or performance bottleneck

in practical polar decoder applications [21].

III. TOWARDS PRACTICAL TSCF DECODING

A. Approximation of the LLR Threshold

In [8], an optimum value for the LLR threshold (Ωopt) is

determined by simulations that are performed off-line and with

respect to the code length, code rate and the Eb/N0. Our goal

is to be able to express Ω as a function of a simple parameter

to avoid the associated off-line computations. Through Monte-

Carlo simulations, we observed that the value of Ω is able to

feature limited flexibility while maintaining a similar decoding

performance. Therefore, our idea is to tolerate a negligible

performance loss, so that Ωopt can be replaced with a range

of Ω values. In other words, we claim that an acceptable Ω
can be a range of values rather than a single point, and this

flexibility paves the way for a regression study. To illustrate,

Fig. 2 presents how the performance of TSCF decoding change

with Ω at different Eb/N0 values for PC(256, 128). The CRC

polynomial is selected as 0x1021 that has length C = 16. The

triangle markers on each curve show Ωopt for each Eb/N0

point, and the bars under each curve represent the range

the Ω can take, when up to 10% loss from the optimum

FER is tolerated, e.g. for FERopt = 10−5, an error-correction

performance of up to FER = 1.1 × 10−5 is considered as

tolerable. This tolerance reveals an area as depicted in Fig. 2,

within which a linear regression can be applied.

Fig. 3 presents a broader perspective of the presented case,

using the 5G polar code sequence. The markers show how

the Ωopt changes with the N and Eb/N0. The code rate is
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Fig. 3. Ωopt as a function of Eb/N0 and code length N , where code rate is
fixed to R = 0.5 and CRC polynomial is 0x1021. The bars associated with
each Ωopt/N point represent the flexibility of Ω when a performance loss of
up to 10% from the optimum FER value is tolerated.

fixed to R = 0.5. The bars associated with each marker

present the flexibility for Ω when up to 10% loss from the

optimum FER is acceptable. In this sense, the bars provide

an idea on by how much Ωopt can be approximated without

incurring a significant loss from FER performance. According

to Fig. 3, the flexibility of the Ω value is higher for smaller

code lengths, and also at lower Eb/N0 values. On the other

hand, the lengths of the bars tend to shrink with the increasing

Eb/N0 for each code length, which means that the error-

correction performance begins degrading with inconvenient Ω
values. Lastly, the Ωopt values for each considered length are

clustered together and increase with Eb/N0. Fig. 4 depicts

the Ω as a function of code rate R for the same N values,

with Eb/N0 = 2.5 dB. Similar to Fig. 3, bars extending from

Ωopt at each point represent the range for a tolerated loss of

up to 10% from the optimum FER. It can be seen that the

Ωopt values for each N increase at moderate code rates and

decrease at both lower and higher code rates. Fortunately, the

ranges associated with each Ω are mostly wider at lower and

higher code rates, which allows for a constant approximation.

Based on the findings derived from Fig. 3 and Fig. 4, we

propose an approximate threshold Ω∗ that is based on a linear

regression model (i.e. f(x) = ax + b). According to our

comprehensive Monte-Carlo studies, our findings illustrated

in Fig. 3 and Fig. 4, and accounting for a hardware-friendly

quantization, the linear regression for Ω∗ is given as

Ω∗(x) = 2(x+ 3) (6)

where x is the Eb/N0 value in dB.

In order to validate our approximated approach, we select

several polar codes of different code lengths and code rates,

and compare their error-correction performance when using

Ωopt and when using Ω∗. Fig. 5 compares the error-correction

performance of TSCF algorithm when Ω∗ is replaced with

Ωopt for six different polar codes. Four of the selected polar

codes, located on the left of Fig. 5 are selected purposefully

since their Ωopt values are placed relatively far from the

proposed hardware-friendly regression. It can be seen that the
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Fig. 4. Ωopt as a function of code rate R and code length N , where Eb/N0 =
2.5 dB and CRC polynomial is 0x1021. The bars associated with each Ωopt/N
point represent the flexibility of Ω when a performance loss of up to 10%
from the optimum FER value is tolerated.
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PC(64, 16) PC(256, 208) PC(512, 256)

PC(512, 128) PC(1024, 192) PC(1024, 512)

TSCF using Ωopt TSCF using Ω∗

Fig. 5. FER comparison of TSCF decoding when Ω∗ is used against the
original case with Ωopt, using several different polar code lengths and code
rates. C = 16, Tmax = 10.

TSCF decoding with the approximation has FER performance

trends very close to the original scheme. The worst-case

performance loss due to Ω∗ is about 0.02 dB at FER= 10−3

with PC(512, 256), and about 0.1 dB at FER= 10−4 with

PC(256, 208).

B. Correlation of the Critical Sets

The critical set in [7] is constructed empirically, and the

critical set in [18] is constructed based on the code construc-

tion. We denote these critical sets based on their references,

as C [7] and C [18], respectively. Both approaches to critical
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Fig. 6. Theoretical FER used as a correlation and validation metric for the
critical set construction approaches from [7] and [18], using (7) and (9). A rate
and Eb/N0 sweep (which increases in the outlined direction) is performed
for 5G polar code of length N = 1024, without an outer CRC.

set construction attempt to enclose the channel-induced error-

prone indices; however their contents do not correlate per-

fectly. For example, for the PC(16, 8) code in Fig. 1, both C [7]

and C [18] contain the indices {u7, u9, u10, u12}, but C [7] also

contains the indices {u11, u13}. The extra indices involved in

C [7] are less likely to incur a channel-induced error in general;

however, their inclusion (or exclusion) to the critical set alters

the error-correction performance.

Our goal is to replace the empirically-obtained critical set

of TSCF decoding with the systematic method presented in

[18], to remove the effort of off-line critical set construction,

and also to enable implementation of Fast-TSCF decoding. To

validate the correlation of the critical sets, we evaluate them

using theoretical FER calculation. It was shown in [22] that a

theoretical FER for SC decoding can be derived by using the

error probability of each sub-channel (i.e. leaf node index) of

a polar code, such that

FERSC = 1−
[

∏

i∈A

(1− πi)
]

(7)

where πi denotes the probability of a channel-induced error at

index i. For an AWGN channel with BPSK modulation, and

with assuming all-zero codeword, the LLR at an index i is

represented as a Gaussian random variable with mean µ and

variance σ2, its associated πi can be approximated using the

complementary error function [23]:

πi ≈
1

2
erfc

(

√
µi

2

)

(8)

Equation (7) can be elaborated for a theoretical FER bound

for SCF decoding [24], however their approximations are

known to be loose compared to their simulated counterparts

(see Section IV-B of [17] for more details). Consequently, we

use the theoretical FER for SC decoding to demonstrate the

correlation of the critical sets. Based on (7), we introduce a

hypothetical FER created by replacing the non-frozen set with

the critical set, such that

FER∗
SC = 1−

[

∏

i∈C

(1− πi)
]

(9)

where C denotes the critical set. In this context, with a well-

constructed critical set, FER∗
SC should be almost identical to

FERSC. Fig. 6 presents the theoretical FER comparison for (7)

with (9) using C [7], and (9) using C [18]. The µi in (8) is com-

puted using Gaussian approximation [23] for the 5G polar code

of length 1024 and several Eb/N0 values. According to Fig. 6,

while both critical set construction methods correlate well at

low and moderate Eb/N0 values, the critical set C [7] starts

to lose its precision at high Eb/N0 values. This is because

the limited amount of precomputations become insufficient to

identify erroneous indices at higher Eb/N0 values. On the

other hand, the critical set C [18] is able to maintain a well-

approximated trend line and thus is more favorable for the

implementation of critical set-based implementations such as

TSCF decoding.

IV. FAST-TSCF DECODING

The demonstrated correlation in Section III-B allows for the

TSCF algorithm to be implemented using the special nodes

in Fast-SCF decoding, which we name as the Fast-TSCF

decoding algorithm. Hence, we briefly review the evaluation

of special nodes under Fast-TSCF decoding. In the following,

let αS
0:Nv−1 denote the root LLR vector of the special node

located at tree stage S and has length Nv, and let η denote

the top-node bit-flipping index.

At Rate-1 nodes, only one top-node index that holds the

minimum LLR magnitude is considered for bit-flipping, if it

is smaller than or equal to threshold Ω, such that

ηRate-1 =

{

arg min |αS
0:Nv−1|, if min |αS

0:Nv−1| ≤ Ω
∅, otherwise.

(10)

At Rep nodes, the LLR magnitude of the only non-frozen

leaf node index is directly obtained by summing all its top-

node LLRs. If the corresponding LLR magnitude is smaller

than the threshold, then the entire Rep node is evaluated for

bit-flipping:

ηRep =







∀i, if

∣

∣

∣

∣

∑

∀i∈Nv
αS
i

∣

∣

∣

∣

≤ Ω

∅, otherwise.

(11)

SPC nodes can be considered as a composition of a single

frozen index, followed by Rate-1 nodes of sizes ranging from

1 to Nv/2. According to the critical set construction based

on Rate-1 nodes, SPC nodes could contain more than one

critical index, based on its size. The bit-flipping criterion of

Rate-1 nodes in (10) cannot be applied within SPC nodes

without a tree-traversal. Therefore, our approach is based on

the simplified bit-flipping criteria in SPC nodes that were

detailed in [12]: depending on the state of their parity (p),

two subsets of top-node indices that hold the first, second or

third minimum LLR magnitudes are evaluated for bit-flipping.

In our case, if the sum of the LLR magnitudes of these indices

is less than the threshold, they are considered for bit-flipping.

Accordingly, if imin,j denotes the index with j th minimum LLR
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Fig. 7. Error-correction performance comparison for the proposed Fast-TSCF
decoding against other SCF-based decoding algorithms.

magnitude, our criteria for the aforementioned two bit-flipping

subsets within SPC node are detailed as follows:

η1,SPC =







imin,2, if p = 1 & |αS
imin,2

| ≤ Ω

{imin,1, imin,2}, if p = 0 & |αS
imin,1

|+ |αS
imin,2

| ≤ Ω

∅, otherwise.
(12)

η2,SPC =







imin,3, if p = 1 & |αS
imin,3

| ≤ Ω

{imin,1, imin,3}, if p = 0 & |αS
imin,1

|+ |αS
imin,3

| ≤ Ω

∅, otherwise.
(13)

V. RESULTS

A. Error-Correction Performance

The error-correction performance of the proposed Fast-

TSCF decoding that uses the approximated threshold and the

fast node decoding techniques is compared against TSCF [8],

SCF [6], Fast-SCF [12] and Fast-SSC-Flip [11] in Fig. 7, using

PC(1024, 512) from the 5G polar code sequence, C = 16, and

Tmax = 10. A genie-aided decoder that always corrects the

first channel error, called SC-Oracle (SCO) decoder, is also

depicted to represent the lower bound for all SCF decoding

algorithms. According to Fig. 7, Fast-TSCF exhibits similar

performance to that of TSCF, and its performance gain com-

pared to SCF/Fast-SCF is 0.24 dB at FER= 10−3 and 0.20
dB at FER= 10−4. Compared to the Fast-SSC-Flip algorithm,

the proposed decoder has a performance gain of 0.41 dB at

FER= 10−3 and 0.29 dB at FER= 10−4. Finally, it is worth

to mention that TSCF and Fast-TSCF decoders exhibit the

closest error-correction performance to the SC-Oracle.

B. Computational Complexity

The average computational complexity for each SCF-based

decoding is represented by the average number of decoding

steps, which is calculated by multiplying the average number
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Fig. 8. Comparison of average number of decoding steps for the proposed
Fast-TSCF decoding against other SCF-based decoding algorithms.

of iterations with the number of decoding steps performed

to complete one full iteration. Fig. 8 depicts the comparison

of the average number of decoding steps for the proposed

Fast-TSCF decoder against the aforementioned SCF-based

decoders, following the same setup to create Fig. 7. In this

regard, the number of decoding steps for Fast-SCF, Fast-SSC-

Flip, and Fast-TSCF is calculated by following their fast node

decoding techniques. For the SCF and TSCF decoding, 2N−2
steps are considered for a full decoding iteration, following the

definition in [1]. It can be seen from Fig. 8 that the proposed

Fast-TSCF decoding exhibits the lowest average number of

iterations, closely followed by Fast-SCF. Moreover, Fast-TSCF

decoding requires 32%, 88% and 87% fewer decoding steps

on average than Fast-SSC-Flip, SCF and TSCF, respectively.

C. ASIC Synthesis Results

The proposed Fast-TSCF decoder has been implemented

in VHDL, validated with test benches and synthesized using

Cadence Genus RTL compiler with the TSMC 65nm CMOS

technology process. The hardware architecture for the Fast-

SCF decoder that was proposed recently in [12] has been

used as the baseline implementation for our work, with

the following changes: Since the TSCF algorithm stores the

flipping indices based on their regular order or appearance

in the codeword and not based on their LLR magnitudes,

the insertion sorter of Fast-SCF decoding is not required in

the proposed architecture. The channel estimation is intro-

duced as an input to the architecture, to be translated to the

approximated Ω function, as described in Section III. The

quantization parameters for the channel and internal LLRs

and parallelization factors for read/write operations from/to

memories are kept the same as Fast-SCF for a fair comparison

scheme.

Table I presents the synthesis results for the proposed Fast-

TSCF decoder. A comparison scheme is created against the

state-of-the-art Fast-SCF decoder from [12], and the fast SC-

List decoder (Fast-SSCL) from [25] with a list size of L = 2
since it is known that their error-correction performances are

similar [8]. Compared to the Fast-SCF decoder, the sim-

plifications in the proposed architecture results in improved



TABLE I
TSMC 65 NM CMOS SYNTHESIS RESULTS COMPARISON FOR FAST-TSCF

DECODING AGAINST STATE-OF-THE-ART, USING PC(1024, 512).

Fast-TSCF Fast-SCF [12] Fast-SSCL(b) [25]

Technology (nm) 65 65 65
Supply(V) 1.0 1.0 N/A
Frequency (MHz) 480 455 885

Avg. Coded T/P (Mbps) 1595(a) 1511(a) 1861

Area (mm2) 0.49 0.56 1.05

Area Efficiency (Gbps/mm2) 3.25 2.71 1.78

(a) Average value at target FER= 10−4.
(b) List size is L = 2.

throughput and improved area efficiency. Compared to the

Fast-SCF decoder, the proposed implementation is 5.5% faster

and requires 12.5% less area, leading to 20% more area-

efficiency. Compared to the Fast-SSCL decoder, the proposed

implementation has 14% less average throughput but has 53%
less area, which leads to an overall area efficiency of 82%
more than that of Fast-SSCL.

VI. CONCLUSION

In this work, we proposed Fast-TSCF decoding that can

compute the required critical set and the threshold value on-

the-fly and incorporates fast decoding techniques. Specifically,

we replaced the optimized thresholding of TSCF decoding

which depends on code and channel parameters and requires

lengthy precomputations, with an approximate threshold that

is a function of a single channel parameter and does not

require off-line computations. Then, by using the theoretical

FER bound for SC decoding as an evaluation metric for

validating critical sets, we showed that an alternative critical

set can be employed by TSCF decoding that does not require

precomputations. Finally, we introduced how to incorporate

special nodes into TSCF decoding, which has led to the

implementation of the Fast-TSCF decoder. Compared to the

state-of-the-art Fast-SCF decoder, the proposed Fast-TSCF de-

coder has 0.24 dB performance improvement at FER= 10−3,

and synthesis results using TSMC 65nm CMOS technology

process show that the proposed implementation exhibits 20%
more area-efficiency and improved throughput. Compared to

the state-of-the-art fast SCL decoder, Fast-TSCF decoder is

82% more area-efficient. Finally, compared to the baseline

TSCF decoding, Fast-TSCF exhibits a similar error-correction

performance but requires 88% fewer decoding steps and has

no pre-computational dependencies.
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