
ar
X

iv
:2

00
2.

09
71

9v
1

 [
cs

.I
T

]
 2

2
Fe

b
20

20

Joint Transmission and Computing Scheduling for

Status Update with Mobile Edge Computing

Jie Gong∗, Qiaobin Kuang† and Xiang Chen†

∗ School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, China
† School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China

Email: gongj26@mail.sysu.edu.cn

Abstract—Age of Information (AoI), defined as the time
elapsed since the generation of the latest received update, is a
promising performance metric to measure data freshness for real-
time status monitoring. In many applications, status information
needs to be extracted through computing, which can be processed
at an edge server enabled by mobile edge computing (MEC).
In this paper, we aim to minimize the average AoI within
a given deadline by jointly scheduling the transmissions and
computations of a series of update packets with deterministic
transmission and computing times. The main analytical results
are summarized as follows. Firstly, the minimum deadline to
guarantee the successful transmission and computing of all
packets is given. Secondly, a no-wait computing policy which
intuitively attains the minimum AoI is introduced, and the
feasibility condition of the policy is derived. Finally, a closed-form
optimal scheduling policy is obtained on the condition that the
deadline exceeds a certain threshold. The behavior of the optimal
transmission and computing policy is illustrated by numerical
results with different values of the deadline, which validates the
analytical results.

I. INTRODUCTION

With the increasing demand of real-time status update

applications such as autonomous driving, virtual reality and

etc., age of information (AoI) [1] is introduced as an effective

data freshness metric, which is defined as the time elapsed

since the generation of the latest received update. Recently, the

impact of computing on AoI [2]–[8] is drawing more and more

attention, as in many applications, the information embedded

in a status update packet is not revealed until being processed.

Due to the limited computing capacity of mobile devices,

computing tasks for extracting information from status update

packets are usually offloaded to the core network. As mobile

edge computing (MEC) [9] can provide sufficient computing

resources at the network edge, it is expected that the status

update packets can be processed by an edge server while

maintaining a low AoI. Since offloading a computing task

includes transmission and computing, how to jointly optimize

both procedures is a crucial problem.

The impact of computing on AoI was initially considered

in [2], where the computing tasks were scheduled in the central

cloud. The scheduling policy for update cloud computing

ignoring transmission time was studied in [3]. In [4], the

tradeoff between computation and transmission was analyzed

where each packet is pre-processed before being transmitted.

When MEC is considered, the average AoI with exponential

transmission time and service time was analyzed in [5], [6]

for single user case. For multiple users, an optimal work-

conserving scheduling policy was proposed in [7]. A novel

performance metric, age of task (AoT), was proposed in [8]

where task scheduling, computation offloading and energy

consumption were jointly considered. Most of the existing

computation related AoI analysis assumed a random com-

puting time. However, in practice, computing time is usually

fixed or predictable based on the volume of a task and the

server capacity. When the data rate is fixed via some rate

control mechanism, the transmission time is also fixed. This

paper focuses on joint transmission and computing considering

deterministic transmission time and computing time.

Since an MEC system can be viewed as a two-hop network,

where the first hop is transmission and the second hop is

computing, there were a lot of research efforts on multi-hop

networks that can be referred for AoI analysis. In particular,

Ref. [10] analyzed the optimality of the Last-Come-First-Serve

(LCFS) queuing principle. The age-of-information for multi-

flow multi-hop networks with interference was studied in [11].

A useful tool named stochastic hybrid systems (SHS) was

introduced in [12] showing the average AoI of a multi-hop

line network with preemptive servers and Poisson arrivals.

Nevertheless, these works still assumed random service time in

each hop, and there still lack research efforts on deterministic

transmission and computing times. A most closely related

work studied the optimal offline scheduling policy in energy

harvesting two-hop relay networks [13]. Different from relay

networks where the two hops can not transmit simultaneously

or may interfere with each other otherwise, transmission and

computation can be scheduled at the same time.

In this paper, we study the average AoI minimization

problem for transmitting and computing a set of packets before

a given deadline. Each packet consumes a fixed transmission

time and a fixed computing time. To minimize the average

AoI, each packet should be transmitted upon its generation.

The optimization variables include packet generation time

instants and computation start time instants. We analyze the

feasibility condition of the deadline to guarantee that all the

packets can be successfully transmitted and computed. Then,

a closed-form optimal scheduling policy is obtained when

the deadline is sufficiently large. With moderate value of the

deadline, the optimal solution can be found by the standard

convex optimization algorithms. Numerical results illustrate

the different behaviors of AoI curve with different deadlines.

http://arxiv.org/abs/2002.09719v1

Acknowledgement

Channel

Edge Server

DestinationSource

Tx Rx

Fig. 1. Status update system with MEC.

II. SYSTEM MODEL

As shown in Fig. 1, we consider an MEC-based status

update system which is composed of a transceiver and an edge

server. An update packet is generated by the source, and then

transmitted through the channel to the remote edge server.

The real-time status information embedded in the packet is

exposed to the destination after being processed at the edge

server. Assume the channel can only transmit a single packet

at a time, and the edge server can only compute one packet at

a time as well. As long as a packet arrives at the edge server,

an acknowledgement will be sent back to the source, which

can then generate a new packet. The packets arriving at the

edge server can be computed if the server is idle. Otherwise,

is has to be buffered to wait.

We focus on the freshness of the status information, which

is measured by the AoI, defined as

∆(t) := t− U(t), (1)

where U(t) is the generation time of the latest received packet

at the destination. Denote

∆T :=

∫ T

0

∆(t)dt. (2)

Then, the average AoI for a given time period T can be

calculated as

∆̄ :=
1

T
∆T . (3)

In this paper, we study a deterministic status update prob-

lem. In particular, there are a total of N packets to be sent and

processed within a given deadline T . The transmission time

of the k-th packet is Tk and its computing time is Ck. Denote

tk as the time instant when the k-th packet is generated and

transmitted. As only one packet can be transmitted at a time,

we have

tk ≥ tk−1 + Tk−1, 2 ≤ k ≤ N.

At the edge server, the k-th packet is processed from time

instant ck after its reception. Since the edge server can only

process a single packet at a time, we have

ck ≥ ck−1 + Ck−1, 2 ≤ k ≤ N.

In addition, each packet can not be processed until it is

received by the edge server, i.e.,

ck ≥ tk + Tk, 1 ≤ k ≤ N.

 !t

tt !T c t t c !C

t !T

c !C

!c !

"

cN CN T

tN

Q

Q

PN

P

Fig. 2. A sample path of AoI with MEC.

Finally, all the packets should be transmitted and processed

before the deadline T , i.e.,

cN + CN ≤ T.

In Fig. 2, a sample path of AoI with N packets is depicted.

We set the initial age as ∆(0) = ∆0. The term ∆T can be

calculated as the area below the curve, which can be given by

the summation of the areas of the trapezoids Q1, · · · , QN plus

the area of the triangle PN and minus the area of the triangle

P0, i.e.,

∆T =

N
∑

k=1

1

2

[

(ck + Ck − tk−1)
2 − (ck + Ck − tk)

2
]

+
1

2
(T − tN)2 −

1

2
∆2

0, (4)

where we denote t0 = −∆0. Our objective is to mini-

mize the average AoI by optimizing the packet transmission

time instants t1, · · · , tN and the computing time instants

c1, · · · , cN . Since the time length T is fixed, the problem can

be equivalently formulated as follows:

min
t1, · · · , tN
c1, · · · , cN

∆T (5a)

s.t. t1 ≥ 0, (5b)

tk ≥ tk−1 + Tk−1, 2 ≤ k ≤ N. (5c)

ck ≥ ck−1 + Ck−1, 2 ≤ k ≤ N. (5d)

ck ≥ tk + Tk, 1 ≤ k ≤ N. (5e)

cN + CN ≤ T. (5f)

To guarantee that all the packets can be successfully transmit-

ted and processed, the deadline T needs to be long enough.

The feasibility condition in terms of T is given below.

Proposition 1. To transmit and compute N packets before the

deadline T , where each packet k costs transmit time Tk and

computing time Ck , we have

T ≥ max
k∈{1,··· ,N}







k
∑

i=1

Ti +

N
∑

j=k

Cj







. (6)

Proof. According to (5d) and (5e), we have

c1 ≥ t1 + T1, (7)

ck ≥ max{ck−1 + Ck−1, tk + Tk}, k ≥ 2. (8)

Therefore, we have based on (5f)

T ≥ cN + CN ≥ max{cN−1 + CN−1, tN + TN}+ CN

= max{cN−1 + CN−1 + CN , tN + TN + CN}. (9)

By applying (5c) and (8) to (9) recursively and with the

boundary conditions (7) and (5b), we can obtain (6).

In the case that (6) is satisfied with equality, the optimal

solution for the problem (5) is trivial. In particular, the packets

are greedily transmitted and computed as long as the channel

or the edge server is idle. If the inequality in (6) strictly holds,

the transmission and computing scheduling optimization is

detailed in the next section.

III. OPTIMAL TRANSMISSION AND COMPUTING POLICY

In this section, we will solve the problem (5) to find the

optimal time instants to transmit and compute the update

packets for a feasible deadline T . Firstly, the monotonicity of

the objective function is characterized in the following lemma.

Lemma 1. Under the constraints (5b)-(5f), the objective ∆T

in the problem (5) is a non-increasing function of tk and an

increasing function of ck.

Proof. The lemma can be proved by directly taking the

derivative of (4) with respect to tk and ck. Specifically, as

∂∆T

∂tk
= (ck + Ck)− (ck+1 + Ck+1) < 0, 1 ≤ k ≤ N − 1,

∂∆T

∂tN
= (cN + CN)− T ≤ 0,

∆T is a non-increasing function of tk. As

∂∆T

∂ck
= tk − tk−1 ≥ Tk−1 > 0, 1 ≤ k ≤ N

∆T is an increasing function of ck.

According to Lemma 1, the optimal solution has the fol-

lowing relation.

Corollary 1. The optimal solution for the problem (5)

t∗1, · · · , t
∗
N , c∗1, · · · , c

∗
N must satisfy

c∗1 = t∗1 + T1, (10)

c∗k = max{c∗k−1 + Ck−1, t
∗
k + Tk}, 2 ≤ k ≤ N − 1, (11)

c∗N = t∗N + TN . (12)

Proof. Since ∆T is an increasing function of ck, c1 is lower

bounded t1+T1 according to (5e), while ck is lower bounded

by max{ck−1+Ck−1, tk+Tk} according to (5d) and (5e) for

2 ≤ k ≤ N − 1. Hence, we have (10) and (11).

Since ∆T is a non-increasing function of tk, and tN is upper

bounded by cN − TN according to (5e), we have (12).

With the monotonicity and Corollary 1, a greedy search

algorithm can be developed. In particular, tk can be maximized

by bisection search, and ck can be sequentially determined

by tk and ck−1. Nevertheless, the greedy search is time

consuming especially when N is large. We consider to develop

more efficient algorithms in some special cases. Intuitively, to

minimize the AoI, tk should be as large as possible while

ck should be as small as possible. It is noticeable that the

constraint (5e) plays an important role as it contains both an

upper bound of tk and a lower bound of ck. The following

lemma shows when (5e) is satisfied with equality.

Lemma 2. Suppose the optimal solution for the problem (5)

is t∗1, · · · , t
∗
N , c∗1, · · · , c

∗
N . If

T ≥ t∗N + max
1≤k≤N

{c∗k + Ck − t∗k}, (13)

we have

c∗k = t∗k + Tk, 1 ≤ k ≤ N. (14)

Proof. According to (11), it is equivalent to prove c∗k−1
+

Ck−1 ≤ t∗k+Tk. We prove it by contradiction. Suppose c∗k−1
+

Ck−1 > t∗k + Tk for a certain k. Denote

ǫ = min
{

(c∗k−1 + Ck−1)− (t∗k + Tk), T − (c∗N + CN)
}

,

and set a new solution for the problem (5) as follows

t̃i = t∗i , c̃i = c∗i , i < k,

t̃k = t∗k + ǫ, c̃k = c∗k,

t̃i = t∗i + ǫ, c̃i = c∗i + ǫ, i > k.

The above solution satisfies all the constraints (5b)-(5f), and

∆̃T =

N
∑

k=1

1

2

(

(c̃k + Ck − t̃k−1)
2 − (c̃k + Ck − t̃k)

2
)

+
1

2
(T − t̃N)2 −

1

2
∆2

0

= ∆∗
T − 2ǫ((T − t∗N)− (c∗k + Ck − t∗k)) ≤ ∆∗

T

according to (13). As a result, t̃1, · · · , t̃N , c̃1, · · · , c̃N is opti-

mal instead of t∗1, · · · , t
∗
N , c∗1, · · · , c

∗
N , which contradicts the

assumption. Hence, we have c∗k−1
+ Ck−1 ≤ t∗k + Tk for all

k, which results in (14).

The intuition behind Lemma 2 is that a packet waiting

in the edge server will become stale. Therefore, each packet

should arrive at the edge server right before the previous one

completes its computing process, so that there is no waiting

before computing. A policy satisfying (14) is termed as no-

wait computing policy. Notice that no-wait computing policy is

not always optimal. When T is relatively small, it maybe even

not feasible. In Lemma 2, how large value of T is sufficient

remains unsolved. In fact, it depends on the values of Tks and

Cks. Firstly, we provide a feasibility condition for the no-wait

computing policy.

Proposition 2. No-wait computing policy satisfying (14) is

feasible for the problem (5) if and only if

T ≥ T1 +

N−1
∑

k=1

max{Ck, Tk+1}+ CN . (15)

Proof. Firstly, we prove the necessity. If the solution satisfies

(14), we have based on (5d)

tk ≥ tk−1 + Tk−1 + Ck−1 − Tk.

Joint with (5c), we have

tk ≥ tk−1 + Tk−1 +max{Ck−1, Tk} − Tk.

Therefore, by recursively using the above inequality, we have

T ≥ cN + CN

= tN + TN + CN

≥ tN−1 + TN−1 +max{CN−1, TN}+ CN

≥ t1 + T1 +

N−1
∑

k=1

max{Ck, Tk+1}+ CN

≥ T1 +

N−1
∑

k=1

max{Ck, Tk+1}+ CN .

Hence, the necessity of the condition (15) is proved.

Secondly, we prove the sufficiency by finding a feasible

solution. In particular, we set

t̃1 = 0,

t̃k = t̃k−1 + Tk−1 +max{0, Ck−1 − Tk}, 2 ≤ k ≤ N,

c̃k = t̃k + Tk, 1 ≤ k ≤ N.

It is easy to verify that

c̃N + CN = T1 +

N−1
∑

k=1

max{Ck, Tk+1}+ CN ≤ T.

Hence, t̃1, · · · , t̃N , c̃1, · · · , c̃N is a feasible solution of the

problem (5) conditioned on (15). As a result, the sufficiency

is proved.

Proposition 2 provides a condition to guarantee that (14)

ends up with a feasible solution. To guarantee its optimality,

additional conditions are required, which is left for future

work. Based on Lemma 2, the optimal solution is no-wait

computing policy if T is sufficiently large. We will show the

optimality numerically in the next section.

If the condition in Lemma 2 holds, the problem (5) can be

simplified as follows

min
t1,··· ,tN

N
∑

k=1

1

2

[

(tk − tk−1 + Tk + Ck)
2 − (Tk + Ck)

2
]

+
1

2
(T − tN)2 −

1

2
∆2

0 (16a)

s.t. t1 ≥ 0, (16b)

tk ≥ tk−1 + Tk−1, 2 ≤ k ≤ N, (16c)

tk + Tk ≥ tk−1 + Tk−1 + Ck−1, 2 ≤ k ≤ N,

(16d)

tN + TN + CN ≤ T. (16e)

By denoting

xk = tk − tk−1 + Tk + Ck, 1 ≤ k ≤ N, (17)

xN+1 = T − tN , (18)

and changing the optimization variables, the problem (16) can

be reformulated as

min
x1,··· ,xN+1

N+1
∑

k=1

1

2
x2
k −

1

2

N
∑

k=1

(Tk + Ck)
2 −

1

2
∆2

0 (19a)

s.t. x1 ≥ ∆0 + T1 + C1, (19b)

xk ≥ Tk−1 + Tk + Ck, 2 ≤ k ≤ N, (19c)

xk ≥ Tk−1 + Ck−1 + Ck, 2 ≤ k ≤ N, (19d)

xN+1 ≥ TN + CN , (19e)

N+1
∑

k=1

xk = ∆0 +
N
∑

k=1

(Tk + Ck) + T, (19f)

where (19f) is the constraint on the relation between the new

variables. Notice that the second and third terms in (19a)

are constant which can be removed from the objective, and

(19c) and (19d) can be merged together. By doing so, the

optimal solution of the problem (19) is equivalent to that of

the following problem

min
x1,··· ,xN+1

N+1
∑

k=1

x2
k (20a)

s.t. x1 ≥ A1, (20b)

xk ≥ Ak, 2 ≤ k ≤ N, (20c)

xN+1 ≥ AN , (20d)

N+1
∑

k=1

xk = B, (20e)

where

A1 = ∆0 + T1 + C1, (21)

Ak = Tk−1 +max{Ck−1, Tk}+ Ck, 2 ≤ k ≤ N, (22)

AN+1 = TN + CN , (23)

B = ∆0 +

N
∑

k=1

(Tk + Ck) + T. (24)

The solution to the problem (20) can be geometrically inter-

preted in Fig. 3. In particular, x = (x1, · · · , xN+1)
T can be

viewed as a certain point in RN+1. The constraints (20b)-(20d)

can be interpreted by the shaded region as shown in Fig. 3,

and the constraint (20e) can be interpreted by a hyperplane

l. Hence, the feasible solution space is the intersection of the

hyperplane l and the shaded region, which is a polyhedron.

The objective function is the square of the distance from a

point x in the polyhedron to the origin. It is known that

the minimum distance from the origin to the hyperplane is

achieved by the vertical line between the origin and x
∗. Thus,

if x∗ lies in the shaded region, it is indeed the optimal solution

of problem (20). The following proposition demonstrates that

x

x A

A

l: x +x =B

x

Fig. 3. Geometric interpretation of the solution for the problem (20).

x
∗ is a feasible solution of the problem (20) when T is

sufficiently large.

Proposition 3. If

T ≥ (N + 1) max
1≤k≤N+1

{Ak} −

N
∑

k=1

(Tk + Ck)−∆0, (25)

the optimal solution of the problem (20) is x
∗ =

(

x∗
1, · · · , x

∗
N+1

)T
with

x∗
k =

B

N + 1
, 1 ≤ k ≤ N + 1, (26)

where Ak and B are defined as (21)-(24).

Proof. If (25) holds, we have

x∗
k =

B

N + 1
≥ max

1≤k≤N+1
{Ak}.

Therefore, all the constraints (20b), (20c) and (20d) are

satisfied. Obviously, the constraint (24) is also satisfied. Hence,

x
∗ is a feasible solution of the problem (20). Since x

∗ is the

intersection point of the hyperplane l and its vertical line from

the origin, it attains the minimum distance as in (19a).

As the value of T satisfying (25) is sufficiently large, we

can infer that the relation (14) holds for the optimal solution.

Consequently, the optimal solution for the original problem

(5) can be directly obtained according to (17) and (18), which

is given as follows,

t∗k =
k

N + 1
B −

k
∑

i=1

(Ti + Ci)−∆0, (27)

c∗k =
k

N + 1
B −

k−1
∑

i=1

(Ti + Ci)− Ck −∆0. (28)

Proposition 3 can be explained as follows. Notice that

x∗
k = t∗k − t∗k−1 + Tk + Ck

= c∗k + Ck − t∗k−1

 !t

t !" #!# #!$ %!% &

#

 !' !(

)*+,-./--/0,

1+23456#

1+23456%

1+23456&

1+23456$

1+23456'70.895/,:

 !;

#!; %!

Fig. 4. AoI curve ∆(t) and optimal scheduling policy with T = 3s.

is the local maximum value of the AoI curve as shown in

Fig. 2, which is referred to as the peak AoI [14]. Since all the

peak AoIs are the same for all the packets, all the isosceles

right-angled triangles with side length c∗k+Ck−t∗k−1
in Fig. 2

are of the same size. Therefore, the average AoI is minimized

when the “contributions” of all the packets are the same.

In the case that x
∗ does not lie in the shaded region,

the optimal solution can be found on the boundary of the

hyperspace. It is obvious that the problem (20) is a convex

optimization problem as the objective is a quadratic function

and the constraints are all linear. Therefore, it can be solved

by the standard convex optimization algorithms [15].

IV. NUMERICAL RESULTS

In this section, we show the behavior of the optimal solution

by numerical studies. In the numerical experiment, we set

the number of packets N = 5, and the set of transmission

times as (T1, T2, T3, T4, T5) = (0.5s, 0.1s, 0.3s, 0.7s, 0.4s),
the set of the computing times as (C1, C2, C3, C4, C5) =
(0.2s, 0.4s, 0.3s, 0.6s, 0.8s) according to [16]. The initial age

is set to ∆0 = 1s. By choosing different values of T , the

optimal solutions are different. In particular, we solve the

AoI minimization problem numerically for T = 3s, 5s, and

7.5s, respectively. The AoI curves and the optimal scheduling

solutions are shown in Figs. 4, 5 and 6.

Firstly, according to Proposition 1, to make sure all the

packets can be successfully transmitted and computed, we

have T ≥ 3s. Therefore, when T = 3s, an optimal solution is

to transmit and compute the packets greedily, i.e., each packet

is generated and transmitted upon receiving the previous

packet, and each packet is computed as long as the edge server

is idle as shown in Fig. 4. It is noticeable that ck = tk + Tk

does not always hold due to the limited time length. It is

 !t

t !" #!#$ #!%$ &!#% &!'($!$()&!"% $!"('!)(

#

*+,-./0..01-2

3,45672#

3,45672&

3,45672$

3,45672'

3,45672)81/9:70-;

 !) #!&$ $!#(&!'%

Fig. 5. AoI curve ∆(t) and optimal scheduling policy with T = 5s.

 !t

t ! " #!$%

$!"" #!&% '!("!"" &!')"!# (!&))!&&!)"

*+,-./0..01-

2,34567

2,34567#

2,34567'

2,34567"

2,34567&

81/9:60-;

$!<" #! % '!< &! " &!))

Fig. 6. AoI curve ∆(t) and optimal scheduling policy with T = 7.5s.

also remarkable that there may exist other feasible optimal

solutions in this case. As shown in this figure, the fifth packet

can start to transmit during time interval (1.6s, 1.8s) without

changing the average AoI.

Secondly, when T = 5s, the optimal solution is depicted

in Fig. 5. It can be seen that ck = tk + Tk holds for

all k. Therefore, T = 5s is sufficiently large so that the

optimal solution is no-wait computing policy. Finally, in the

case that T = 7.5s, the condition (25) in Proposition 3 is

satisfied. Hence, the optimal solution is solved in closed-form

as (27) and (28). The numerical result in Fig. 6 validates our

theoretical analysis.

By observing the AoI curves with different T s depicted in

Figs. 4, 5 and 6, it can be seen that when T = 3s, the peak AoI

for each packet varies with one another. As T increases, the

variance among the peak AoIs becomes small. In particular,

when T = 5s, all the peak AoIs are the same except for the

fourth packet. And when T = 7.5s, the peak AoIs are all the

same, which is consistent with the explanation of Proposition

3. It is demonstrated that the more “flat” the AoI curve is, the

smaller the average AoI is.

V. CONCLUSION

In this paper, we have studied how to schedule the trans-

mission and computing of a set of packets in a serial way

to minimize the average AoI. The optimal solution strongly

depends on the time deadline. If the deadline is just enough

for completing the transmission and computing of all the

packets, there is no space for adjustment. If the deadline is

sufficiently large, all the peak AoIs are the same so that the

average AoI is minimized, and the optimal solution can be

given in closed-form. For moderate length of the deadline, to

minimize the average AoI, each packet should start computing

right after it is received by the edge server so that no waiting

occurs in the buffer of the edge server, referred to as no-wait

computing policy. Future work may include finding necessary

and sufficient condition to guarantee that no-wait computing

policy is optimal, and characterizing the optimal solution on

the boundary of the hyperplane.

REFERENCES

[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. IEEE Infocom, Mar. 2012, pp. 2731–2735.

[2] A. Alabbasi and V. Aggarwal, “Joint information freshness and com-
pletion time optimization for vehicular networks,” arXiv preprint

arXiv:1811.12924, 2018.

[3] A. Arafa, R. D. Yates, and H. V. Poor, “Timely cloud computing:
Preemption and waiting,” arXiv preprint arXiv:1907.05408, 2019.

[4] P. Zou, O. Ozel, and S. Subramaniam, “Trading off computation with
transmission in status update systems,” arXiv preprint arXiv:1907.00928,
2019.

[5] Q. Kuang, J. Gong, X. Chen, and X. Ma, “Age-of-information for
computation-intensive messages in mobile edge computing,” in The 11th

Int. Conf. Wireless Commun. Signal Processing (WCSP), Oct. 2019.

[6] J. Gong, Q. Kuang, X. Chen, and X. Ma, “Reducing age-of-information
for computation-intensive messages via packet replacement,” in The 11th

Int. Conf. Wireless Commun. Signal Processing (WCSP), Oct. 2019.

[7] J. Zhong, W. Zhang, R. D. Yates, A. Garnaev, and Y. Zhang, “Age-aware
scheduling for asynchronous arriving jobs in edge applications,” in Proc.

IEEE Infocom, May 2019.

[8] X. Song, X. Qin, Y. Tao, B. Liu, and P. Zhang, “Age based task schedul-
ing and computation offloading in mobile-edge computing systems,”
arXiv preprint arXiv:1905.11570, 2019.

[9] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE

Commun. Surveys Tut., vol. 19, no. 4, pp. 2322–2358, Fourthquarter
2017.

[10] A. M. Bedewy, Y. Sun, and N. B. Shroff, “Age-optimal information
updates in multihop networks,” in IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2017, pp. 576–580.

[11] R. Talak, S. Karaman, and E. Modiano, “Minimizing age-of-information
in multi-hop wireless networks,” in 55th Annual Allerton Conf. Com-

mun., Control, and Computing (Allerton), Oct. 2017, pp. 486–493.

[12] R. D. Yates, “Age of information in a network of preemptive servers,”
in Proc. IEEE Infocom, Apr. 2018, pp. 118–123.

[13] A. Arafa and S. Ulukus, “Age-minimal transmission in energy harvesting
two-hop networks,” in IEEE Global Commun. Conf. (Globecom), Dec.
2017.

[14] M. Costa, M. Codreanu, and A. Ephremides, “Age of information with
packet management,” in IEEE Int. Symp. Inf. Theory (ISIT), June 2014,
pp. 1583–1587.

[15] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[16] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computation
offloading for mobile-edge cloud computing,” IEEE/ACM Trans. Netw.,

vol. 24, no. 5, pp. 2795–2808, 2016.

	I Introduction
	II System Model
	III Optimal Transmission and Computing Policy
	IV Numerical Results
	V Conclusion
	References

