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Abstract—In massive multiple-input multiple-output (MIMO)
system, user equipment (UE) needs to send downlink channel
state information (CSI) back to base station (BS). However,
the feedback becomes expensive with the growing complexity
of CSI in massive MIMO system. Recently, deep learning (DL)
approaches are used to improve the reconstruction efficiency of
CSI feedback. In this paper, a novel feedback network named
CRNet is proposed to achieve better performance via extracting
CSI features on multiple resolutions. An advanced training
scheme that further boosts the network performance is also
introduced. Simulation results show that the proposed CRNet
outperforms the state-of-the-art CsiNet under the same computa-
tional complexity without any extra information. The open source
codes are available at https://github.com/Kylin9511/CRNet

Index Terms—Massive MIMO, CSI feedback, deep learning,
convolutional neural network, inception network

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a
promising technique to improve the spectrum and energy
efficiency for the next generation wireless systems [1], [2].
However, new challenge appears that base station (BS) needs
to obtain the real time channel state information (CSI) for
precoding. The uplink CSI can be acquired by channel esti-
mation, while the downlink CSI has to be fed back from user
equipment (UE) especially in frequency division duplexing
(FDD) systems [3]. The feedback is challenging in massive
MIMO system due to the huge CSI matrix. The bandwidth
overhead of CSI feedback becomes unacceptable.

In order to reduce the feedback overhead, the CSI ma-
trix must be compressed. The traditional methods based on
compressed sensing (CS) [4] require the CSI matrix to be
sparse enough. However, the practical system can not meet the
requirement especially when the compression ratio is large.

On the other hand, artificial intelligence (AI) and deep
learning (DL) have caught wide attention in the past few years.
Many neural network (NN) backbones including ResNet [5]
and InceptionNets [6]–[8] are proposed. They are proved to
be robust and effective in many tasks including image com-
pression [9]–[11], which is similar to CSI compression. This
inspires the researchers to solve the CSI feedback problem via
DL based encoder-decoder network.

Recently, a series of works have been introduced on down-
link Massive MIMO CSI feedback with DL. A neural network
named “CsiNet” is designed in [12] and its overwhelming
superiority against traditional CS methods is given. After that,
some researchers expand the original scene. Correlation of
CSI in different time slots is used in [13] and correlation
between the uplink and downlink CSI is utilized in [14], [15].
These can be seen as new sub-scenes with extra conditions or
assumptions.

The CsiNetPlus proposed in [16] improves the network
performance without extra information by updating the con-
volutional kernels. It proves the huge potential for network
design in pure CSI feedback task. However, CsiNetPlus inher-
its most of the CsiNet architecture design. What is more, the
floating point operations (flops) of CsiNetPlus is much larger,
making the improvement of CsiNetPlus sort of a complexity-
performance trade off.

In this paper, we propose a novel neural network called
channel reconstruction network (CRNet) based on multi-
resolution architecture. We also introduce an advanced training
scheme that fit the CSI feedback task better to boost the
performance. Simulation results show that with the same
computational complexity, the proposed CRNet greatly out-
performs the CsiNet especially under the advanced scheme.

The main contribution of this paper is listed below.
• Multi-resolution CRBlock is designed based on inception

block [6]. With the help of CRBlock, the CRNet is able
to extract multi-resolution features and adapt to various
scenario and compression ratio.

• We adopt the convolution factorization in [7] and prove
its effectiveness in CSI feedback task. It can expand the
resolution without any flops increasing.

• We introduce warm up aided cosine learning rate (lr)
scheduler. The effectiveness of exhaustive training is also
analyzed. To the author’s best knowledge, we are the first
to emphasize the importance of training scheme on CSI
feedback task. Advanced scheme is proposed and proved
to be practical.

The rest of the paper is organized as follows. Section II
introduces the system model and the CSI feedback scenario.
Section III explains the detailed design of CRNet and the
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advanced training scheme. After that the numerical results and
analysis are presented in Section IV. The final conclusion is
drawn in Section V.

II. SYSTEM MODEL

In this work, we consider a single cell massive MIMO FDD
system with Nt antennas at BS and Nr antennas at UE. In this
scenario we have Nt � 1, and Nr is set to 1 for simplicity.
Orthogonal frequency division multiplexing (OFDM) with Nc

sub-carrier is adopted, where the received signal y ∈ CNc×1

can be derived as follows:

y = Ax + z, (1)

where x ∈ CNc×1 is the transmitted symbol vector in one
OFDM period, and z ∈ CNc×1 is the additive noise vector.
Diagonal channel matrix A = diag(hH

1 p1, · · · ,hH
n pn) where

n = Nc, hi ∈ CNt×1 and pi ∈ CNt×1, i ∈ {1, · · · , Nc} are
downlink channel response vector and beamforming vector for
each sub-carrier, respectively.

In order to design the beamforming vector pi, the BS needs
to acquire the corresponding hi. We can define the downlink
channel matrix as H = [h1 · · ·hNc

]H which contains NcNt

elements. Typically NcNt for massive MIMO FDD system is
unacceptably large.

Luckily the channel matrix H is sparse in the angular-
delay domain [12]. Following equation (2), we can transfer
the channel matrix from spatial-frequency domain to angular-
delay domain via discrete Fourier transform (DFT).

H′ = FcHFH
t , (2)

where Fc and Ft are the DFT matrices with dimension
Nc×Nc and Nt×Nt, respectively. For angular-delay domain
channel matrix H′, only the first Na row contains large values.
The rest of the rows are made up of near zero elements
that can be left out without much information loss. For easy
understanding, we use Ha to denote the first Na rows of H′.

Although Ha is much lighter compared with H, NaNt is
still a large number. That is why we need to further compress
Ha before feedback. Ha is sparse enough for the CS based
methods when Nt →∞. However, Nt is limited in the prac-
tical system, making the sparsity of Ha insufficient especially
for large compression ratio. The NN based approaches can
overcome the shortcoming of CS and achieve better results.

In this paper we consider an encoder-decoder network for
the downlink SCI feedback. As it is shown in Fig. 1, the
channel matrix H is first transferred to angular domain by
DFT. Then the encoder of CRNet compresses Ha into a short
feature vector v according to a given compression ratio η.
After v is fed back to BS, it will be reconstructed into Ha

by the decoder of CRNet. Finally H can be restored by zero
filling and inverse DFT.

The whole feedback scheme can be concluded by (3).

Ĥa = D(E(Ha,ΘE),ΘD), (3)
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Fig. 1. Schematic diagram of CRNet aided downlink CSI feedback workflow

where E and D denote the encoder and the decoder of CRNet,
respectively. ΘE and ΘD represent their network parameters.
Our purpose is to design and train ΘE and ΘD so that the
distance between Ha and the reconstructed Ĥa is minimized.

Note that this work only focuses on the feedback scheme,
the downlink channel estimation and the uplink feedback are
assumed to be ideal. Besides, we adopt COST2100 [18] model
to simulate the channel matrix H for the massive MIMO FDD
system.

III. DESIGN OF CRNET AND TRAINING SCHEME

A. The proposed CRNet

Pure residual architecture, like RefineNet in CsiNet, is
applied and proved to be effective in previous works. It extracts
residual CSI features under a fixed resolution. However, the
sparsity of CSI varies according to the channel scenario and
the compression ratio in our task.

If the CSI matrix is relatively dense, its feature granularity
will be finer. Convolution with smaller kernel size can extract
finer features better. Conversely, larger kernel is preferred for
sparser CSI matrix. Single resolution network can not adapt to
the feature granularity change well, which may leads to loss
in network performance and robustness.

Considering the aforementioned observation, we introduce
multi-resolution network to the CSI feedback task. A brand
new network named CRNet is proposed and its architecture is
demonstrated in Fig. 2. CRNet consists of two separated parts:
the encoder at UE and the decoder at BS. The angular channel
matrix Ha is treated as an input image of size 2×Na ×Nt,
and its two channels correspond to the real and imaginary part
of Ha.

For the encoder, input image will pass through two parallel
paths. One path is made up of three serial convolution layers,
providing large resolution view. The other path only contains
one 3×3 convolution layer whose resolution is much smaller.
Then we concatenate the outputs and merge them with a 1×1
convolution. Finally a fully connected (FC) layer is used to
scale down the feature based on the given compression ratio.

For the decoder, the received feature vector v is first scaled
up and resized. After that, a convolution layer extract the
feature roughly. Then it comes to two CRBlocks, which is
the core design of the decoder. Each CRBlock consists of
two parallel paths with different resolutions. Then a 1 × 1
convolution layer merges two output features. Identity path is
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Fig. 2. Encoder and decoder design of the proposed CRNet. All the input
feature shape (c × h × w) is given on top of the corresponding block.
The activation functions and reshape blocks are left out in the diagram for
simplicity.

added to each CRBlock following the idea of residual learning.
At the end, there is an extra sigmoid layer for value range
adjustment and further activation.

Note that each convolution is followed by a batch normal-
ization as it is depicted in Fig. 2. Besides, a leaky ReLU
activation layer is added at the end of each “conv bn” layer to
provide nonlinearity. Also, reshape operation is added where
it is necessary. The definition of leaky ReLU is shown in (4).

LeakyReLU(x) =

{
x, x ≥ 0
βx, x < 0,

(4)

where β ∈ (0, 1) is the negative slope. We set β to 0.3 in the
proposed CRNet.

It is obvious that the multi-resolution CRBlock is the key to
the CRNet design. In fact, the encoder is a simplified CRBlock
as well. By setting two different convolutional paths in parallel,
the proposed CRBlock can flexibly extract the features from
different sizes. In this way the network capacity of adapting
to different feature granularities are enhanced.

What is more, convolution factorization is first introduced
to CSI feedback task and proved to be effective. By replacing
a huge 9 × 9 kernel with a 1 × 9 kernel and a 9 × 1 kernel
in series, the resolution area is kept while the computational
complexity is largely reduced.

With the help of multi-resolution paths and convolution
factorization, CRNet achieves better performance under the
same or even less computational complexity compared with
CsiNet.

B. The advanced training scheme design

The importance of training scheme design is always under-
estimated in previous DL aided CSI feedback works. CsiNet
is trained for 1000 epochs with a fixed learning rate of 0.001
[12]. But we can not find further ablation study to explain why
that scheme is good. Some other works even omit the basic
training scheme description in their essay, which seriously
harm the reliability of their reported network performance.

In fact, no network can produce good result if it is not
trained properly. Besides, the training scheme has no impact
on online inference cost, making the benefit it brings free
of charge. Generally speaking, the best training scheme is
different for different tasks and networks. Therefore it is
important to explore the best scheme for brand new task like
CSI feedback.

In this paper, we mainly look into two aspects of training
scheme design: the number of training epochs and the learning
rate (lr) scheduler.

In order to set the training epoch rationally, we should pay
attention to the overfitting problem. Generally speaking, if the
task is unlikely to overfit, longer training will help finding a
better solution. However, for the majority of tasks in computer
vision, overfitting happens easily when training is long and it
harms the network performance. Therefore we need to analyze
the possibility of overfitting in CSI feedback task.

As a matter of fact, overfitting is quite hard for the CSI
feedback task. There are mainly two reasons for it. For one
thing, the model we use is fairly simple compared with models
in traditional computer vision. For example, flops of the
famous ResNet50 is 3.9G, which is over 500 times larger than
our proposed CRNet. For the other thing, the data we use does
not contain complicated yet irrelevant information. An image
of a dog may contains its owner’s hand, the house, the grass,
etc. However, the property of CSI matrix is very special. It is
random but descriptive, even the noise can be formatted with
reasonable assumption.

Overfitting is more likely to happen when the network is
too powerful and the data contains intertwined information.
Apparently CRNet is very light and the information in the CSI
matrix is rather pure. That means the main challenge would be
under fitting especially for large compression ratio. Based on
the aforementioned analysis, we suggest exhausted training for
CSI feedback network. Experiments shows that training long
enough is helpful indeed.

The scheduler design is another key problem. As it is well
known, a proper lr scheduler is important for stochastic gradi-
ent descent (SGD) optimizer. For instance, cosine annealing lr
with restart is proved to be significantly better compared with
constant lr when using SGD opimizer [17].

Adam optimizer is less sensitive to lr scheduler since it
can auto-adapt lr during the optimizing process. However, our
experiment shows that for CSI feedback task the constant lr
is not enough even for Adam. By applying cosine annealing
lr with warm up depicted in Fig. 3, we significantly improve
the performance of CRNet.
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Fig. 3. Comparison between constant lr scheduler and cosine annealing lr
scheduler with linear warm up.

To be specific, the lr is linearly increased from zero to the
maximal rate at the beginning of training. This operation is
called ”warm up” and the network parameters are updated to
a better initial position. After that the lr decays from maximal
rate following (5).

γ = γmin +
1

2
(γmax − γmin)

(
1 + cos

(
t− Tw
T − Tw

π

))
,

(5)

where γ, γmax and γmin are current, initial and final lr,
respectively. t is index of current epoch, Tw and T are the
number of warm up and total epochs, respectively.

Here comes the reason why cosine annealing lr works better
than constant lr. At the early stage, network needs to be trained
long enough with large lr to locate a better zone. When it
comes to the final stage, training longer with small lr usually
means getting closer to optimum value. As we can see in Fig.
3, the initial lr is 40 times large than the final lr for cosine
scheduler. The early stage and final stage are relatively longer
than the middle stage due to the shape of cosine function.
Besides, lr update is smooth and continuous under cosine
scheduler, making training more stable.

In conclusion, we propose an advanced training scheme
to train CRNet in a better way. With the help of warm up
aided cosine annealing lr scheduler and exhausted training,
our advanced scheme significantly improves the network per-
formance.

IV. SIMULATION RESULTS AND ANALYSIS

A. Experiment Setting

We consider two types of scenarios: the indoor scenario at
5.3GHz and the outdoor scenario at 300MHz. The channel
is generated following the default setting in COST2100 [18].
We adopt the basic system settings in CsiNet [12] for easier
comparison. Uniform linear array (ULA) model with Nt = 32
is considered at BS. For FDD system, we take Nc = 1024 in
the frequency domain and Na = 32 in the angular domain.
150,000 independently generated channels are split into three
parts. The training, validation and test dataset contain 100,000,
30,000 and 20,000 channel matrices, respectively. The batch
size is set to 200.

The whole pipeline is implemented in PyTorch. The Xavier
initialization is applied on both convolution layers and FC
layers. We use Adam optimizer with default setting (β1 =
0.9, β2 = 0.999, ε = 1e − 8) and mean square error (MSE)
loss. For our advanced training scheme, the initial and final
lr of cosine annealing scheduler is set to be 2e-3 and 5e-5.
The network is trained for 2500 epochs which is long enough
according to our observation. The first 30 epochs is used for
warm up.

B. Performance of the proposed CRNet and training scheme

In order to evaluate the performance, we measure the
distance between the original Ha and the reconstructed Ĥa

with normalized mean square error (NMSE) defined in (6).

NMSE = E

{
‖Ha − Ĥa‖22
‖Ha‖22

}
(6)

The main performance comparison between the original
CsiNet and our proposed CRNet is listed in Table I. The
“CRNet-const” stands for CRNet trained with the same
scheme as CsiNet, which is 1000 epochs of training under
constant learning rate 0.001. And the “CRNet-cosine” repre-
sent CRNet trained with our advanced scheme described in
Section IV-A.

Table I shows that under the same training scheme, CRNet
stably outperform CsiNet with less flops, demonstrating the
advantage of CRNet architecture design. The multi-resolution
CRBlock with convolution factorization is proved to be suit-
able for the CSI feedback t ask. What is more, the perfor-

TABLE I
NMSE (DB) AND FLOPS COMPARISON BETWEEN CSINET AND CRNET

η Methods Indoor Outdoor
NMSE flops NMSE flops

1/4
CsiNet -17.36 5.41M -8.75 5.41M

CRNet-const -21.17 5.12M -10.42 5.12M
CRNet-cosine -26.99 5.12M -12.71 5.12M

1/8
CsiNet -12.70 4.37M -7.61 4.37M

CRNet-const -13.79 4.07M -7.67 4.07M
CRNet-cosine -16.01 4.07M -8.04 4.07M

1/16
CsiNet -8.65 3.84M -4.51 3.84M

CRNet-const -10.29 3.55M -5.09 3.55M
CRNet-cosine -11.35 3.55M -5.44 3.55M

1/32
CsiNet -6.24 3.58M -2.81 3.58M

CRNet-const -8.58 3.28M -3.19 3.28M
CRNet-cosine -8.93 3.28M -3.51 3.28M

1/64
CsiNet -5.84 3.45M -1.93 3.45M

CRNet-const -6.14 3.16M -2.13 3.16M
CRNet-cosine -6.49 3.16M -2.22 3.16M

TABLE II
IMPACT OF TRAINING EPOCHS ON CRNET NMSE (DB) PERFORMANCE

Training
schemea

Number of training epochs
100 500 1000 2500 5000

CRNet-const -18.94 -17.55 -21.17 -22.94 -21.89
CRNet-cosine -21.33 -23.76 -25.17 -26.99 -27.31
aAll schemes are tested under the indoor scenario (η = 1/4).
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mance of CRNet further improves under our advanced training
scheme without any extra flops. The warm up and cosine
annealing scheduler introduced in Section III-B do work for
the scene.

Another important problem is the best training epoch set-
ting. Ablation study in Table II shows that the performance
generally gets better with the increase of training epochs,
which matches with our analysis in Section III-B.

There is an exception that NMSE of CRNet-const seems to
be worse when it is trained for 5000 epochs. However, that
is due to the instability of training under constant scheduler.
Sometimes, the training happens to be trapped into a zone
with relatively bad local minimum, which is why we need
a better training scheme. The exhausted training is effective
when you consider one single experiment. For instance, when
the unluckily trapped network is trained for 2500 epochs, its
NMSE is merely -19.18 dB. By training for 2500 more epochs,
its NMSE decrease for another 2.71 dB even in a bad local
zone.

Exhausted training only works for the tasks that are unlikely
to overfit. Since the CSI feedback task can benefit from
exhausted training, the overfitting of it must be slight. We
can establish an intuitive concept from Fig. 4, where loss
descending trends of training and test are presented. CRNet
is trained with warm up aided cosine scheduler for only 1000
epochs in Fig. 4 for easier comparison. For both CsiNet and
CRNet, the test loss fluctuates around the training loss all the
way, suggesting a relatively weak overfitting during training.

However, the benefit of longer training decreases as the
training gets longer. According to our experiments, CRNet
can perform well enough under cosine scheduler with 2500
epochs of training. That is why we set the number of training
epoch to 2500 in our final advanced scheme.

The specific difference of the loss curves between the
advanced scheme aided CRNet and the original CsiNet can
also be revealed by Fig. 4. The loss of CRNet decreases
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Fig. 5. NMSE trends of CsiNet and CRNet under different schemes. Note that
the horizontal axis is set to training procedure for clearer comparison. CsiNet
and CRNet-const are both trained for 1000 epochs with learning rate 0.001.
CRNet-cosine is trained for 2500 epochs with cosine annealing lr, which is
our advanced scheme.

sharply for a longer time. What is more, it is still decaying
slowly when the loss of CsiNet is stuck on plateau. Besides,
a clear comparison of NMSE training curves can be found in
Fig. 5. As we can see, under the same training scheme, our
proposed CRNet reaches lower NMSE with relatively higher
fluctuation. And with the help of cosine annealing scheduler
and exhausted training, The NMSE of CRNet is significantly
lower. Besides, the NMSE curve gets less fluctuant as the
training goes, suggesting that the result is more stable under
the new scheme.

Finally, we will offer some interesting observations. We test
the CRNet performance with different leaky ReLU negative
slopes and the results are shown in Table III. When leaky
ReLU is used in some computer vision tasks, small negative
slope can also work well. However, larger slope is essential to
boost the performance of CRNet. The optimization of CRNet

TABLE III
NMSE(DB) PERFORMANCE FOR DIFFERENT NEGATIVE SLOPE ON CRNET

Scenariosa Leaky ReLU negative slope
0.01 0.05 0.1 0.3 0.5

Indoor -14.79 -23.06 -23.45 -26.99 -25.39
Outdoor -8.99 -10.74 -10.63 -12.71 -12.54

aThe compression ratio η is set to 1/4 for all scenarios.

TABLE IV
PERFORMANCE OF DIFFERENT HEAD CONVOLUTION IN CRNET DECODER

Head
convolution

Indoor (η = 1/4) Outdoor (η = 1/4)
NMSE flops NMSE flops

Blank -25.55 5.02M -12.5 5.02M
3× 3 -24.9 5.06M -11.3 5.06M

Dual 3× 3 -25.9 5.09M -11.9 5.09M
5× 5 -26.99 5.12M -12.71 5.12M
7× 7 -26.31 5.22M -11.84 5.22M



will be much harder if the negative slope is too small.
Besides, we investigate into the head convolution design

in CRNet and present the results in Table IV. Generally
speaking, neural network based on pure residual architecture
needs a head convolution layer to roughly extract the feature.
For example, at the beginning of ResNet [5] there exists a
7 × 7 convolution layer. In CsiNetPlus [16], adding head
convolution layer to the original CsiNet is listed as one of
the core upgrades.

However in CRNet, we find that the head convolution
layer has little influence on the final performance. For indoor
scenario with η = 4, NMSE only decreases for around 1.5dB
if you remove the 5× 5 head convolution layer. Besides, the
performance of different head layers are relatively similar.
This may thanks to the multi-resolution architecture in CRNet,
which can better adapt to the change of CSI features. Still we
choose to add a 5× 5 head convolution layer into CRNet for
better performance, since the flops it consumes is negligible.

V. CONCLUSION

In this paper, a novel neural network named CRNet was
proposed for downlink CSI feedback in massive MIMO FDD
system. Multi-resolution paths and convolution factorization
were first introduced to CSI feedback task and proved to be
effective. Besides, an advanced training scheme was designed
which successfully boosted the performance of the proposed
CRNet. Experiments showed that the proposed CRNet greatly
outperformed the state-of-the-art CsiNet with our advanced
scheme under the same computational complexity.
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