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Abstract—Unmanned aerial vehicles (UAVs) can be utilized as
aerial base stations (ABSs) to assist terrestrial infrastructure for
keeping wireless connectivity in various emergency scenarios. To
maximize the coverage rate of N ground users (GUs) by jointly
placing multiple ABSs with limited coverage range is known
to be a NP-hard problem with exponential complexity in N .
The problem is further complicated when the coverage range
becomes irregular due to site-specific blockage (e.g., buildings)
on the air-ground channel in the 3-dimensional (3D) space. To
tackle this challenging problem, this paper applies the Deep
Reinforcement Learning (DRL) method by 1) representing the
state by a coverage bitmap to capture the spatial correlation
of GUs/ABSs, whose dimension and associated neural network
complexity is invariant with arbitrarily large N ; and 2) designing
the action and reward for the DRL agent to effectively learn
from the dynamic interactions with the complicated propagation
environment represented by a 3D Terrain Map. Specifically, a
novel two-level design approach is proposed, consisting of a
preliminary design based on the dominant line-of-sight (LoS)
channel model, and an advanced design to further refine the ABS
positions based on site-specific LoS/non-LoS channel states. The
double deep Q-network (DQN) with Prioritized Experience Replay
(Prioritized Replay DDQN) algorithm is applied to train the policy
of multi-ABS placement decision. Numerical results show that
the proposed approach significantly improves the coverage rate
in complex environment, compared to the benchmark DQN and
K-means algorithms.

I. INTRODUCTION

With their high mobility and reducing cost, unmanned aerial

vehicles (UAVs) have attracted increasing interests in military

and civilian domains in recent years. In particular, integrating

UAVs into cellular networks as aerial base stations (ABSs)

to assist terrestrial communication infrastructure in various

emergency scenarios such as battlefields, disaster scenes and

hotspot events, has been regarded as an important and promis-

ing technology [1].

One of the key problems in UAV-aided communication

is to find applicable placement of ABSs aiming to achieve

maximum coverage of ground users (GUs). To maximize the

coverage rate of N GUs by jointly placing multiple ABSs with

limited coverage range is known to be a NP-hard problem

with exponential complexity in N [2]. However, it has still

spurred enthusiasm of many researchers in this theme [2]–[8].

The authors in [2] propose a spiral algorithm to place ABSs

along a spiral path to cover all GUs with the minimum number

of ABSs, which reduces the complexity to polynomial-time. A

heuristic K-means clustering algorithm is applied in [3], which

finds suitable ABS locations to serve the partitioned GUs. In
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Fig. 1. Placement optimization of ABSs by (a) preliminary design based on
dominant-LoS channel and (b) advanced design based on 3D Terrain Map.

terms of maximizing the coverage area, the authors in [4]

optimize the altitude of a single ABS based on the probabilistic

line-of-sight (LoS) channel model, while circle packing theory

is used in [5] to maximize the total coverage area of multiple

ABSs. On the other hand, controlling ABS movement to cover

moving users is another challenging task [6] [7], for which [6]

applies a majority rule to control the direction and distance

of UAV displacement towards the cell with the highest user

density, while [7] uses the K-means algorithm to partition GUs

into clusters, and further applies the Q-learning algorithm for

ABS movement. In addition, in terms of ABS coverage and

energy consumption trade-off, a Deep Reinforcement Learning

(DRL)-based approach is proposed in [8] to achieve energy-

efficient and fair communication coverage.

In the aforementioned works, the ABS-GU communication

range is determined by a certain signal-to-noise ratio (SNR)

threshold, by assuming the air-ground channel to follow the

dominant-LoS or probabilistic LoS model [4], thus resulting in

uniform coverage range (or disk coverage area). However, the

above channel models fail to capture the fine-grained structure

of the LoS or non-LoS (NLoS) propagation at specific ABS

and GU locations, which in turn critically affects the ABS-GU

channel and hence the coverage performance of practical ABS

deployment. For example, with slight change of its position, an

ABS might transit from LoS to NLoS propagation to the GU

due to building edges. Such site-specific LoS/NLoS propagation

has been exploited in [9] to find the optimal UAV-relay position

for a given pair of ground BS and user. In the paradigm of

cellular-connected UAV [10] [11], the LoS/NLoS channel state

can be estimated by the UAV on-site [12], or obtained from a

given 3D Terrain Map [13], based on which the trajectory of the

aerial (UAV) user can be optimized to avoid cellular coverage

holes and/or minimize flying distance. However, these works

[9] [12] [13] consider a single UAV as an aerial relay or user,

with different setup and objective from those in our considered
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multi-ABS/multi-GU coverage problem.

Due to the site-specific propagation in the 3-dimensional

(3D) space, the LoS/NLoS channel states for all pairs of

possible ABS-GU locations in a given environment ensemble

an enormous and irregular state space, which cannot be readily

handled by conventional optimization methods to achieve max-

imum coverage rate, especially when the number of ABSs/GUs

is large. To tackle this challenging problem, we propose a

novel two-level design approach, consisting of a preliminary

design based on the dominant-LoS channel model, and an

advanced design to further refine the ABS positions based on

the 3D Terrain Map, as shown in Fig. 1. For each design,

we apply the state-of-the-art double deep Q-network (DQN)

with Prioritized Experience Replay (Prioritized Replay DDQN)

method, with tailored incorporation of the domain knowledge,

by 1) representing the state by a coverage bitmap to capture

the spatial correlation of GU/ABS locations, which is well fit

as the input of the underlying deep neural network (DNN),

whose dimension and associated DNN complexity is invariant

with arbitrarily large N ; and 2) designing the action and

reward for the DRL agent to effectively learn from the dynamic

interactions with the complicated propagation environments.

Numerical results show that the proposed approach significantly

improves the coverage rate of GUs compared to the benchmark

DQN and K-means algorithms. Moreover, the advanced design

further improves the accuracy of GU coverage over the pre-

liminary design, by exploiting the fine-grained structure of the

complex propagation environment.

II. SYSTEM MODEL

Consider a UAV-aided communication system with M UAV-

mounted ABSs to serve a group of N GUs with given

locations denoted by wn ∈ R
2, n ∈ N , {1, · · · , N}.

Consider downlink communication from ABSs to GUs, while

the proposed approach can be similarly applied to uplink

communication. Assume that the UAVs fly at a fixed altitude

H meters (m), with horizontal locations denoted by um ∈ R
2,

m ∈ M , {1, · · · ,M}. To focus on the coverage performance,

we assume for simplicity that the available spectrum is equally

divided into N orthogonal channels, each allocated to one GU,

and thus there is no intra or inter-cell interference. Next, we

introduce the channel models and coverage criteria for ABS-

GU communications.

A. Dominant-LoS Channel Model

Due to the high altitude of the UAV, LoS channel exists

with a high probability for practical ABS-GU links [14]. In

the preliminary design without site-specific information, we

assume the dominant-LoS channel model for the ABS-GU

communication. As a result, the channel power gain between

ABS m and GU n is given by

gm,n ,
β0

d2m,n +H2
, (1)

where β0 = (4πfc
c

)−2 denotes the channel power gain at a refer-

ence distance of 1 m, with fc denoting the carrier frequency and

c denoting the speed of light; and dm,n , ‖um−wn‖ denotes

the horizontal distance, with ‖ ·‖ denoting the Euclidean norm.

Assume that each ABS or GU is equipped with a single

omni-directional antenna with unit gain. Assume that each ABS

transmits with power P Watt (W) to its served GU, whose

receiver noise power is denoted by σ2 W. The SNR received

by GU n from ABS m is then given by

γm,n , gm,nP/σ
2. (2)

A GU is said to be covered by an ABS, if the received SNR

is not smaller than a certain threshold γ̄, which corresponds

to gm,n ≥ γ̄σ2/P , ḡ, with ḡ denoting the corresponding

threshold of channel power. For the LoS channel model in (1),

ḡ further corresponds to a distance threshold D (also known as

coverage range) such that dm,n ≤ D, which is given by

D ,
√

β0/ḡ −H2, (3)

as illustrated in Fig. 1(a). Finally, denote Cn as the coverage

indicator for GU n, which is given by

Cn ,

{

1, if min
m∈M

dm,n ≤ D,

0, otherwise.
(4)

B. Site-Specific LoS/NLoS Channel Model

Despite the high LoS probability, the air-ground channel

could be occasionally obstructed by obstacles, resulting in

NLoS propagation. To investigate the large-scale coverage

performance, we assume that the small-scale fading effect is

averaged out, and thus focus on the dominant LoS and NLoS

path-loss components, as in [4]. In the case when the 3D

Terrain Map for a specific environment can be obtained, e.g.,

from geographic information system (GIS), we can extract the

LoS/NLoS information for any pair of ABS and GU locations,

as shown in Fig. 1(b). Therefore, the channel power gain

between ABS m and GU n can be expressed as

gm,n ,

{

gL(um,wn), without obstacles in between;

gNL(um,wn), otherwise,

(5)

where gL and gNL denote the channel power gains of the LoS

and NLoS channels, respectively, whose specific function forms

can be referred to the empirical formula in [14]. In this case,

the coverage indicator for GU n is given by

Cn ,

{

1, if max
m∈M

gm,n ≥ ḡ,

0, otherwise.
(6)

III. PROBLEM FORMULATION

Define the coverage rate of all GUs as the ratio of GUs

covered by at least one of the ABSs, i.e., ϕ , 1

N

∑

n∈N Cn.

We formulate the placement optimization problem to maximize

the coverage rate of GUs with M ABSs, given by

(P1): max
um,m∈M

ϕ ,
1

N

∑

n∈N

Cn,

s.t. Cn given by (4) or (6), for n ∈ N .



For the preliminary design with Cn given by (4), (P1) is

a non-convex optimization problem due to the non-convex

constraint of min
m∈M

dm,n ≤ D. In fact, it is shown to be a

NP-hard problem [2] in general, with exponential complexity

in N . The problem is further complicated in the advanced

design with Cn given by (6), where the LoS/NLoS channel

states for all pairs of possible ABS-GU locations ensemble an

enormous and irregular state space, which cannot be readily

handled by conventional optimization methods, especially when

the number of ABSs/GUs is large.

To tackle this challenging problem, we apply the state-of-the-

art Prioritized Replay DDQN method, with tailored considera-

tions of the domain knowledge, by 1) representing the state by

a coverage bitmap to capture the spatial correlation of GU/ABS

locations, which is well fit as the input of the underlying DNN,

whose dimension and associated DNN complexity is invariant

with arbitrarily large N ; and 2) designing the action and

reward for the DRL agent to effectively learn from the dynamic

interactions with the complicated propagation environments.

The DRL framework possesses general intelligence to solve

complex problems, which is able to handle with the large and

complicated state space involved in the problem (P1) and solve

it effectively.

IV. PLACEMENT OPTIMIZATION WITH DRL

A. DRL Algorithm

This subsection gives a brief introduction on the DRL

algorithm before presenting the proposed design. In general,

DRL is the combination of DNN and RL. Specially, RL refers

to the process in which an agent interacts with the environment

and makes a series of decisions by using Markov Decision

Process (MDP) [15]. At each time step t, the agent observes

state st, executes action at, and then receives instant reward

rt, and transits to the next state st+1, which forms a sequence

〈st, at, rt, st+1〉 of MDP. Define the return Gt as the sum of

discounted rewards, given by

Gt , rt + βrt+1 + β2rt+2 + · · · =
∞
∑

k=0

βkrt+k, (7)

where 0 < β < 1 denotes the discount factor. Define policy π
as the state-to-action mapping. The agent optimizes policy π
in order to maximize the action-value function Q defined as

Q (s, a|π) , Eπ [Gt|st = s, at = a], (8)

which is the expectation of the return Gt at the current state s
and action a under policy π.

However, RL can only handle problems with small state

space and action space, which is inappropriate for our problem.

To this end, we use DNN as the approximator of the Q function

in Q-learning [15], which constitutes a commonly-used DRL

framework known as DQN. In particular, the algorithm applies

experience replay to sample data offline, and target network

mechanism that modifies action-value Q towards target values

to improve algorithm convergence. The DQN is trained to

minimize the loss function defined as

L(θ) , E
[(

yt −Q(st, at|θ)
)2]

, (9)

where the vector θ represents the DQN weights that determine

the policy π, and yt is the target function given by

yt , rt + βmax
a

Q(st+1, a|θtarget), (10)

where θtarget is copied from θ every fixed number of steps.

Despite the efficiency of DQN, it still has some critical

limitations: 1) Overestimations have been attributed to the

greedy algorithm used by the target function, which negatively

affects the performance of policy; 2) Uniform samples have

been applied in experience replay rather than weighted

samples based on significance, which may lead to divergence

in target with large state space. In order to overcome the

above limitations, we apply the Prioritized Replay DDQN to

address the problem, which mainly improves in two aspects.

First, (10) is adapted as

yDQ
t , rt + βQ(st+1, argmax

a
Q(st+1, a; θ)|θtarget), (11)

which untangles the selection and evaluation respectively in

Q-learning to avoid overestimation [16]. Second, experiences

are replayed with prioritized sampling using the sum-tree

structure [17], which is updated efficiently.

B. Preliminary Design Based on LoS Channel Model

In this subsection, we aim to design the ABS placement

to maximize the coverage rate of GUs under the dominant-

LoS channel model using the DRL framework. To achieve fast

convergence, we apply the DRL algorithm phase by phase.

In each phase, we set a target coverage rate ϕ̄ and train the

underlying DNN towards achieving ϕ̄. The target coverage rate

ϕ̄ is then gradually increased until it can no longer be achieved,

by which a suboptimal solution to (P1) is obtained. Specifically,

for each phase, we cast the placement problem into a MDP, and

define the state-action-reward tuple 〈s, a, r〉 with our domain

knowledge as follows.

1) State s: Normally, state represents the input of DNN. A

straightforward choice of the state is the profile of all GU and

ABS locations, whose dimension and associated complexity

increases with N and M . Moreover, the neural network is not

sensitive to the scalar-type location variables without proper

quantification. Therefore, a more suitable form of state repre-

sentation is desired, for which we propose the coverage bitmap.

Specifically, we equally partition the considered (rectangular)

ground area G into K-by-K grid regions Gij , i, j ∈ K ,

{1, · · · ,K}. Denote the number of covered GUs in region Gij

as

fij ,
∑

wn∈Gij

Cn. (12)

As a result, we choose the state s = F , [fij ]K×K , where

the matrix F is in the form of a 2D bitmap, which effectively

captures the spatial correlation of the GU and ABS locations in

terms of the number fij of covered GUs in each grid, and thus

termed coverage bitmap. Moreover, the bitmap data structure

is well fit as the input type of the state-of-the-art DNN (more

specifically, the convolutional neural network (CNN)), whose



input dimension (K ×K) and associated DNN complexity is

invariant with arbitrary large N , thus circumventing the curse of

dimensionality in DNN. Note that the selection of K still needs

to balance between the bitmap resolution and the complexity

of DNN. However, a moderately large K would suffice since

the detailed spatial correlation of GU and ABS locations are

effectively represented (and weighted) by fij and nested into

the state matrix F .
2) Action a: For simplicity, assume that the action space of

each ABS in each time step consists of four moving operations

{up, down, left, right} with a certain displacement size ∆ m.

The overall action a is then an M -dimensional vector.
3) Reward r: In our context of maximizing the coverage rate,

the reward rt in each time step t needs to encourage the state-

action pair that brings the current coverage rate ϕt closer to

the ideal value of 1. Therefore, we choose the negative error

function as the reward for the intermediate steps with ϕt <
ϕ. When the target coverage rate is achieved, i.e., ϕt ≥ ϕ,

we set a positive reward rt = 1 and terminate the episode.

In addition, when ABSs are out-of-border1, we set a negative

reward rt = −1 to punish such behavior. Thus, the reward

function is defined as

rt ,











−α (ϕt − 1)
2
, if ϕt < ϕ̄,

1, if ϕt ≥ ϕ̄,

−1, if ABSs are out-of-border,

(13)

where α is a positive constant to scale the reward.
Based on the defined state-action-reward tuple 〈s, a, r〉, the

proposed ABS placement optimization with Prioritized Replay

DDQN is presented in Algorithm 1. The algorithm starts by

initializing the parameters (Line 1), followed by E episodes.

Each episode starts by resetting the state (Line 2), followed by

T steps. Each step consists of the exploration part (Lines 4∼7)

and the training part (Lines 8∼17). In the exploration part, the

agent interacts with the environment by observing the current

state st, choosing an action at based on policy π, and obtaining

the next state st+1 and instantaneous reward rt. The transition

{st, at, rt, st+1} is then stored in memory H. After memory

H is full, the training part starts by sampling a minibatch2 of

l transitions for the training process to update the weights θ in

order to minimize the weighted loss function, which is given

by

L(θ) ,
1

l

l
∑

j=1

ωjδ
2
j =

1

l

l
∑

j=1

ωj

(

yj −Q(sj , aj |θ)
)2
. (14)

In (14), δj , yj−Q(sj , aj|θ) denotes the Temporal-Difference

(TD)-error, yj is the target function given by (11), and ωj

denotes the importance-sampling weight [17] used to correct

the bias, which is given by

ωj ,

(

|H| · P (j)
)−ν

maxiωi

, (15)

1We define out-of-border as the case with at least two ABSs flying beyond
the border, in order not to receive too much negative rewards.

2Minibatch is used such that the model updates are fast (as opposed to
processing the whole training data) and not too noisy (as opposed to processing
every instance).

Algorithm 1: ABS placement optimization with Prior-

itized Replay DDQN

Input: GU locations, initial ABS locations (and 3D Terrain
Map), and coverage range D (or channel power
threshold ḡ).

Output: Final ABS locations and achieved coverage rate.
1 Initialize target coverage rate ϕ̄, replay memory H = ∅,

p1 = 1.
2 for episode := 1, · · · , E do
3 Initialize the environment and receive an initial state s1.
4 for step t := 1, · · · , T do
5 at = π(st);
6 Execute at, and obtain st+1 and rt in (13);
7 Store transition {st, at, rt, st+1} in H with maximal

priority pt = maxi<t pi.
8 if H is full then
9 for j := 1, · · · , l do

10 Sample transition j based on (16);
11 Compute importance-sampling weight in

(15);
12 Compute TD-error δj ;
13 Update transition priority pj ← |δj |.
14 end
15 Update weights θ of Q(·) by minimizing the loss

function in (14);
16 Set θtarget = θ every fixed number of steps.
17 end
18 Terminate the episode if rt = 1 when H is full.
19 end
20 end
21 Increase the target coverage rate ϕ̄ and repeat Lines 1∼20,

until it can no longer be achieved.

where |H| is the memory size and ν is a positive constant.

In the training process, transition j is sampled based on the

probability given by

P (j) ,
pµj

∑l

i=1
pµi

, (16)

where pj denotes the priority of transition j, and µ > 0 denotes

the degree of priority. The priority pj is initialized to be 1 for

all samples before memory H is full, so that they all stand a

chance to be sampled. After memory H is full, we set pj =
|δj | to attribute a higher priority to the transition with larger

absolute TD-error (which suggests greater model mismatch).

The episode is terminated if H is full, and the target coverage

rate ϕ̄ is achieved, i.e., rt = 1 (Line 18).

Through the Prioritized Replay DDQN (Lines 1∼20), the

DNN weights θ are trained to minimize the loss function, thus

fitting the DNN towards achieving the target function in (11),

which in turn approximates the maximum action-value Q (or

expected sum of discounted rewards), and hence improving

the achieved coverage rate. In particular, the proposed reward

function in (13) encourages the state-action pair that brings

the coverage rate closer to 1, and punishes ABS out-of-border

behavior. Together with the proposed state representation by

coverage bitmap, we have coherently incorporated the domain

knowledge in our problem context into the DRL framework,

and thus able to solve the complicated problem (P1) effectively.
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Fig. 2. An example of 3D Terrain Map with 80 GUs inside.

C. Advanced Design Based on 3D Terrain Map

The preliminary design optimizes the ABS placement under

the dominant-LoS channel model. To achieve more accurate

coverage in the site of interest, we assume that its 3D Terrain

Map is available, based on which we propose the advanced

design to further refine the ABS positions tailored to the

specific environment. For illustration, we generate an example

of 3D Terrain Map for a square region of side length 3 km, with

30 buildings and 80 GUs randomly located inside, as shown

in Fig. 2. The buildings are modeled by cuboids with length

and width of 150 m, and random height based on uniform

distribution in [30, 70] m.

In the advanced design, the definitions of 〈s, a, r〉 are similar

to those in the preliminary design, despite the calculation of

the coverage bitmap. Specifically, the coverage bitmap F now

relies not only on the ABS-GU distance, but also the LoS/NLoS

channel state for the specific ABS/GU locations. To this end,

we propose Algorithm 2 to obtain the coverage bitmap based

on the 3D Terrain Map. Algorithm 2 begins by resetting the

coverage bitmap and coverage indicators (Line 1). For each

GU n, we first sort the ABSs by ascending order of the GU-

ABS distance (i.e., from near to far), and then check the GU

coverage by the sorted ABS order (Lines 2∼ 10). This helps

to reduce the computational complexity, since a nearer ABS is

more likely to have LoS channel with the GU and hence cover

it, thanks to the air-ground channel characteristics [14]. The

obtained coverage indicator Cn, n ∈ N is then accumulated

for each grid region Gij to obtain fij as in (12) (Line 11), and

hence the coverage bitmap F = [fij ]K×K .

Based on the obtained coverage bitmap, we can then apply

the proposed Algorithm 1 to further refine the ABS placement

for the site of interest, by taking the placement result of the

preliminary design as initial input. Note that the preliminary

design based on the dominant-LoS channel model captures

the main spatial correlation of ABSs/GUs by the distance-

based coverage rule, while the advanced design based on the

3D Terrain Map exploits the fine-grained structure of the air-

ground channel, thus able to achieve more accurate coverage

in a specific environment.

Algorithm 2: Obtaining the coverage bitmap based on

3D Terrain Map

Input: GU locations, ABS locations, 3D Terrain Map and channel
power gain threshold ḡ.

Output: Matrix form of coverage bitmap F = [fij ]K×K .
1 Initialize F = 0 and Cn = 0, ∀n.
2 for GU n = 1, · · · , N do
3 Sort the ABSs by ascending order of the GU-ABS distance (i.e.,

near to far), denoted by the ordered set Msorted.
4 for ABS m ∈ Msorted do
5 Calculate gm,n based on (5);
6 if gm,n ≥ ḡ then
7 Set Cn = 1; break.
8 end
9 end

10 end
11 Obtain fij by accumulating Cn for each grid region Gij as in (12).

V. NUMERICAL RESULTS

In this section, we present numerical results on the coverage

performance of the proposed ABS placement design. We adopt

the example of 3D Terrain Map and GU locations in Fig. 2.

The following parameters are used if not mentioned otherwise:

M = 10, N = 80, H = 90 m, D = 0.5 km (corresponding to

ḡ = −93 dB), fc = 2 GHz, c = 3× 108 m/s, K = 20, ∆ = 10
m, l = 64, µ = 0.6, ν = 0.4, T = 100 and |H| = 40000.

In the preliminary design, the DRL model is trained for

900 episodes from an initial random state, where the obtained

placement result is used to set the initial state in the advanced

design, which is further trained for 1600 episodes. The final

ABS placement and GU coverage result by the preliminary

design with uniform coverage range is shown in Fig. 3(a),

where 93.75% of GUs are covered. However, when the above

result is applied in the considered 3D Terrain Map, the coverage

rate drops sharply to 80%, as shown in Fig. 3(b), due to the

NLoS path-loss caused by site-specific blockage in the 3D

space. Fortunately, we further apply the advanced design based

on the 3D Terrain Map, which raises the coverage rate back to

90%, as shown in Fig. 3(c). Note that in general, the achievable

coverage rate based on the 3D Terrain Map is not greater

than that based on the dominant-LoS channel model, since the

additional signal blockage by obstacles results in NLoS path-

loss and hence overall lower coverage rate. On the other hand,

by comparing Fig. 3(b) and Fig. 3(c), it can be seen that some

of the GUs (circled in the figures) originally not covered by

the preliminary design result, are now covered in the advanced

design with slight change of the ABS locations. For example,

GUs 1∼4, originally not covered in the preliminary design,

are now covered in the advanced design with slight movement

of ABS 5. This thus demonstrates the benefit of considering

site-specific LoS/NLoS channel for the site of interest, and the

advantage of our proposed DRL-based ABS placement design

in achieving higher coverage rate.

Finally, the coverage rates achieved by the proposed algo-

rithm and the benchmark DQN and K-means algorithms are

plotted in Fig. 4, respectively. It can be seen that the proposed

algorithm achieves higher coverage rate in both the preliminary

design and advanced design. On the other hand, in all three
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Fig. 3. ABS placement and GU coverage by (a) preliminary design with uniform coverage range; (b) preliminary design result applied in the 3D Terrain Map;
and (c) advanced design based on the 3D Terrain Map.

0 5 10 15 20 25 30
Testing time steps / Iterations

0.7

0.75

0.8

0.85

0.9

0.95

1

C
ov

er
ag

e 
ra

te

The proposed algorithm
Original DQN algorithm
K-means algorithm

Preliminary design

Advanced design

Fig. 4. Coverage rate achieved by the different algorithms.

algorithms, the achieved coverage rate under the LoS channel

model drops when the placement results are applied in the

3D Terrain Map, due to the introduction of additional NLoS

path-loss. Note that the K-means algorithm is distance-based

and only applicable for the scenario with uniform coverage

range. In comparison, our proposed algorithm with Prioritized

Replay DDQN adapts well in the complex environment, and

also outperforms the basic DQN algorithm.

VI. CONCLUSIONS

This paper investigates the placement optimization of mul-

tiple ABSs to maximize the coverage rate of GUs under the

dominant-LoS channel model first, and further the site-specific

LoS/NLoS model. The problem is NP-hard in general and

further complicated by the complex propagation environment.

We tackle this challenging problem using the DRL method

by proposing the coverage bitmap as the state representation,

which captures the spatial correlation of GUs/ABSs, and is well

fit as the input of DNN with fixed dimension and associated

complexity. Moreover, with our proposed action and reward, the

DRL agent learns well from the dynamic interactions with the

environment using the Prioritized Replay DDQN. Numerical

results show that our proposed design significantly improves

the coverage rate compared to benchmark DQN and K-means

algorithms. Our next plan is to extend the current framework

to the scenario with moving GUs.
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