

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (postprint):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-750068

Vincent Latzko, Christian Vielhaus, Frank H. P. Fitzek

Usecase Driven Evolution of Network Coding Parameters Enabling
Tactile Internet Applications

Erstveröffentlichung in / First published in:

IEEE International Conference on Communications, Dublin 07. – 11.06.2020. IEEE Explore.
ISBN 978-1-7281-5089-5

DOI: https://doi.org/10.1109/ICC40277.2020.9149269

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-750068
https://doi.org/10.1109/ICC40277.2020.9149269

Usecase Driven Evolution of Network Coding
Parameters Enabling Tactile Internet Applications

Vincent Latzko∗, Christian Vielhaus∗, Frank H. P. Fitzek∗†
∗Deutsche Telekom Chair, Technische Universität Dresden, 01062 Dresden, Germany

†Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01062 Dresden, Germany

Abstract—Present-day and future network protocols that in-
clude and implement Forward Error Correction are configurable
by internal parameters, typically incorporating expert knowledge
to set up. We introduce a framework to systematically, objectively
and efficiently determine parameters for Random Linear Net-
work Codes (RLNC). Our approach uses an unbiased, consistent
simulator in an optimization loop and utilizes a customizable,
powerful and extendable parametric loss function. This allows
to tailor existing protocols to various use cases, including ultra
reliable, low latency communication (URLLC) codes. Successful
configurations exploring the search space are under evolutionary
pressure and written into a database for instant retrieval. We
demonstrate three examples, Full Vector Coding, tail RLNC, and
PACE with different focus for each.

I. INTRODUCTION

In all networking environments, channel losses are a crucial
element of error. Typically, these losses are addressed by
forward error correction (FEC), using various coding schemes
(cf. Figure 1). Among these, Random Linear Network Codes
(RLNC) have emerged as a powerful method to tackle these
losses, even in the absence of knowledge of the state of the
underlying media. In fact, RLNC has been shown to be an
optimal erasure code. Selecting optimal parameters for the
schemes however, is an unresolved and ongoing research topic.
The field of channel estimation has made significant progress
in the past, but still the characteristics of individual operation
remain a challenge. Adding to the task, the parameter space of
RLNC is quite vast, and other codes have similar complexity
in choice. Optimal parameters are not a unique configuration
either, as different use cases require different prioritization
of the performance indicators. For example, Tactile Codes
as outlined in [1] or interactive high-definition content (e.g.
Google Stadia) require minimal latency and maximum robust-
ness above all else, whereas video streaming can often deal
with latency and jitter without degradation of user experience,
as long as (short term mean) bandwidth requirements are met.
Similar arguments can be made for other use cases. Optimizing
for latency is an important, challenging and pressing task,
since bandwidth can often be addressed by additional channels
and is primarily a commercial problem in these cases, whereas
latency tends to be fixed for a deployed network. To balance
coding, the amount and placement of redundancy as well as
computational complexity is the task of the coding scheme.

Currently, determining parameters of any given coding
scheme, such as RLNC Full Vector Coding (FVC), tail RLNC,
or PACE (cf. Section III) is based on heuristics and human ex-

pertise. Exhaustively searching the space of parameters to find
an optimal choice is computationally unattractive, especially
if a new protocol or scheme is designed and subsequently
introduced. The resulting equally extensive database would
also be cumbersome to search in real time, when a satisfying
combination of parameters needs to be found quickly as
the channel changes. Instead, we build the foundation of a
novel system to adapt coding parameters to the use case,
conditioned on the channel. In this publication, we present
a framework as the backbone that allows to place different
emphasis on key parameters using weights (e.g. allowing to
focus on latency before other performance parameters). It then
iteratively evaluates a simulator with diverse configurations
that are enforced to satisfy the requirements (cf. Figure 4).

Source
symbols

N
Encoder

Np
Channel

N ′
p

Decoder
N ′

Source
symbols

Figure 1. Considered problem with encoder, Binary Erasure Channel (BEC)
and decoder. Redundancy gives Np > N and packet drops N ′p ≤ Np. In the
case of possible decoding, N ′ ≡ N, as subsequent packets are unnecessary

Subsequently, this article will look at related work in
Section II and briefly introduce the background of RLNC in
Section III. Section IV looks at our methodology in-depth,
Section V shows our results. In Section VI we conclude the
paper with a summary and outline future research.

II. PREVIOUS WORK

In [2], the authors look at how to select optimal density for
coding in wireless sensor networks, where energy consumption
per transmitted bit must be minimized. This optimization
problem is analyzed comprehensively with respect to in-
vested energy, including the power draw for memory access,
XOR’ing the packets’ content and physical network interface
of a specific chip, but does not include considerations beyond
energy efficiency. With a different focus, more parameters
are under observation in [3] for an examination of coding
overhead. Their focus is on minimizing the coding impact
on the packet size, looking at generation size, field size and
density (a measure of how many elements of the coding
vector are non-zero). The result indicates that for minimal
overhead and optimal recoding ability, the binary field should
almost always be chosen, provided that generation size is large
enough (G ? 64).

III. RLNC BACKGROUND

RLNC is based on Galois fields of various size q,where q
typically is a power of a prime p,

(
q = pk

)
. In the digital

world, q = 2k is convenient and consequently the fields
are GF (q) or Fq in literature to denote its origin as a finite
field. As such, source packets or symbols are formed from
the original data at the sender’s encoder to be transmitted
over a lossy channel with drop probability ε, i.e. a channel
that may or may not drop any of the symbols during transit
(cf. Figure 1). The receiver will try and decode the symbols
into the original data, reversing the encoding process even
in the presence of losses. We consider end to end losses
e = 1 − N ′

N .Ergo, the code needs to add some redundancy
to counter the channel losses.

As noted in e.g. [4], [5] or [6], linear network coding
suffices to achieve maximum flow, which corresponds to
operations that are linear combinations in Fq. In addition,
the coefficients of those operations may be chosen randomly
to allow for decoding with probability if the cardinality of
the field is large enough to almost always produce linearly
independent combinations.

The source data is separated by the encoder into symbols,
each of size ψ, and G consecutive symbols form a generation.
This results in a symbol matrix S consisting of G rows and
ψ columns for each generation (see Table I for abbreviations).
The coding ratio C =

Np

G ≥ 1 refers to the ratio of the en-
coder’s output and input, (refer to Figure 1). The total number
of redundancy packets per generation is r = d(C − 1)Ge , as
the determination depends on the desired code rate. Conse-
quently, the absolute number of packets for a given generation
is then Np = G + r. The actual encoding is performed by
multiplication of a linear local encoding function matrix L in
Fq. The packets are given by the rows of T = LS,where
the coding vectors ci are drawn from Fq arranged as rows
in the Np × Gmatrix L. T is simply the Np × ψ matrix of
transmission symbols put on the channel.

For decoding after transmission, the receiver gathers at least
G packets and forms the matrix R along with the coefficient
matrix Cr. If at least G linearily independent symbols are
received, Cr has full rank, inversion is possible and the packets
are recovered by S = C−1

r R.

Table I
SUMMARY OF NOTATIONS

Notation Definition Type
G Generation Size Integer
C Coding Ratio Real
ε Channel loss probability Real
r # of Redundancy packets Integer
Np # of packets for Generation, incl. r Integer
ψ Symbol size Integer

A. Full vector coding

In the case of full vector coding (also referred to as dense
network coding), every single symbol on the channel is coded,
that is, all G symbols are combined to yield Np coded symbols.

Implicitly, all packets are of the same value. This gives rise
to an all-or-nothing-principle: either the full generation can be
decoded once the final symbol arrives at the receiver’s end, or
the full generation has to be dismissed. This can be decided
instantly by inspecting the rank of the decoding matrix or
simply counting the arriving packets, provided the field size is
high enough. Coding delay is present on the encoder since all
packets of a generation need to be present for combination.
Note also that inverting the matrix Cr becomes computation-
ally costly for high generation sizes, as inverison complexity
grows with O

(
G3
)
. FVC’s symbol loss probability is given

by

eFVC (G, r, ε) = 1−
G+r∑
i=G

(
G+ r
i

)
εG+r−i (1− ε)i .

The problem of delay is addressed in [7] by trying to iteratively
form block matrices of the leading stump of Cr as the packets
are received, decoding along a sliding window. This results in
lower total inversion time.

B. Tail RLNC

The main innovation of [8] uses the encoder in a bypass
manner: most packets are delivered uncoded (systematically)
and only after the generation has finished, an additional r
symbols are coded by the encoder, spanning all the packets
of the generation (see Figure 2, top). This results in a symbol
loss probability of

etailRLNC (G, r, ε) = ε+ ε (eFVC (G, r − 1, 1− ε)) .

The scheme allows for zero decoding effort in a loss-free case.
Additionally, there is no encoding delay, since the systematic
packets are sent out immediately and do not need to be held
back to be combined with additional packets. Formally, for a
generation of G packets with r redundancy, the transmission
matrix T = [I |C]

T is an G × G identity matrix extended by
a r×Gmatrix of coding coefficients sampled from Fq. If s <
r packets are dropped by the channel, recovery is possible after
s of the coded packets are received. However, upon any loss,
the decoder enters the blocking state and cannot forward data
to higher OSI layers until reconstruction is possible. This is
motivated by compatibility with layers that expect in-order
delivery. The scheme performs better with small generation
sizes, when redundancy is not many slots removed from a
possible lost symbol.

C. PACE

While tail RLNC improves over FVC in terms of latency
and computational load (cf. [8]), there is a fair amount of
optimization potential. [9] introduce PACE-uniform with a
placement of redundancy in a similar manner to tail RLNC
in the way that coded packets are placed between systematic
ones, but with the difference that a coded symbol does not
terminate a generation. Instead, after every σs � G <
Np source symbols, exactly k = 1 coded packets follow,
which contain random linear combinations of all the previous
symbols, not just the previous σs (cf. Figure 2, bottom). This

1 2 3 4 5 6 7 8 9 10 11 12 C1 C2 C3

C1, C2, C3

1 2 3 4 C1

C1

5 6 7 8 C2

C2

9 10 11 12 C3

C3

Figure 2. Top: tail RLNC uses coded packets to protect the generation, shown
with G = 12, r = 3. This results in C = 15

12
= 1.25.Bottom: PACE with

its different distribution scheme, G = 12, C = 1.25.

forms a sub-generation and allows for quick recovery if at
most one of these packets is dropped. Like in tail RLNC,
if any symbols necessary for operation are lost, the decoder
enters the blocking state. However, once recovery is suc-
cessful with subsequent redundancy of later sub-generations,
normal operation continues. Should Np not be an integer
multiple of σs, the remainder is distributed among the first⌊
Np

σs

⌋
generations. Note that this increasing coverage of the

redundancy symbols with growing number of subgenerations
introduces a peculiarity: early packets of a generation are
protected by more redundancy compared with later ones, and
later coded packets have higher value due to their construction.
To address the asymmetry of packets’ protection, the authors
allow for additional tail redundancy rt,which like the tail
RLNC case protects the generation as a whole. In essence,
the distribution of the redundancy is optimized for sporadic
packet drops. The extension PACE-burst allows for k 6= 1, but
has not been investigated here.

In contrast to FVC and tail RLNC, no closed form ex-
pression is known for PACE’s symbol loss probability. A
recent approach based on one finite state machine each for
systematic and coded packets allows for a recursive estimation
of decoding probabilities1.

IV. METHODOLOGY

Applicability of code in network applications is driven by
a few key performance indicators. Good code configurations
maximize resilience and throughput, while they minimize
both coding latency and the impact of coding complexity on
devices. For example, mindlessly adding redundancy helps
resilience, but does so at the cost of goodput and latency. With
the previous chapter, one would expect tail RLNC ahead of
FVC, especially in the case of non-negligible losses, provided
the redundancy is dimensioned adequately. We subsequently
optimize the configuration of a chosen coding scheme for
given and fixed transmission channel parameters.

The NCKernel library features RLNC functionality using
the KODO library [10] and implements various protocols. It
exposes an API and can be used as a consistent, unbiased
simulator (cf. Figure 3 for the noise power se ∝ 1/

√
N).

It can be configured to include random packet drops and

1Private communication with authors

Figure 3. The consistency of NCKernel as a simulator shown as diminishing
noise power se versus the number of simulated packets N

Figure 4. Optimization framework

the simulator will accurately deliver non-innovative (linearly
dependent) RLNC packets. Essentially, it acts as a stochastic
function mapping from the discrete configuration space P to
the output space O,which consists of the three-tuple code
rate (η ∈ [0, 1]) , symbol loss (e ∈ [0, 1]) , and average symbol
latency (` ∈ [`c,∞)) ,where `c is the channel latency and
infinite delay is used for dropped packets. Code rate is a
measure how efficient the code is, η = N

Np
. We also limit

analysis to data filling a single generation, i.e. N = G.

Due to the large amount of both channel conditions and
parameter configurations for any of the protocols introduced in
Section III, an exhaustive table is neither tractable nor desired.
Instead, diverse samples of high quality are suitable to cover a
range of requirements. The simulator’s input configuration is
determined and evaluated by an optimization framework based
on an evolutionary strategy (ES). Some parameters are integers
and the results of sampling in P need to be mapped to viable
configurations before a simulation can start. ES strategies are
typically sampling-heavy, however our implementation pools
computational resources if multiple individuals map to the
same RLNC-configuration. This is especially helpful a few
(≈ 5) iterations after simulation start, where this grouping
further enhances accuracy of the simulator run. Additionally,

the amount of packets sent through NCKernel is increased
automatically in later, user definable stages for higher reliabil-
ity. The sampler also filters candidate configurations that are
prohibited by the designer.

A. Loss & Performance Function

Because different use cases lead to different emphasis that
a flexible code needs to address, a customizable function is
introduced that serves as a loss, cost or fitness, depending on
preferred terminology. This function maps from a point in the
parameter space to a finite value that acts as a measure for
the optimization loop: f : Rn → R,where n is the number of
free parameters in the code.

This is a composite function that first calls the simulator
with a configuration x,which results in the simulator output
o = (η, e, `)

T then uses an inner performance function
p (o) =

(
(1− η) , e,

(
1− `c

`

))T
together with user-defined

weights to combine the result into a scalar value,

f̂ (w,o) = w · p (o) = w1 (1− η) + w2e+ w3

(
1− `c

`

)
,

which will be minimized. The weights sum to one, so f is
bounded to [0, 1). Furthermore, we use an additive pentalty
constraint to steer the optimizer away from undesired areas in
O, i.e. we supply some maximum acceptable result ô to form

β (o) =
1

n

n∑
i=1

max (0, pi (o)− pi (ô)) .

The final f = f̂ (w,o) + µeβ (o) (with some µe) implicitly
depends on x through the random, but consistent mapping by
the simulator, thus we will write f (x) subsequently.

In total, this loss function allows users to prohibit config-
urations that are known a-priori to be unsuitable for the use
case and also balances the three key norms of performance
limitations. It is heavily used in our optimization scheme
and can also be easily extended by simply adding additional
elements in a key-value fashion, providing a scalar weight and
performance measure, respectively.

B. Optimization using CMA-ES

Here, we broadly paint an overview of how the Covariance
Matrix Adaptation ES (CMA-ES) performs optimization. For
an more in-depth look, we refer to [11]. CMA-ES is well
suited for high dimensional problems, is gradient-free and
robust against noisy objectives. Like any ES, optimization
takes place by way of generations of individuals (in this
case, individual parameter configurations) that are mutated
and subsequently evaluated by the fitness function. In every
generation g, initial sampling is performed from a multivariate
GAUSSian distribution, yielding configurations xi ∼ mg +
σgN (0,Cg) , i = 1, . . . , λ. The covariance matrix can be
seen as an n-dimensional ellipsoid with the eigenvalues’ square
root √νj as the length of its principal axes, since covariance
matrices are positive semi-definite and eigendecompositions
are possible.

All λ individuals are then simulated by NCKernel, evaluated
and the best µ individuals are selected to contribute to updating
the mean vector for the next generation’s sampling step,
mg+1 =

∑µ
i=1 wixi,where wi are descending weights that

sum to one and xi are the best-ranked candidates. We use
the best practice µ = λ/2, ([12]). The covariance matrix is
updated using the maximum likelihood approach, explaining
the µ best encountered data points:

C
(µ)
g+1 =

µ∑
i=1

wi (xi −mg) (xi −mg)
T
.

A rank-µ− update is used to add a momentum term,

C
(rµ)
g+1 = (1− cµ)Cg + cµC

(µ)
g+1,

which acts as a moving average with exponential decay over
past generations. Additionally, an evolution path is constructed
that influences step size σg and guides evolution towards
successful individuals, balancing the explore-exploit dilemma
by effectively de-correlating search steps.

We furthermore added local restart strategies to avoid pre-
mature convergence and higher coverage of the search space.
In this case, CMA-ES is restarted with all previous individuals
as seeds and a higher total population count.

C. Database for fast retrieval

We also store resulting parameters after successfully com-
pleted runs in a small database, to relieve end devices from
continuous evolutionary iteration. This is done with diversity
of solutions in mind to maximize applicability in different
scenarios. At run time, a simple look up of the previously
optimized parameters is done and in case of missing or
mismatched values, interpolation is possible. The pseudo-code
1 summarizes the process for completeness and reference. The
actual implementation is available.

Algorithm 1 Pseudo-code for optimization loop

I n i t i a l i z a t i o n mean v e c t o r , c o v a r i a n c e m a t r i x
w h i l e t e r m i n a t i o n c r i t e r i o n n o t r e a c h e d :

sample i n d i v i d u a l s and group c o n f i g u r a t i o n s
run s i m u l a t i o n s
e v a l u a t e f i t n e s s , p e n a l i z e v i o l a t i o n s
s o r t p o p u l a t i o n v e c t o r
a d a p t mean v e c t o r , c o v a r i a n c e ma t r i x , s t e p s i z e

f i n a l l y :
s t o r e and r e t u r n mean v e c t o r , c o v a r i a n c e m a t r i x

V. EXPERIMENTS & RESULTS

We show the output of optimization for three exemplary use
cases, one for each of the three protocols outlined above. In all
cases, the channel properties are set to ε = 0.1, lc = 5ms, and
105 packets are simulated for each of the λ = 30 starting
individuals. In all experiments, we keep field size fixed at
F28 , as this is typically chosen based on hardware restrictions.
It can however, easily be included as a free parameter in CMA-
ES. In all following cases, the performance becomes very close
after ≈ 15 iterations of evolution.

1) Full vector coding: FVC is the most vanilla approach
using evolutionary strategies to coding parameter optimization,
whereas both tail RLNC and PACE display more capabilities
of our framework. We analyzed FVC in the space of

P =
{
x = (G, r)

T
: 1 ≤ G ≤ 80, 1 ≤ r ≤ 10

}
,

with an objective weighting of w = (0.2, 0.7, 0.1)
T
, focussing

on minimal symbol error, and thus a resilient code. CMA-
ES converges after 19 iterations to the correct analytical
optimum x∗ = (10, 4)

T
, cf. Figure 5, which results in a code

ratio of C = 1.4. Each dot corresponds to one individual
configuration. The covariance matrix is displayed via an ellipse
with its principal axes according to the eigendecomposition.
The main focus driving the optimization is symbol loss and
consequently, the symbol error is e ≈ 0.92%. At this point,
additional redundancy only deteriorates coding efficiency η.

1 10 20 30 40 50 60 70 80
G

1

5

10

r

0.0

0.2

0.4

0.6

0.8

1 10 20 30 40 50 60 70 80
G

1

5

10

r

0.0

0.2

0.4

0.6

0.8

1 10 20 30 40 50 60 70 80
G

1

5

10

r

0.0

0.2

0.4

0.6

0.8

1 10 20 30 40 50 60 70 80
G

1

5

10

r

0.0

0.2

0.4

0.6

0.8

1

Figure 5. Four examples of CMA-ES used on Full Vector Coding (displaying
evolutionary generations 1, 5, 10 and 15, top left to bottom right): CMA-ES
converges to the global optimum x∗ = (10, 4)T .Lighter color indicates
better performance in the fitness landscape. Best viewed on screen.

2) Tail RLNC optimized for goodput: In our second exper-
iment we analyzed tail RLNC optimized for goodput with a
constraint on the symbol loss, e ≤ 0.02, neglecting latency
completely. The fitness can in that case be expressed as
f̂ (o) = 1− (1− e) η. No weights are employed in this case.
The parameter space is extended to

P =
{
x = (G, r)

T
: 1 ≤ G ≤ 80, 1 ≤ r ≤ 20

}
,

both allowing and expecting larger generation sizes and
more redundancy symbols to satisfy the requirements of a
bandwidth-oriented use case. Figure 6 shows the convergence
of CMA-ES, again recovering the analytic optimum, while
in Table II numerical results are displayed. We give the two
performance indicators η and e, the objective f̂ (o) and the
total fitness f (x). Note how penalties µeβ (o) (with µe = 4)
are only present for violations of symbol loss rate, strongly

driving loss as desired, and that the configurations with best
objective values f̂ (o) at the bottom are not chosen due to these
violations.

Table II
NUMERICAL RESULTS OF THE TAIL RLNC EXPERIMENT WITH

CONSTRAINTS

x = (G, r) η [%] e [%] f̂(o) µeβ(o) f(x)

(80, 12) 86.9565 1.9659 0.1475 0 0.1475
(79, 12) 86.8132 1.8649 0.1481 0 0.1481
(78, 12) 86.6667 1.7664 0.1486 0 0.1486
(80, 13) 86.0215 1.2766 0.1508 0 0.1508
(79, 13) 85.8696 1.2000 0.1516 0 0.1516
(79, 11) 87.7778 2.7514 0.1464 0.0301 0.1765
(80, 11) 87.9121 2.8749 0.1462 0.0350 0.1812

1 10 20 30 40 50 60 70 80
G

1

5

10

15

20

r

0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 60 70 80
G

1

5

10

15

20

r

0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 60 70 80
G

1

5

10

15

20

r

0.0

0.2

0.4

0.6

0.8

1.0

1 10 20 30 40 50 60 70 80
G

1

5

10

15

20

r

0.0

0.2

0.4

0.6

0.8

1.0

1

Figure 6. CMA-ES used on tail RLNC and converging to the global optimum
x∗ = (80, 12)T , again with generations 1, 5, 10 and 15.

3) PACE with efficiency constraint: We further analyzed
PACE with an output constraint of ô = (0.8, 1,∞) ,which
limits the allowed coding ratio to C ≤ 1

0.8 = 1.25.This
corresponds to an enforced channel efficiency via the penalties,
so weights w = (0, 1, 0) are a sufficient choice. Thus,

P =
{
x = (G,C)

T
: 1 ≤ G ≤ 40, 1 ≤ C ≤ 1.25

}
.

Note that the rounding operation in PACE’s definition of the
number of packets introduces uncertainty and may penalize
some configurations more than their pure performance values
would indicate. The results are given in Figure 7 and Table
III. Penalties µeβ (o) occur for violations of efficiency in
this case, even though the two last configurations achieve
best symbol loss. The rugged, piece wise appearance of the
fitness landscape contains many plateaus which may pose
problems for gradient-based optimization and also many lo-
cal optima. As expected, due to its design, CMA-ES copes
with these problems and converges to the optimal value of
(40, 1.23)

T
. This configuration is equivalent to (40, 1.24)

T

Table III
NUMERICAL RESULTS OF THE PACE EXPERIMENT WITH CONSTRAINTS

x = (G,C) η [%] e [%] w2p2(e) µeβ(o) f(x)

(40, 1.23) 80.0000 1.1255 0.0113 0 0.0113
(38, 1.22) 80.8511 1.2129 0.0121 0 0.0121
(40, 1.21) 81.6327 1.2743 0.0127 0 0.0127
(32, 1.22) 80.0000 1.3450 0.0134 0 0.0134
(39, 1.25) 79.5918 0.9451 0.0095 0.0163 0.0258
(38, 1.24) 79.1667 0.8159 0.0082 0.0332 0.0414

and (40, 1.25)
T due to the rounding in PACE, resulting in the

same number of redundancy r = 10 and has been found with
the recursive approach for PACE’s symbol loss probability.

1 10 20 30 40
G

1.0

1.05

1.1

1.15

1.2

1.25

C

0.00

0.02

0.04

0.06

0.08

0.10

1 10 20 30 40
G

1.0

1.05

1.1

1.15

1.2

1.25

C

0.00

0.02

0.04

0.06

0.08

0.10

1 10 20 30 40
G

1.0

1.05

1.1

1.15

1.2

1.25

C

0.00

0.02

0.04

0.06

0.08

0.10

1 10 20 30 40
G

1.0

1.05

1.1

1.15

1.2

1.25

C

0.00

0.02

0.04

0.06

0.08

0.10

1

Figure 7. CMA-ES on constrained PACE converging on the correct global
optimum x∗ = (40, 1.25)T .

VI. CONCLUSION AND FUTURE WORKS

This article puts forward a framework for an objective,
explainable and optimal selection of random linear network
coding parameters. We take into consideration user-definable,
flexible goals for the code configuration using a novel weight-
ing factor for our newly introduced loss function, allowing
to put special emphasis on reliability, latency or bandwidth
(mapped from symbol loss, symbol delay and code rate). Spe-
cial constraints allow for minimal values to be specified that
need to be achieved by the code. Our approach successfully
recovers known optima for two of the cases demonstrated
where analytical results exist, and does so without prior knowl-
edge. In the case of PACE, our method quickly converges
to meaningful configurations that coincide with state of the
art recursive approaches. This demonstrates the ability of our
framework to both verify existing coding configurations as
well as to find new optimal parameters even for future use
cases and protocols. The extensibility of the framework allows
for usage of arbitrary codes and the inclusion of more param-
eters (e.g. field size) that we did not investigate. Furthermore,

the modular nature allows for drop-in replacements for any of
our used tools. For easier deployment, also on computationally
weak devices, the integration of the database allows to benefit
from systematic application of this research.

However, we limited our research to BECs, and conse-
quently, research into non-binary erasure channels is promis-
ing. These channels are more realistic in the way that losses
are often correlated in reality, resulting in a bursty nature.
For speedups, different optimizers like BFGS may decrease
runtime considerably.

ACKNOWLEDGMENT

This research has been supported in part by European Union
H2020 - ECSEL - AutoDrive (Grant Agreement number:
737469), by Deutsche Telekom and by the German Research
Foundation (DFG, Deutsche Forschungsgemeinschaft) as part
of Germany’s Excellence Strategy - EXC 2050/1 - Project ID
390696704 - Cluster of Excellence "Centre for Tactile Internet
with Human-in-the-Loop" (CeTI) of Technische Universität
Dresden. Further funding granted by BMBF and the Free State
of Saxony (grant number 16ESE0258S).

REFERENCES

[1] M. Simsek, G. P. Fettweis, and C.-L. I, “Tactile internet,” 2019.
[2] J. Heide, Q. Zhang, and F. H. P. Fitzek, “Selecting Optimal Parameters

of Random Linear Network Coding for Wireless Sensor Networks,” in
2013 IEEE 78th Vehicular Technology Conference (VTC Fall). Las
Vegas, NV, USA: IEEE, Sep. 2013, pp. 1–6. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6692403

[3] J. Heide, M. V. Pedersen, F. H. P. Fitzek, and M. Medard, “On
Code Parameters and Coding Vector Representation for Practical
RLNC,” in 2011 IEEE International Conference on Communications
(ICC). Kyoto, Japan: IEEE, Jun. 2011, pp. 1–5. [Online]. Available:
http://ieeexplore.ieee.org/document/5963013/

[4] A. Montanari and R. Urbanke, “Coding for Network Coding,”
arXiv:0711.3935 [cs, math], Nov. 2007, arXiv: 0711.3935. [Online].
Available: http://arxiv.org/abs/0711.3935

[5] C. Fragouli, J.-Y. Le Boudec, and J. Widmer, “Network coding:
an instant primer,” ACM SIGCOMM Computer Communication
Review, vol. 36, no. 1, p. 63, Jan. 2006. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1111322.1111337

[6] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros,
J. Shi, and B. Leong, “A Random Linear Network Coding
Approach to Multicast,” IEEE Transactions on Information Theory,
vol. 52, no. 10, pp. 4413–4430, Oct. 2006. [Online]. Available:
http://ieeexplore.ieee.org/document/1705002/

[7] S. Wunderlich, F. Gabriel, S. Pandi, and F. H. Fitzek, “We don’t need
no generation - a practical approach to sliding window RLNC,” in
2017 Wireless Days. Porto, Portugal: IEEE, Mar. 2017, pp. 218–223.
[Online]. Available: http://ieeexplore.ieee.org/document/7918148/

[8] R. Prior and A. Rodrigues, “Systematic network coding for packet
loss concealment in broadcast distribution,” in The International
Conference on Information Networking 2011 (ICOIN2011). Kuala
Lumpur, Malaysia: IEEE, Jan. 2011, pp. 245–250. [Online]. Available:
http://ieeexplore.ieee.org/document/5723187/

[9] S. Pandi, F. Gabriel, J. A. Cabrera, S. Wunderlich, M. Reisslein,
and F. H. P. Fitzek, “PACE: Redundancy Engineering in RLNC for
Low-Latency Communication,” IEEE Access, vol. 5, pp. 20 477–20 493,
2017. [Online]. Available: http://ieeexplore.ieee.org/document/8003268/

[10] M. Pedersen, J. Heide, and F. Fitzek, “Kodo: An open and research
oriented network coding library,” vol. 6827. Springer Publishing
Company, 5 2011, pp. 145–152, in Proceedings of the 2011 Networking
Workshops. (eds.) Casares-Giner, Vincente, Manzoni, Pietro & Pont,
Ana.

[11] T. Bäck, C. Foussette, and P. Krause, Contemporary Evolution Strate-
gies. Springer Publishing Company, Incorporated, 2013.

[12] N. Hansen, “The CMA Evolution Strategy: A Tutorial,”
arXiv:1604.00772 [cs, stat], Apr. 2016, arXiv: 1604.00772. [Online].
Available: http://arxiv.org/abs/1604.00772

	Vorsatzblatt_Latzko.pdf
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (postprint):
	Vincent Latzko, Christian Vielhaus, Frank H. P. Fitzek
	Usecase Driven Evolution of Network Coding Parameters Enabling Tactile Internet Applications

