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Millimeter Wave Beam Recommendation
via Tensor Completion

Tzu-Hsuan Chou, Nicolo Michelusi, David J. Love, and James V. Krogmeier

Abstract—Accurate and fast beam-alignment is essential to
cope with the fast-varying environment in millimeter-wave com-
munications. A data-driven approach is a promising solution
to reduce the training overhead by leveraging side information
and on-the-field measurements. In this work, a two-stage tensor
completion algorithm is proposed to predict the received power
on a set of possible users’ positions, given received power
measurements on a small subset of positions. Based on these
predictions and on positional side information, a small subset
of beams is recommended to reduce the training overhead of
beam-alignment. Numerical results evaluated with the Quadriga
channel simulator demonstrate that the proposed algorithm
achieves correct alignment with high probability using small
training overhead: given power measurement on only 20% of
the possible positions when using a discrete coverage area, our
algorithm attains a probability of correct alignment of 80%, with
only 2% of trained beams, as opposed to a state-of-the-art scheme
which achieves 50% correct alignment in the same configuration.
To the best of our knowledge, this is the first work to consider the
beam recommendation problem based on measurements collected
on a small subset of positions.

Index Terms—Millimeter wave, beam-alignment, position-
aided, tensor completion, sparse learning.

I. INTRODUCTION

Millimeter wave (mmWave) and massive MIMO are the

key technologies to enable high throughput communication

in future wireless systems, with applications such as video-

streaming, automated driving, cloud computing, etc [1]–[4].

However, narrow beams are required to compensate the path

loss and severe signal propagation at the mmWave frequencies.

Narrow beam communication is especially challenging in

mobile environments, since the beam direction needs to be

continuously trained. Typically, this is achieved by sweeping

over a finite set of candidate beamforming vectors to find the

strongest beam direction [5], [6]. This process incurs huge

overhead [7] due to the potentially large set of candidate beam-

forming solutions that should be searched for in large antenna

systems, calling for efficient beam-alignment protocols [8].

Beam-alignment has been a subject of intense research in

recent years, with techniques ranging from beam-sweeping

[8], angle of arrival and of departure (AoA/AoD) estimation

[9], to data-assisted schemes [5]. In particular, beam-sweeping

schemes require to collect a set of beam measurements over

the entire beam-space. The simplest form of beam-sweeping

is exhaustive search, which scans through all possible beams

between transmitter and receiver. AoA/AoD estimation re-

duces the number of measurements by leveraging the spar-

sity of mmWave channels via compressive sensing [9]. In

data-assisted schemes, mmWave channels are related to the

environment of the user, such as its position, the geometry

of the surrounding environment (e.g., buildings, vegetation,
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etc.) or temporal information (e.g., traffic). Due to the dif-

ficulty to comprehensively model and accurately represent

all propagation features in the environment, and how these

affect mmWave propagation, a data-driven approach based on

machine learning may be envisioned for this task. In [5], the

authors proposed an inverse multi-path fingerprinting approach

for beam-alignment utilizing prior measurements at a given

position to provide a set of candidate beam directions at the

same position.

However, by requiring measurements to already be available

at a certain position for predictions to be made, this approach

fails to predict the channel in those positions where mea-

surements are not yet available. For this reason, this scheme

requires to collect a huge amount of channel propagation

measurements to cover the entire operational region, which

may not be practical. In many practical settings, the spatial

correlation in the channel may be exploited to provide beam

directions recommendations also in new positions, where prior

measurements are unavailable. To address this more general

problem, in this work we leverage the tensor completion

technique. This problem has been recently investigated in

many areas, such as computer vision, image in-painting,

recommendation systems, etc. [10].

By exploiting the low-rank of mmWave MIMO channels

[1], [2], [9], we construct a data model on a subset of positions

as a tensor and formulate the tensor completion problem to

estimate the channel on those positions and beam directions

where measurements are missing. To capture the channel

spatial correlation, we introduce a smooth constraint that

induces similarity among adjacent positions and beams. We

propose a two-stage tensor completion algorithm composed of

two smooth matrix completions [10] and a greedy selection

algorithm to recommend a subset of candidate beams. We

show numerically that our proposed beam recommendation

algorithm can provide accurate beam candidates with small

training overhead. Numerical evaluations demonstrate that

our proposed method achieves 80% probability of correct

alignment with only 2% of trained beams, given power mea-

surements on only 20% of discrete random users’ positions, as

opposed to the state-of-the-art inverse-fingerprinting algorithm

[5], which attains a probability of correct alignment of 50%.

The rest of this paper is organized as follows. In Sec. II,

we present the system model and architecture; in Sec. III, we

propose the recommendation algorithm with two-stage tensor

completion. The numerical result are presented in Sec. IV,

followed by concluding remarks in Sec. V.

II. SYSTEM MODEL

In this section, we describe the channel model and the

beamforming codebook of our communication system. Then,

we introduce the position-aided beam-alignment protocol and

explain the goal of this work. Later, we depict the data

collection and the data tensor.

http://arxiv.org/abs/1906.07290v2


0

20

40

60
−20

0

20

0

5

10

 

y−coord in [m]x−coord in [m]
 

z−
co

or
d 

in
 [m

]
BS−Position
BS−Antenna
UE−Position
UE−Antenna
Service−Area

Fig. 1: The network layout of the scenario.

A. Channel Model

We consider a scenario with a base station (BS), servicing an

area with GPS coordinates {(gx, gy) : X0 ≤ gx ≤ Xend, Y0 ≤
gy ≤ Yend}, as in Fig. 1. The geometric channel model [2]

is assumed for the uplink SIMO channel between the BS and

the user (UE) at GPS coordinate g = (gx, gy) and is given by

hg =
√

Nr

L
∑

ℓ=1

αg

ℓ ar(θ
g

ℓ , φ
g

ℓ ),

where ar(θ
g

ℓ , φ
g

ℓ ) (see (1)) is the normalized receive steering

vector of the ℓth path; θgℓ and φg

ℓ are its elevation and azimuth

angles; αg

ℓ is the complex channel gain; L is the number of

paths; and Nr is the number of receive antennas.

In order to develop our data-driven approach, we aim to

leverage the channel correlation with respect to some features

of the environment where the UE is operating. Here, we

consider the correlation between the channel and the UE

position. To the best of our knowledge, the modeling of the

propagation channel can only be achieved by real channel

measurements or by simulation in ray-tracing software, which

requires accurate modeling of the propagation environment,

such as position of buildings, scatterers, etc. In practice, our

algorithm is applicable to a fully data-driven approach based

on actual channel measurements. For evaluation purposes,

in the numerical results in Sec. IV, we will generate these

measurements with Quadriga [11].

B. Beam Codebook and Received Signal Model

We consider a uniform planar array (UPA) [2], [5] at the

BS with Nx and Ny antennas and λ/2 antenna spacing along

the x and y directions (a total of Nr = NxNy antennas), and

a receive beamforming codebook

W={wi,j = a(θi, φj), i = 1, · · · , Cθ, j = 1, · · · , Cφ},
of size |W|= CθCφ; a(θ, φ) is the array response vector

representing a beam pointing in the elevation angle θ ∈
[−π/2, π/2) and the azimuth angle φ ∈ [−π/2, π/2),

a(θ, φ) =
1√
Nr

[

1 ejΩy · · · ej(Ny−1)Ωy
]T ⊗

[

1 ejΩx · · · ej(Nx−1)Ωx
]T

,

(1)

Fig. 2: Position-aided beam alignment protocol.

with Ωy=π sin θ sinφ, Ωx=π sin θ cosφ. To construct W , θi
and φj are uniformly quantized in [−π/2, π/2) with resolution

π/Cθ and π/Cφ as

θi = −
π

2
+ (i− 1)× π

Cθ
, i = 1, · · · , Cθ, (2)

φj = −
π

2
+ (j − 1)× π

Cφ
, j = 1, · · · , Cφ. (3)

We index the beamforming vectors in W as

I ≡ {(i, j) : i = 1, · · · , Cθ, j = 1, · · · , Cφ}.
We consider an uplink beam training scheme, in which the

UE at GPS coordinate g = (gx, gy) transmits a known unit-

norm training sequence vector s ∈ CN×1 and the BS processes

the received signal with the beamforming vector wi,j , yielding

the received signal vector

y
g
i,j =

√

Ptw
H
i,jh

gs+ v,

where v ∼ CN (0, σ2
vI) is the received noise vector; Pt is

the transmit power. The received power with the (i, j)-th
beamformer can be estimated as

rgi,j = |sHy
g
i,j |2= |

√

Ptw
H
i,jh

g + ṽ|2,
where ṽ = sHv is zero-mean complex Gaussian noise with

variance σ2
v . These received powers are stored in a database

explained in Sec. II-D, and then used in our completion

framework to predict the received power in other positions

and beams.

C. Position-Aided Beam-Alignment

The idea of this approach is to provide a set of candidate

beams at a given UE position. Since the overhead of the con-

ventional beam-sweeping approach is unacceptable (it scales

with |W| and is typically very large), our objective is to design

a learning algorithm that provides a small subset S ⊂ W of

candidate beams for training, which is likely to contain the

best beam (the one with highest received power).

In Fig. 2, we introduce a flow diagram for the position-

aided beam-alignment. In step 1, the UE initiates the uplink

mmWave transmission request accompanied with its GPS

coordinate g = (gx, gy) to the BS using sub-6GHz control

channels. The position information is available via a suite

of sensors such as GPS or LIDAR [5], [12]. In step 2,



the BS forwards the UE’s GPS coordinate g to the cloud,

which then processes the learning algorithm and provides the

recommended beam set S. In step 3, the UE transmits a

sequence of |S| known signals, and the BS receives these

signals with the codewords in the recommended beam set

S. Then, the BS selects the best beam (ranked by received

power) among the recommended beams. In step 4, the BS uses

the selected receive beamforming vector for the subsequent

mmWave uplink data transmission. Due to the reciprocity

of the wireless channel, the BS can also utilize these beam

directions for downlink transmissions.

D. Data Model

Data is an essential element for the machine learning

approach. Here, we describe how we store information in

the database. We discretize the service area of the BS with

resolution ∆s and define the position labels p = (px, py) as

the function of GPS coordinate g,

p(g) =

(

1 +

⌊

gx −X0

∆s

⌉

, 1 +

⌊

gy − Y0

∆s

⌉)

, (4)

where ⌊x⌉ denotes the nearest integer to x; the x-axis label

px ∈ {1, · · · , Lx} where Lx =
⌈

Xend−X0

∆s

⌉

; and the y-

axis label py ∈ {1, · · · , Ly} where Ly =
⌈

Yend−Y0

∆s

⌉

. The

BS measures the received power based on a fixed transmit

power Pt. We define the received power with beam wi,j at

position p as r(p(g),i,j) = rgi,j . During the data collection,

the BS might collect multiple measurements for the same

beamforming vector and position. For beam wi,j and po-

sition p, we define r
(p,i,j)
k as the k-th measured received

power and N
(p,i,j)
ob as the number of measurements collected

so far on that position and beam index. We extract the

average power information by computing the sample mean

r̄(p,i,j) = 1

N
(p,i,j)
ob

∑N
(p,i,j)
ob

k=1 r
(p,i,j)
k . Once the BS performs a

new measurement for position p and beam wi,j , we can update

the average received power in an online fashion as

r̄(p,i,j) ← N − 1

N
r̄(p,i,j) +

1

N
r
(p,i,j)
N ,

where N = N
(p,i,j)
ob +1, followed by N

(p,i,j)
ob ← N

(p,i,j)
ob +1.

Then, the database records the average received power along

with the side information, including the UE’s position p =
(px, py), and the indices of the beamforming codeword wi,j ,

as in TABLE I.

TABLE I: Database form

px py i j r̄(p,i,j)

1 1 1 4 5.2

1 2 4 5 6.1
...

...
...

...
...

We represent the extracted data as a 4-th order tensor

T (px, py, i, j) =
{

r̄(px,py,i,j), (px, py, i, j) ∈ Ψ,
0, otherwise,

(5)

where Ψ is the set of observed combinations of positions

and beams stored in the database and the unobserved entries

(px, py, i, j) /∈ Ψ are set to zero. It is impractical to collect

the information with all combinations of positions and beam-

directions into the database due to the limited sampling

resources. For this reason, some positions possibly have no

representation in the database. Even in the observed positions,

there might be only a limited number of beams’ information

recorded. Therefore, the tensor T may be highly incomplete.

III. TENSOR COMPLETION AND BEAM RECOMMENDATION

Our goal is to recommend a set S of Ntr candidate beams

for the UE to train based on its position. If the UE is in a

position p represented in the database, and with all beam

measurements available, r̄(px,py,i,j), ∀(i, j), then this task can

be easily accomplished by recommending the Ntr beams with

highest average received power in the given position.

Otherwise, we design an algorithm based on tensor com-

pletion that employs the knowledge at neighboring positions

to support the beam recommendation for the UE. Note that

successful completion is highly dependent on the sampling set.

If measurements are missing on a certain row or column of an

incomplete matrix, then no reconstruction is possible on that

row or column, if we only rely on a low-rank approximation

[10]. A similar issue also exists in the tensor case: if no

measurements are available on a certain index in a given

dimension, no elements corresponding to this index can be

predicted by only relying on low rank structure. In our prob-

lem, the database contains measurements related to a subset

of beams on few observed positions. The data tensor might

be so incomplete that we cannot guarantee that every index

of each dimension is measured at least once. Therefore, the

low-rank tensor completion often fails to provide predictions

on unobserved positions.

To address this challenge, in addition to the low-rank

approximation, we enforce a smoothness constraints across

adjacent entries on a given dimension. This constraint captures

realistic spatial correlations across adjacent positions arising in

mmWave channels: similarity between neighboring beams at

a given position; and similarity between neighboring positions

on a given beam direction. In Sec. III-A, we propose a two-

stage tensor completion implemented by dividing the tensor

completion into two smooth matrix completions (SMCs), con-

sidered in Sec. III-B. Finally, we propose a greedy algorithm

to provide the recommended beams based on the predicted

received power in Sec. III-C.

A. Two-stage Tensor Completion

Given the data tensor T in (5) and the set of observed

combinations of positions and beams Ψ, we aim to recover the

incomplete tensor T . Since the tensor T is highly incomplete,

we might only have limited number of beams’ information on

few observed positions, causing the low-rank completion to

fail. To address this challenge, we propose a two-stage tensor

completion, each based on SMC.

In the first stage, for each observed position (xo, yo) such

that (xo, yo, i, j) ∈ Ψ for some (i, j), we do the SMC

on the beam matrix to predict the received power on the

unobserved beams, by exploiting the low-rank property that

the received powers of beams in a given position tend to

concentrate in few beam clusters due to the limited scattering

of mmWave channels. The smoothness between neighboring

beams depends on the beamwidth of the receive beamforming

and the angular spread of the channel [13]. To this end,



let B(xo,yo) = T (xo, yo, :, :) be the (possibly incomplete)

matrix of received powers along beam directions, for the given

position (xo, yo); let Ω ≡ {(i, j) : (xo, yo, i, j) ∈ Ψ} be the

set of observed beams in position (xo, yo). Then, the SMC

can be expressed as

SMCΩ(B
(xo,yo))= argmin

X
‖X‖∗+γ(‖DCθ

X‖2F+‖XDT
Cφ
‖2F )

s.t. XΩ = B
(xo,yo)
Ω (6)

and is considered in Sec. III-B. The first term of the objective

function is the nuclear norm of X, ‖X‖∗ =
∑min(m,n)

i=1 σi,
where σi is the i-th largest singular value of X. The second

term of the objective function is a penalty term which induces

smoothness across entries in each row and column of X. The

matrix Dm ∈ R(m−1)×m is the smoothness matrix, capturing

the differences between neighboring entries of a matrix:

Dm =













1 −1 · · · 0 0
... 1 −1

... 0

0
...

. . .
. . .

...

0 0 · · · 1 −1













(m−1)×m

. (7)

Thus, ‖XDT
n‖2F and ‖DmX‖2F quantify the row and column

smoothness of matrix X, respectively. In our optimization, we

consider smoothness on rows and columns simultaneously, as

opposed to LTVNN [14], which considers them separately.

After the first stage completion by SMC, we obtain the data

tensor T ′ completed on the observed positions and update Ψ′

by setting all predicted terms as observed. In the second stage,

the SMC is implemented on the position matrix for each beam,

by leveraging the fact that the received power tends to vary

smoothly between neighboring positions on a given beam. For

a given beam, the smoothness between neighboring positions

is related to the position resolution ∆s. Specifically, in each

beam (io, jo) such that (px, py, io, jo)∈Ψ′ for some (px, py),
let G(io,jo)=T ′(:, :, io, jo) be the (possibly incomplete) matrix

of received powers on different positions, along the given beam

indexed by (io, jo); let Ω ≡ {(px, py) : (px, py, io, jo) ∈ Ψ′}
be the set of observed positions along the beam (io, jo). Then,

the SMC can be expressed as

SMCΩ(G
(io,jo))= argmin

X
‖X‖∗+γ(‖DLx

X‖2F+‖XDT
Ly
‖2F )

s.t. XΩ = G
(io,jo)
Ω (8)

and is considered in Sec. III-B. After the second stage comple-

tion by SMC, we get the completed tensor T̂ , which predicts

the received power of all unknown positions/beams, and is

used in Sec. III-C to recommend the set of training beams at

a given UE position p. The two-stage tensor completion algo-

rithm is shown in Algorithm 1. Next, we discuss the solutions

of the SMC problems (6) and (8), solved by Algorithm 2.

B. Smooth Matrix Completion (SMC)

The smooth matrix completion exploits both the low rank

and the smoothness of the data. Given the incomplete matrix

M∈Rm×n with Mij , ∀(i, j)∈Ω, the SMC problem to predict

the unobserved entries Mij , ∀(i, j)/∈Ω is expressed as

min
X
‖X‖∗ + γ(‖DmX‖2F + ‖XDT

n‖2F ) s.t. XΩ = MΩ, (9)

where γ is a regularization parameter. We use the alternating

direction method of multipliers (ADMM) [15] to efficiently

solve (9). With ADMM, we reformulate the problem as

min
X,Y
‖X‖∗+γ(‖DmY‖2F+‖YDT

n‖2F ) +
λ

2
‖Y −X‖2F

s.t. YΩ = MΩ, X = Y,

(10)

where λ > 0 is a small fixed parameter. We introduce

the Lagrangian multiplier Z associated with the constraint

X = Y. The augmented Lagrange function of (10) is

L(X,Y,Z) =‖X‖∗ + γ(‖DmY‖2F + ‖YDT
n‖2F )

+ tr(ZT (Y −X)) +
λ

2
‖Y −X‖2F .

(11)

The ADMM algorithm is implemented by minimizing itera-

tively L(X,Y,Z) over X and Y, and then update Z as

Xt+1 = argmin
X

L(X,Yt,Zt);

Yt+1 = argmin
Y

L(Xt+1,Y,Zt), s.t. YΩ = MΩ;

Zt+1 = Zt + β(Yt+1 −Xt+1);

(12)

where β is a step-size. To optimize X, we minimize

L(X,Y,Z) with fixed Yt and Zt, yielding

Xt+1 = argmin
X
‖X‖∗ +

λ

2

∥

∥

∥
X− (Yt +

1

λ
Zt)

∥

∥

∥

2

F
.

In [10], it is shown that this problem is strictly convex and its

solution is given by the singular value thresholding, Xt+1 =
D1/λ

(

Yt +
1
λZt

)

, whereDτ is the soft-thresholding operator.

For a matrix A with singular value decomposition (SVD)

A = UΣVH , where Σ = diag(σ1, . . . σr), this is defined as

Dτ (A) = UDτ (Σ)VH , Dτ (Σ) = diag({max{σi − τ, 0}}).
The minimization of L(X,Y,Z) over Y with fixed Xt+1

and Zt can be formulated as

Yt+1 =argmin
Y

γ(‖DmY‖2F + ‖YDT
n‖2F )

+ tr(ZT
t (Y −Xt+1)) +

λ

2
‖Y −Xt+1‖2F

s.t. YΩ = MΩ.

(13)

To solve this problem, we restrict its optimization to the unob-

served set Ω̄ ≡ {(i, j) : (i, j) /∈ Ω}, and force Yij = Mij for

(i, j) ∈ Ω. By computing the derivative of (13) with respect

to Yij for (i, j) ∈ Ω̄ and setting it to zero, we obtain the

equation tr
(

{U(i,j)}TY
)

− λXij−Zij

2γ = 0, where

U(i,j) =DT
mDmem(i)en(j)

T + em(i)en(j)
TDT

nDn

+
λ

2γ
em(i)en(j)

T .

The vector em(i) is an m×1 vector with the i-th element equal

to 1 and all other elements equal to 0. We force YΩ = MΩ as

in (13), yielding the set of |Ω̄| linear equations, ∀(i, j) ∈ Ω̄,

∑

(p,q)∈Ω̄

U(i,j)
pq Ypq =

λXij − Zij

2γ
−

∑

(p,q)∈Ω

U(i,j)
pq Mpq. (14)

There are |Ω̄| unknowns
(

Ypq, (p, q) ∈ Ω̄
)

and |Ω̄| linear

equations, so the matrix YΩ̄ can be derived by solving (14).

Then, we update the Lagrangian multiplier Z with fixed Xt+1

and Yt+1 as in (12). The algorithm updates X, Y, and Z iter-



atively until a stop criterion is satisfied. With the convergence

of ADMM [16], the iteration approaches the feasibility ‖Xt−
Yt‖F→ 0, thus we set the stop condition as ‖Xt−Yt‖F≤ ǫ.
It follows that ‖Zt+1 − Zt‖F= β‖Yt+1 − Xt+1‖F→ 0,

which guarantees the convergence of Z. The computational

complexity of SMC is dominated by the SVD to perform the

soft-thresholding operation in each iteration, which is O(mn2)
for m ≥ n [17]. The update of Y requires a matrix inversion

per iteration, whose computational complexity is O(|Ω̄|3).

Algorithm 1 Two-stage Tensor Completion

Input: incomplete data tensor T and the observed set Ψ
Output: T̂

1: for (xo, yo,−,−) ∈ Ψ do

2: B(xo,yo) = T (xo, yo, :, :)
3: Ω = {(i, j)|(xo, yo, i, j) ∈ Ψ}
4: T ′(xo, yo, :, :) = SMCΩ(B

(xo,yo))
5: Update the observed set Ψ′

6: end for

7: for (−,−, io, jo) ∈ Ψ′ do

8: G(io,jo) = T ′(:, :, io, jo)
9: Ω = {(px, py)|(px, py, io, jo) ∈ Ψ′}

10: T̂ (:, :, io, jo) = SMCΩ(G
(io,jo))

11: end for

Algorithm 2 Smooth Matrix Completion (SMC)

Input: incomplete data matrix M and observed set Ω
Output: M̂

1: Initialization Xt = Yt = M, Zt = 0, ǫt =∞
2: while ǫt > ǫ do

3: Xt+1 = D1/λ

(

Yt +
1
λZt

)

4: Yt+1 = YΩ̄ +MΩ (YΩ̄ obtained by solving (14))

5: Zt+1 = Zt + β(Yt+1 −Xt+1)
6: ǫt+1 = ‖Xt+1 −Yt+1‖F ; t := t+ 1
7: end while

8: M̂← XΩ̄ +MΩ

C. Recommendation Algorithm

With the completed tensor T̂ , we have the estimated re-

ceived powers of all beams at UE position (px, py). Suppose

the number of beams to be trained is Ntr, the construction of

the recommended beam set is a beam subset selection problem.

It can be directly fulfilled by selecting the Ntr beams with

largest predicted received power from the completed tensor T̂
using Algorithm 3.

Algorithm 3 Beam Subset Selection

Input: completed tensor T̂ , beam number Ntr, beam code-

book W with indices I, UE position (px, py)
Output: recommended beam subset SNtr

1: Initialization S0 ← ∅
2: for n = 1 : Ntr do

3: (i∗, j∗) = argmax(i,j)∈I\Sn−1
T̂ (px, py, i, j)

4: Sn ← Sn−1 ∪ (i∗, j∗)
5: end for

IV. NUMERICAL RESULTS

Here, we evaluate the misalignment probability and the

spectral efficiency of our proposed beam recommendation

algorithm (TC) with the channel generated by Quadriga [11].

A. Experiment Setting

We consider an uplink SIMO scenario, with an UPA having

Nx = Ny = 16 antennas along the x and y directions (as in

(1)) at the BS, and isotropic antenna at the UE. The scenario

mmMAGIC UMi NLOS is selected, with carrier frequency

fc = 58.68 GHz. The UPA codebook size is |W|= 256
with (Cθ , Cφ) = (16, 16). The network layout is depicted

in Fig. 1, containing one BS at (0, 0, 10) serving the UE in

the area A = {(gx, gy) : 10 ≤ gx ≤ 60,−25 ≤ gy ≤ 25}
with height as 1.5 m. Considering 51 × 51 = 1261 refer-

ence GPS coordinates uniformly located in the service area

A, we collect the SIMO channel for each reference GPS

coordinate in A as the ground truth data. The position labels

of A are derived as in (4) with the resolution ∆s = 5m,

where the length are Lx = 11 and Ly = 11. The data

tensor can be expressed by T ∈ RLx×Ly×Cθ×Cφ , where

(Lx, Ly, Cθ, Cφ) = (11, 11, 16, 16). The observed position

ratio Kop = Cop/(LxLy) is varied, where Cop denotes the

number of observed positions. Regarding the observed set of

data tensor, we make the two following assumptions for the

experiment setting. Assusmption 1: The observed positions

are randomly chosen. For the observed position p′, the mea-

surements of the reference GPS coordinates corresponding to

position p′, {g = (gx, gy) : p(g) = p′, g ∈ A}, are observed.

Assusmption 2: For each observed GPS coordinate g, only

the measurements of the top 10% beams (ranked by received

power) are stored in the database. With these two assumptions,

the data tensor in (5) is incomplete in both positions’ and

beams’ dimensions.
Our formulation allows to make predictions for unknown

beams/positions by exploiting spatial correlation. On the other

hand, the previous work [5] for mmWave beam alignment uses

the prior knowledge already available at a given position, but

does not allow to make predictions if measurements are not

available. For comparison, we consider the type B fingerprint-

ing method [5] by providing the recommended beam set based

on the closest position having available prior knowledge, if the

prior measurements of UE position are not given.

B. Performance of Proposed Beam-alignment Algorithm

We evaluate the power loss probability Ppl(Sp) versus

the percentage of trained beams (|Sp|/|W|) under different

observed position ratio Kop. The noise impact is ignored. To

measure the beam alignment accuracy for the recommended

set Sp, we define the metric as the power loss probability

Ppl(Sp) = 1 − Ps(Sp), where Ps(Sp) is the probability that

the best beam is included in the set Sp at position p,

Ps(Sp) = P

(

max
(i,j)∈Sp

r(p,i,j) = max
(i′,j′)∈I

r(p,i
′,j′)

)

. (15)

We average the power loss probability over the channels at

the GPS coordinates corresponding to unobserved positions. In

Fig. 3, Ppl(Sp) decreases when the database contains more ob-

served positions with fixed number of trained beams. The type-

B fingerprinting method [5] requires at least 13% of the beams

to be trained to attain Ppl(Sp) = 20%. With Kop increasing
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Fig. 3: Power loss probability versus the percentage of trained beams.

from 20% to 40%, Ppl(Sp) only very slightly improves. For

our proposed method (TC), to attain Ppl(Sp) = 20%, we

require only 2% trained beams when Kop = 20%. With

more trained beams or higher Kop, Ppl(Sp) of TC decreases

significantly.

C. Spectral Efficiency

We evaluate the average spectral efficiency versus the aver-

age transmit power. We first define the transmission rate as

R = B log2(1 + ηPt‖wHh‖2) (16)

where B = 1.76 GHz is the bandwidth [5], [11]; Pt is the

transmit power; w is the selected beamforming vector; h is

the SIMO channel; η ,
Λ2ζ

8πd2N0B
is the SNR scaling factor,

where Λ = c/fc is the wavelength (c is the speed of light),

N0 = −174 dBm/Hz is the noise power spectral density, d
is the distance, and ζ = 1 is the antenna efficiency. The

microslot duration δS = 10 µs is the time for one transmission.

The frame time Tframe = 5 ms is fixed. The training time

is Ttrain = Ntr × δS . The fraction of time used for data

transmission is fcomm =
Tframe−Ttrain

Tframe
. Then, the average

throughput is R̄ = R× fcomm.

In Fig. 4, the trend of spectral efficiency (R̄/B) is monotone

increasing. We compare our proposed scheme (TC) with the

type-B fingerprinting method [5] and the exhaustive search

which trains all |W| beams in the training phase. TC is better

than exhaustive search. The spectral efficiency of TC with

(Kop, Ntr) = (40%, 10) is around twice as much as the

spectral efficiency of exhaustive search. It is due to fcomm ≈
0.5 for exhaustive search, but fcomm of TC is close to 1
because of the small Ttrain. The spectral efficiency of TC at

(Kop, Ntr) = (20%, 5) outperforms the type B fingerprinting

method at (Kop, Ntr) = (40%, 10) by 0.7 bit/s/Hz since our

method provides more accurate beam prediction with even

fewer known positions and fewer trained beams. If we increase

Kop or Ntr, the improvement of TC is minor since Ppl(S) is

fairly low (< 10%) in this region.

V. CONCLUSION

In this paper, we propose a learning-based beam rec-

ommendation algorithm to reduce the training overhead for

the position-aided beam alignment protocol. We consider a

scenario where the UE is located in an arbitrary position

in which prior measurements may not be available in the

database. We propose a two-stage tensor completion to predict
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Fig. 4: Spectral efficiency (R̄/B) versus the average transmit power (Pt).

the received power, and then provide the set of recommended

beams by ranking the predicted power of beams. The two-stage

tensor completion exploits both the low-rank and smooth-

ness of the data. The numerical results demonstrate that the

proposed beam recommendation algorithm does improve the

performance of beam-alignment over the state-of-the-art, by

reducing the beam-training overhead.
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