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Abstract—We derive the probability distribution of the link
outage duration at a typical receiver in a wireless network with
Poisson distributed interferers sending messages with slotted

random access over a Rayleigh fading channel. This result is used
to analyze the performance of random linear network coding,
showing that there is an optimum code rate and that interference
correlation affects the decoding probability and throughput.

Index Terms—Interference dynamics, random linear network
coding, outage probability, Poisson network, stochastic geometry.

I. INTRODUCTION

The analytical modeling of link outage in wireless networks

should consider the fact that interference is correlated. Such

correlation leads to the effect that time slots being in outage

tend to cluster together, i.e., they come in bursts [1]. This letter

analyzes this effect using stochastic geometry. For Poisson

networks with small-scale fading and slotted random access,

we derive stochastic expressions for the outage duration and

the duration between two outages, called success period. These

expressions allow us to quantify how outage and success

periods become longer with increasing correlation.

Results are relevant for the design of transmission schemes,

including diversity [2], equalization [3], and channel coding

with interleaving [4]. To show the effects by an example, we

analyze the performance of erasure correction coding under

the impact of correlated interference. Correlated interference

and the resulting clustering of outage events degrades the

performance of coding for the following reason: Let us assume

that a code can compensate for a certain number of lost out

of a given number of coded packets. Without interference

correlation we would on average lose a few packets but the

code can compensate these losses. When having clustering

of outage, however, sometimes all coded packets are received

while at other times too few are received, and the code cannot

always compensate these losses.

In particular, we compute the decoding probability and

throughput of random linear network coding [5]. We observe
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that there is an optimal amount of redundancy due to the

tradeoff between weak code performance (in case of low re-

dundancy) and high interference (in case of high redundancy).

Furthermore, we find that the correlation of interference im-

pacts the throughput of a typical node in the network and

it depends on the specific scenario whether throughput is

increased or decreased.

Results are relevant for devices with constraints in terms

of computational power or energy such as industrial wireless

sensor networks [6]. In such a setup, random linear network

coding is an interesting option as, depending on the field size

adopted, it can be very efficient while still being effective. The

provided tools can be applied to analyze the performance of

the network and optimize the amount of redundancy depending

on the particular network setup. Practical studies in an indus-

trial sensor network within facilities of a project partner from

process industry are planned to further pursue this direction

of research.

II. NETWORK MODEL

Nodes are distributed in space according to a Poisson point

process (PPP) Φ ⊆ R
2 with intensity λ. Time is slotted, and

each node transmits in each slot i.i.d. with probability p. A

typical receiver can be located at the origin o due to Slyvnjak’s

theorem [7]. It aims to receive messages from a sender located

at s that transmits in each slot, i.e., with sending probability

1, and is not part of Φ.

The wireless channel is modeled by a distance dependent

path loss combined with fading. The interference power arriv-

ing at o from a node x ∈ Φ is px = κ ‖x‖−α h2
x γx, where κ is

the transmission power, α is the path loss exponent, h2
x is the

channel gain modeling multi-path propagation following an

exponential distribution with unit mean for Rayleigh fading,

and γx is the indicator function determining whether or not

x transmits in the current slot. We assume that fading is

independent over time slots and space.

The signal-to-interference ratio (SIR) at o is

SIR =
‖s‖−αh2

s
∑

x∈Φ ‖x‖−αh2
xγx

. (1)

A transmission is assumed to be received correctly if SIR > θ
for a given threshold θ. The specific value of θ depends on

properties of the receiver.
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III. SUCCESS AND OUTAGE DURATIONS

A. Duration between outages

The duration between consecutive outages, or equivalently

the duration of success S, at a typical receiver increases with

increasing interference correlation.

Lemma 1: The probability mass function (pmf) of the

duration between outages S is

P[S = n] = exp
(

−∆Dn(p, δ))−exp(−∆Dn+1(p, δ)
)

, (2)

where ∆ = λπs2θδΓ(1+ δ)Γ(1− δ), δ = 2
α

, and Dn(p, δ) =
∑n

k=1

(

n
k

)(

δ−1
k−1

)

pk is the nth diversity polynomial [8].

Proof: The probability that a receiver can correctly re-

ceive all messages in n consecutive slots is

P[S ≥ n] = P[SIR1 ≥ θ, . . . , SIRn ≥ θ] (3)

(a)
= E

[

exp

(

−
θ
∑

x∈Φ ‖x‖−αh2
xγx

‖s‖−α

)n
]

= exp
(

−∆Dn(p, δ)
)

,

where (a) holds due to the independence of the random fading

gains h2
x in different slots. The probability that the success

duration is S = n slots is then calculated by P[S = n] =
P[S ≥ n]− P[S ≥ n+ 1] and substituting (3) twice.

It follows that the expected success duration is

E[S] =

∞
∑

n=1

nP[S = n] =

∞
∑

n=1

P[S ≥ n] (4)

and its variance is

var[S] =

∞
∑

n=1

n2
P[S = n] =

∞
∑

n=1

(2n− 1)P[S ≥ n] . (5)

We now study the effects of the system parameters on the

success duration. For this purpose, we fix s = (1, 0), κ = 1,

and θ = 1, and vary λ, α, and p. Fig. 1 plots E[S] over the

sending probability p for different interferer intensities λ. We

see that the expected success duration decreases rapidly when

increasing p or λ. In the limits, it approaches infinity for λ → 0
(or for p → 0) and zero for λ → ∞ and any positive p.

Fig. 2 studies the impact of interference correlation ρ =
p
2 [9] on the expected success duration. The result is not

diverted by the effect that higher interference leads to shorter

success periods; this is achieved by varying p while keeping

the product λp and in turn the success probability P[S ≥ 1]
constant. As can be seen, the success duration increases

monotonically with ρ. This overall increase is stronger for

higher α, with the impact of nearby interferers being stronger

than those of distant ones. In the limit p → 0 with constant

pλ, we reach the case of uncorrelated interference (ρ → 0).

B. Duration of outages

We study the outage duration as a function of the success

duration probabilities P[S ≥ n].
Lemma 2: The pmf of the outage duration O is

P[O = n] =

n
∑

k=0

(

n

k

)

(−1)k P[S ≥ k + 1] . (6)
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Fig. 1. Expected success duration over sending probability p, for different λ.
Parameters are θ = 1, α = 3, and s = (1, 0). Note that the glitches are due
to numerical instability of the calculations.
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Fig. 2. Expected success duration over interference correlation ρ = p

2
,

keeping the success probability P[S ≥ 1] constant by having λp = 0.01.
Parameters are θ = 1 and s = (1, 0).

Proof: The probability of n consecutive outage slots is

P[O ≥ n] = E

[

(

1− exp

(

−
θ
∑

x∈Φ ‖x‖−αh2
xγx

‖s‖−α

))n
]

=
n
∑

k=0

(

n

k

)

(−1)kP[S ≥ k] . (7)

Hence, the probability of an outage duration n is

P[O = n] = E

[

(

1− exp

(

−
θ
∑

x∈Φ ‖x‖−αh2
xγx

‖s‖−α

))n

· exp

(

−
θ
∑

x∈Φ ‖x‖−αh2
xγx

‖s‖−α

)

]

(8)
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Fig. 3. Probability P[O = n] that an outage is of length n for different p.
Parameters are θ = 0.3, s = (1, 0), λ = 1, and α = 3.

=
n
∑

k=0

(

n

k

)

(−1)kP[S ≥ k + 1]

with P[S ≥ k + 1] given in (3).

Fig. 3 shows the probability that an outage lasts n =
1, . . . , 5 slots. In this scenario, short outages are more likely

than long ones, for all p with the given outage probability.

As expected, the peak of the probability is shifted toward

higher p for increasing values of n, since higher interference

correlation ρ implies longer outage [1].

IV. APPLICATION TO ERASURE CORRECTION CODING

We now analyze the performance of erasure correction

coding, focusing on random linear network coding [5], for

which k source packets are encoded into n coded packets.

Here, each coded packet is formed by calculating a linear

combination of the source packets with random coefficients.

Successful decoding is only possible if the number of received

packets m is at least k and the corresponding coefficient vector

matrix has rank k. Due to the random nature of the coefficient,

the probability for the matrix to have rank k increases with

m and with the size q of the Galois field GF(q) adopted for

the coding. For successful decoding, the receiver obtains k
packets of information independent of m. The probability for

successful decoding is [10]

Pdec(m, k) =

{

0 if m < k
∏k−1

i=0

(

1− 1
qm−i

)

else.
(9)

Let us derive an expression for the throughput Ω of this

code in our network setup. Let S(n) denote the number of

successfully received packets in case n packets are transmitted.
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Fig. 4. The failure probability of a typical link in the network for different
coding rates 5/n. Filled marks are for uncorrelated interference, while open
marks are for correlated interference. The sending probability is p = n/30;
parameters are θ = 1, s = (1, 0), α = 4, and q = 2.

Lemma 3: The probability that out of n transmitted packets

a receiver is able to successfully detect any k packets is

P[S(n) = k] =

(

n

k

) n−k
∑

i=0

(

n− k

i

)

(−1)i P[S ≥ k + i] .

(10)

Proof: Similar to the proof of Lemma 2, the probability

that any k out of n transmissions are successful and hence

n− k are in outage is

P[S(n) = k] = E

[

(

1− exp

(

−
θ
∑

x∈Φ ‖x‖−αh2
xγx

‖s‖−α

))k

(11)

·

(

exp

(

−
θ
∑

x∈Φ ‖x‖−αh2
xγx

‖s‖−α

))n−k
]

(

n

k

)

.

Applying the binomial expansion yields the result.

The throughput of random linear network coding is then

Ω =
k

n

n
∑

m=k

Pdec(m, k) P[S(n) = m] , (12)

where the fraction is the code rate and the sum gives the

probability of successful decoding considering the channel.

Fig. 4 shows the failure probability of a typical link, i.e., the

probability that a node is unable to decode a set of packets.

We assume that k = 5 data packets are encoded by random

linear network coding into n coded packets, out of which

a subset of m packets reaches the receiver. This implies

that the overall sending probability and in turn interference

increases linearly with n, as we assume that all links in

the network adopt the same code. The plot shows traces for

both correlated and uncorrelated interference. As can be seen,

correlation degrades the performance of the code significantly
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Fig. 5. The throughput of a typical link in the network for varying the
coding rate 5/n. The sending probability is p = n/20 and hence interference
correlation is ρ = n/40, which is shown as second x-axis on top. Filled marks
are for uncorrelated interference (top x-axis does not apply), while open marks
are for correlated interference. The intensity λ is chosen to keep λp and in
turn the outage probability constant. Parameters are k = 5, θ = 1, s = (1, 0),
α = 3 and q = 2.

and introduces an optimal amount of redundancy in terms of

decoding probability (around n = 17), while for uncorrelated

interference a higher n is beneficial within the considered

interval. This optimal n arises from the following tradeoff:

For low values of n, redundancy is too small for the channel

conditions and hence many packets cannot be recovered.

Thus, when increasing n the throughput increases up to its

maximum. However, for increasing n, also the interference

gets higher reducing the reception probability; at some point

this outweighs the additional benefit of the code and in turn

the decoding probability decreases. An important reason is that

interference correlation diminishes the gain of higher n.

In order to analyze the impact of interference correlation

in more detail, we plot the throughput Ω of a node over the

number of coded packets n in Fig. 5. A second x-axis on the

top shows the interference correlation ρ = n/40, as we assume

p = n/20. This axis only applies to the open marks that depict

Ω for correlated interference. The success probability P[S ≥ 1]
is kept constant by keeping pλ = nλ/20 constant. The plot

shows that in the low interference regime (nλ = 0.5) the

optimum is pronounced stronger as compared to Fig. 4 and

even exists in uncorrelated interference traces. The reason is

that throughput decreases stronger with n than the decoding

probability, as the coding rate k/n is also impacting this

decrease. Intuitively speaking, if already more than k packets

have been received, the decoding probability will not increase

much by receiving further packets, but these are consuming

bandwidth and in turn reduce the throughput. It is important

to note that this is not due to an increase of interference, as λp
is kept constant. When evaluating the impact of interference

correlation on throughput, we can see that for lower n it

depends on the scenario whether having correlation yields

higher or lower throughput, similar to Fig. 4. For high n,

however, correlation is decreasing throughput in all cases, as

for this high number of encoded packets it is advantageous

to have many independent chances of receiving packets rather

than the “all-or-nothing” situation of high correlation.

Finally, note that the decrease of throughput for high n
as shown in Fig. 5 is only moderate due to a constant

success probability P[S ≥ 1]. In a similar plot with constant

λ, i.e., with varying interference, the decay of throughput with

increasing n would be stronger.

V. CONCLUSIONS

We derived and analyzed the outage and success duration in

Poisson networks by applying tools from stochastic geometry.

Based on these results, we analyzed the performance of

random linear network coding in terms of decoding probability

and throughput. Results show that an optimal number of coded

packets exists at which enough coded packets are transmitted

for good performance while limiting the interference to a mod-

erate level. Furthermore, we show how interference correlation

can increase or decrease the decoding probability depending

on the network scenario. Potential applications can be found,

e.g., in the field of industrial sensor networks. Further steps

involve the practical exploitation of our results to optimize the

coding rate in a sensor network within an industrial facility.

The general insights, although investigated for particular

modeling assumptions here, qualitatively generalize to a

broader range of networks that exhibit interference correlation

(e.g., Matérn networks [11]).
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