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Generalized Cross Subspace Alignment Codes
for Coded Distributed Batch Matrix Multiplication

Zhuqing Jia and Syed A. Jafar
Center for Pervasive Communications and Computing (CPCC)

University of California, Irvine
Email: {zhuqingj, syed}@uci.edu

Abstract—The goal of coded distributed batch matrix multi-
plication is to efficiently multiply L instances of λ × κ matri-
ces, A = (A1, · · · ,AL), with L instances of κ × µ matrices
B = (B1, · · · ,BL), by distributing the computation across S
servers, such that the response from any R servers (R is called
the recovery threshold) is sufficient to compute the L matrix
products, AB = (A1B1,A2B2, · · · ,ALBL). Existing solutions
either compute each AlBl one at a time by partitioning individ-
ual matrices and coding across these partitions, or rely only on
batch processing, i.e., coding across the batch of matrices without
any matrix partitioning. The state-of-art for matrix-partitioning
and batch processing approaches is represented by Entangled
Polynomial Codes (EP codes), and Lagrange Coded Computing
(LCC), respectively. In order to combine the benefits of the two
approaches, we propose Generalized Cross-Subspace Alignment
Codes (GCSA codes) that unify, generalize and improve upon the
state of art. GCSA codes bridge the two extremes by efficiently
combining both matrix-partitioning and batch processing, and
offer flexibility in how much of each approach is used. Both EP
codes and LCC codes can be recovered as special cases of GCSA
codes. Remarkably, even without matrix partitioning, GCSA
codes demonstrate an advantage over LCC codes in download-
constrained settings. This is due to cross-subspace alignment,
characterized by a Cauchy-Vandermonde code structure that
aligns interference along Vandermonde terms, while the desired
matrix products remain resolvable along Cauchy terms.

I. INTRODUCTION

Matrix multiplication is an essential building block for com-
puting applications. In the era of big data and cloud computing
along with massive parallelization, there is particular interest
in algorithms for distributed matrix multiplication that are
resilient to stragglers [1]. Illustrated in Figure 1, the goal
of coded distributed batch matrix multiplication (CDBMM)
is to efficiently multiply L instances of λ × κ matrices,
A = (A1,A2, · · · ,AL), with L instances of κ × µ matrices
B = (B1,B2, · · · ,BL), by distributing the computation
task across S servers (through a coding scheme), such that
the response from any R servers (R is called the recovery
threshold) is sufficient for the user to compute the batch of
L matrix products, AB = (A1B1,A2B2, · · · ,ALBL). The
main metrics of interest for coded distributed computation
include: the encoding and decoding complexity, server com-
putation complexity, the recovery threshold, and the upload
and download costs (communication costs).

Existing solutions to CDBMM fall into two distinct cate-
gories — those based on matrix partitioning [2]–[5], and those
based on batch processing [6]. Matrix-partitioning approaches

A = (A1, . . . ,AL) B = (B1, . . . ,BL)

Server 1 · · · Server i · · · Server j · · · Server S

ÃSÃ1 ÃjÃi B̃1 B̃i B̃j B̃S

User

Y1 Yj YS

AB = (A1B1, . . . ,ALBL)

A total of R answers downloaded

Fig. 1: The CDBMM problem. Source (master) nodes generate
matrices A = (A1, · · · ,AL) and B = (B1, · · · ,BL), and upload
them to S distributed servers in coded form Ã[s], B̃[s], respectively.
For all l ∈ [L], Al and Bl are λ × µ and µ × κ matrices,
respectively, over a field F. The sth server computes the answer Ys.
Upon downloading answers from any R servers, the user must be
able to recover the product AB = (A1B1,A2B2, . . . ,ALBL).

compute each of the L products AlBl one at a time by
partitioning individual matrices Al and Bl and coding across
these partitions. Batch processing approaches do not partition
individual matrices, instead they code across the batch of A
matrices and across the batch of B matrices. The state-of-art
for matrix-partitioning approaches is represented by Entangled
Polynomial Codes (EP codes) [5], while Lagrange Coded
Computing (LCC) [6] represents the state of art for batch
processing.

This work is motivated by two contrasting observations.
On the one hand, we find that when normalized by the
batch size (i.e., per matrix multiplication), batch processing
approaches are much more efficient than matrix partitioning
approaches in terms of their communication cost, as well as
their encoding/decoding complexity. On the other hand, we
note that since there is no partitioning of individual matrices
in batch processing codes, this means that each server must
carry a computational load equivalent to at least one full
matrix multiplication. This presents a latency barrier for batch



processing schemes. For applications with stricter latency
requirements such a solution may be infeasible, making it
necessary to reduce the computational load per server by
further parallelization, i.e., partitioning of individual matrices.

Recognizing this challenge, we propose Generalized Cross-
Subspace Alignment Codes (GCSA codes) that unify, gener-
alize and improve upon the state of art for CDBMM. GCSA
codes bridge the two extremes by efficiently combining both
matrix-partitioning and batch processing, and offer flexibility
in how much of each approach is used. Both EP codes and
LCC codes can be recovered as special cases of GCSA codes.
Remarkably, even when no matrix partitioning is used, GCSA
codes demonstrate an advantage over LCC codes in download-
constrained settings. This is due to cross-subspace alignment
(CSA), an idea that was originally introduced in the context
of private information retrieval [7]–[9]. CSA has also been
used recently to minimize download costs for secure and/or
private matrix multiplication [9]–[11]. CSA is characterized by
a Cauchy-Vandermonde code structure that facilitates interfer-
ence alignment along Vandermonde terms, while the desired
matrix products remain resolvable along the Cauchy terms.
With GCSA codes, the degree of matrix partitioning controls
the computational load per server, while the batch partitioning
on top maintains the advantage of batch processing. How to
efficiently combine the benefits of CSA with matrix parti-
tioning is the key technical challenge behind this work. The
combination is far from trivial. For example, consider a matrix
partitioning approach that splits the task among 10 servers
such that any R1 = 7 need to respond, and a similar batch
processing approach that also splits the task among 10 servers
such that any R2 = 7 need to respond. Then if we simply take
the 10 matrix-partitioned sub-tasks and use batch processing
on top to further distribute each sub-task among 10 servers, for
a total of 100 servers, then the recovery threshold of the naive
combination is 6 × 10 + 4 × 6 + 1 = 85. However, GCSA
code achieves the significantly lower recovery threshold of
R = R1R2 = 49 instead.

II. STATE OF ART: EP CODES, LCC CODES

In this section, we provide an overview of the state of art
approaches for CDBMM (EP codes and LCC codes), and
compare them with GCSA codes.

A. Matrix Partitioning: EP Codes [5]

Entangled Polynomial (EP) codes [5] for coded distributed
matrix multiplication problem are based on matrix partitioning.
The constituent matrices A and B are partitioned into m× p
blocks and p×n blocks, respectively, so that the desired matrix
product involves a total of mn linear combinations of products
of block matrices. Coded matrices are constructed as follows,

Ã(α) =
∑

m′∈[m]

∑
p′∈[p]

Am′,p′αp
′−1+p(m′−1), (1)

B̃(α) =
∑
p′∈[p]

∑
n′∈[n]

Bp′,n′αp−p
′+pm(n′−1), (2)

and the sth server is sent the values Ã(αs) and B̃(αs). Here
α1, α2, · · · , αS are distinct elements from F. If responsive,
Server s returns Ã(αs)B̃(αs), which can be expressed as

Ã(α)B̃(α) =

R∑
i=1

C(i)αi−1, (3)

where R = pmn + p − 1 is the recovery threshold, and
C(1),C(2), · · · ,C(R) are various linear combinations of prod-
ucts of matrix blocks. Note that for all i ∈ [R], C(i) are
distributed over 1, α, · · · , αR−1, thus from the answers of any
R servers, C(1),C(2), · · · ,C(R) are recoverable by inverting
a Vandermonde matrix. Furthermore, it is proved in [5] that by
the construction of Ã(α) and B̃(α), the C(1),C(2), · · · ,C(R)

terms include the mn desired terms, while the remaining
undesired terms (interference) align into the remaining R−mn
dimensions. Remarkably, EP codes may be seen as bridging
the extremes of Polynomial codes and MatDot codes. Polyno-
mial codes [2] can be recovered from EP codes by setting
p = 1, and MatDot codes [3] can be obtained from EP
codes by setting m = n = 1. EP codes also represent an
improvement of PolyDot codes [3] within a factor of 2 in terms
of recovery threshold, due to better interference alignment.
Finally, EP codes have similar performance as Generalized
PolyDot codes [4]. Thus, EP codes represent the state of art
of prior work in terms of matrix partitioning approaches to
coded distributed matrix multiplication.

B. Batch Processing: LCC Codes [6]
Lagrange Coded Computing (LCC) codes [6] represent

the state of art of prior work in terms of batch processing
approaches for coded distributed batch multivariate polynomial
evaluation, which includes as a special case CDBMM. LCC
codes are so named because they exploit the Lagrange interpo-
lation polynomial to encode input data. For example, suppose
we are interested in L evaluations of the multivariate polyno-
mial Φ(·) of total degree N , namely Φ(x1),Φ(x2), · · · ,Φ(xL)
over the given batch of L data points x1,x2, · · · ,xL. Note that
for matrix multiplication, xl = (Al,Bl) and Φ(xl) = AlBl,
which is a bilinear operation (N = 2). LCC codes encode the
dataset according to the Lagrange interpolation polynomial,

X̃(α) =
∑
l∈[L]

xl
∏

l′∈[L]\{l}

α− βl′
βl − βl′

, (4)

and the sth server is sent the evaluation X̃(αs). Here
α1, α2, · · · , αS , β1, β2, · · · , βL are (S + L) distinct elements
from the operation field F. The sth server returns the user with
the answer Φ(X̃(αs)). Note that the degree of the polynomial
Φ(X̃(α)) is less than or equal to N(L − 1) = NL − N .
Therefore, from the answers of any R = NL − N + 1
servers, the user is able to reconstruct the polynomial Φ(X̃(α))
by polynomial interpolation. Upon obtaining the polynomial
Φ(X̃(α)), the user evaluates it at βl for every l ∈ [L] to obtain
Φ(X̃(βl)) = Φ(xl).

For ease of reference, Table I compares EP codes, LCC
codes and GCSA codes with respect to their recovery thresh-
olds, communication costs (uploads and downloads), encoding



Recovery Threshold (R) Upload Cost (UA, UB) Download Cost (D)

EP pmn+ p− 1 S/(pm), S/(pn) (pmn+ p− 1)/(mn)

codes R O(m), O(m) O(R/m2)

LCC 2K′c − 1 S/K′c, S/K
′
c (2K′c − 1)/K′c

codes R O(1), O(1) O(1)

GCSA ((`+ 1)Kc − 1)(pmn+ p− 1) S/(Kcpm), S/(Kcpn)
((`+1)Kc−1)(pmn+p−1)

`Kcmn

codes R O(m), O(m) O(p)

Server Computation Complexity (Cs) Encoding Complexity (CeA, CeB) Decoding Complexity (Cd)
EP O (λµκ/pmn) Õ

(
(λκ/(pm))S log2 S

)
, Õ
(
(κµ/(pn))S log2 S

)
Õ(λµp log2 R)

codes O
(
λ3/R

)
Õ
(
λ2m log2 S

)
, Õ
(
λ2m log2 S

)
Õ
(
(λ2/m2)R log2 R

)
LCC O

(
λµκ/K′c

)
Õ
(
(λκ/K′c)S log2 S

)
, Õ
(
(κµ/K′c)S log2 S

)
Õ(λµ log2 R)

codes O
(
λ3/R

)
Õ
(
λ2 log2 S

)
, Õ
(
λ2 log2 S

)
Õ(λ2 log2 R)

GCSA O
(
λµκ/K′′c

)
Õ
(
(λκ/(Kcpm)S log2 S

)
, Õ
(
(κµ/(Kcpn)S log2 S

)
Õ(λµp log2 R)

codes O
(
λ3/R

)
Õ
(
λ2m log2 S

)
, Õ
(
λ2m log2 S

)
Õ(λ2p log2 R)

TABLE I: Performance summary of EP [5], LCC [6] and GCSA codes for CDBMM. Shaded rows represent balanced settings with
m = n, λ = µ = κ, and fixed ratio R/S. The batch size is L = `Kc for GCSA codes, and L′ = K′

c for LCC codes.

and decoding complexity, and server computation complexity.
Note that choosing ` = Kc = 1 reduces GCSA codes to EP
codes, while setting m = n = p = 1 recovers batch-processing
codes (further restricting ` = 1 recovers LCC codes). The
comparison is further illustrated through an example setting
in Fig. 2, which shows lower convex hulls of achievable
(balanced upload cost, download cost) pairs of GCSA codes
for various bounds on RE = pmn + p − 1, given that the
number of servers S = 300 and the overall recovery threshold
R ≤ 250. Each value of (S,R,RE) produces an achievable
region in the (U,D) plane (including all possible choices of
parameters m,n, p, `,Kc). What is shown in the figure is the
union of these regions. The larger the value of RE , the more
the GCSA code construction shifts toward EP codes, generally
with the benefit of reduced computation complexity per server
that comes with matrix partitioning. On the other hand, the
smaller the value of RE , the more the GCSA code construction
shifts toward batch processing, with the benefit of improved
communication costs. The figure also shows that GCSA codes
in general improve upon LCC codes in terms of download cost
by choosing ` > 1.

Notation: [N ] stands for the set {1, 2, . . . , N}. X[N ]

denotes the set {X1, X2, . . . , XN}. For I = {i1, i2, . . . , iN},
XI denotes the set {Xi1 , Xi2 , . . . , XiN }. The notation ⊗
denotes the Kronecker product of two matrices. IN de-
notes the N × N identity matrix. T(X1, X2, · · · , XN ) de-
notes the N × N lower triangular Toeplitz matrix, with
the terms in each column below the diagonal sequentially
labeled X1, X2, · · · . For square matrices X1,X2, · · · ,XN ,
D(X1,X2, · · · ,XN ) denotes the block diagonal matrix com-
posed with blocks X1,X2, · · · ,XN . The notation Õ(a log2 b)
suppresses polylog terms. It may be replaced with O(a log2 b)
if the field supports the Fast Fourier Transform (FFT), and
with O(a log2 b log log(b)) if it does not.

III. PROBLEM STATEMENT

As shown in Figure 1, consider two source (master) nodes,
each of which generates a sequence of L matrices, denoted
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EP Codes (Matrix-Partitioning)

GCSA Codes (RE ≥ 15)

GCSA Codes (RE ≥ 5)

GCSA Codes (RE ≥ 1)

LCC Codes (Batch Processing)

Fig. 2: Lower convex hulls of achievable (balanced upload cost,
download cost) pairs (U,D) of GCSA codes for various bounds on
RE = pmn + p − 1, given that S = 300 and the overall recovery
threshold R ≤ 250. Note that EP codes [5] and LCC codes [6] are
also special cases of GCSA codes, obtained by setting ` = Kc = 1,
and ` = m = n = p = 1, respectively.

as A = (A1,A2, . . . ,AL) and B = (B1,B2, . . . ,BL), such
that for all l ∈ [L], we have Al ∈ Fλ×κ and Bl ∈ Fκ×µ, i.e.,
Al and Bl are λ×κ and κ×µ matrices, respectively, over a fi-
nite1 field F. The sink node (user) is interested in the sequence
of product matrices, AB = (A1B1,A2B2, . . . ,ALBL). To
help with this computation, there are S servers (worker nodes).
Each of the sources encodes its matrices according to the
functions f = (f1, f2, . . . , fS) and g = (g1, g2, . . . , gS), where
fs and gs correspond to the sth server. Specifically, let us
denote the encoded matrices for the sth server as Ãs and B̃s,
so we have

Ãs = fs(A), (5)

B̃s = gs(B). (6)

1Our coding schemes are applicable over infinite fields (R,C) as well.
However, the problem statement assumes F is a finite field, because of the
difficulty of defining communication or computation costs over infinite fields.



The encoded matrices, Ãs, B̃s, are uploaded to the sth server.
Let us denote the number of elements from F in Ãs and B̃s

as |Ãs| and |B̃s|, respectively.
Upon receiving the encoded matrices, each Server s, s ∈

[S], if responsive, returns Ys, that is a function of Ãs and B̃s,

Ys = hs(Ã
s, B̃s), (7)

where hs, s ∈ [S] are the functions used to produce the answer,
and we denote them collectively as h = (h1, h2, . . . , hS).
Some servers may fail to respond, such servers are called
stragglers. The user downloads the responses from the remain-
ing servers, from which, using a class of decoding functions
(denoted d), he attempts to recover the desired product AB.
Define

d = {dR : R ⊂ [S]}, (8)

where dR is the decoding function used when the set of re-
sponsive servers is R. We say that (f, g,h, d) form a CDBMM
code. A CDBMM code is said to be r-recoverable if the user is
able to recover the desired products from the answers obtained
from any r servers. In particular, a CDBMM code (f, g,h, d)
is r-recoverable if for any R ⊂ [S], |R| = r, and for any
realization of A, B, we have

AB = dR(YR). (9)

Define the recovery threshold R of a CDBMM code (f, g,h, d)
to be the minimum integer r such that the CDBMM code is
r-recoverable.

The communication cost of CDBMM is comprised of
upload and download costs. The (normalized)2 upload costs
UA and UB are defined as follows.

UA =

∑
s∈[S] |Ãs|
Lλκ

, UB =

∑
s∈[S] |B̃s|
Lκµ

. (10)

Similarly, the (normalized) download cost is defined as fol-
lows.

D = max
R,R⊂[S],|R|=R

∑
s∈R |Ys|
Lλµ

, (11)

where |Ys| is the number of elements from F in Ys.
Next let us consider the complexity of encoding, decoding

and server computation. Define the (normalized) computa-
tional complexity at each server, Cs, to be the order of
the number of arithmetic operations required to compute
the function hs at each server, normalized by L. Similarly,
define the (normalized) encoding computational complexity
CeA for Ã[S] and CeB for B̃[S] as the order of the number
of arithmetic operations required to compute the functions
f and g, respectively, each normalized by L. Finally, define
the (normalized) decoding computational complexity Cd to be
the order of the number of arithmetic operations required to
compute dR(YR), maximized over R,R ⊂ [S], |R| = R,
and normalized by L. Note that normalizations by L are
needed to have fair comparisons between batch processing

2Upload cost and download cost are normalized with the number of
elements of F contained in A,B, and the desired product AB, respectively.

approaches and individual matrix-partitioning solutions per
matrix multiplication.

IV. MAIN RESULT

Our main result appears in the following theorem.

Theorem 1. For CDBMM over a field F with S servers, and
positive integers (`,Kc, p,m, n) such that m | λ, p | µ, n | κ
and L = `Kc ≤ |F| − S, the GCSA codes presented in this
work achieve

Recovery Threshold: R = ((`+ 1)Kc − 1)(pmn+ p− 1),

Upload Cost for Ã[S], B̃[S]: (UA, UB) =

(
S

Kcpm
,

S

Kcpn

)
,

Download Cost: D =

(
(`+ 1)Kc − 1

`Kc

)(
pmn+ p− 1

mn

)
,

Server Computation Complexity: Cs = O
(

λκµ

Kcpmn

)
,

Encoding Complexity for Ã[S], B̃[S]:

(CeA, CeB) =

(
Õ
(
λκS log2 S

Kcpm

)
, Õ
(
κµS log2 S

Kcpn

))
,

Decoding Complexity: Cd = Õ
(
λµp log2R

)
.

V. PROOF OF THEOREM 1

Let us recall a standard result for Confluent Cauchy-
Vandermonde matrices [12].

Lemma 1. If f1,1, f1,2, · · · , f`,Kc
, α1, α2, · · · , αR are R+L

distinct elements of F, with |F| ≥ R + L and L = `Kc, then
the R × R Confluent Cauchy-Vandermonde matrix in (31) is
invertible over F.

Let us now present the general construction of GCSA codes.
Simple examples to illustrate the construction are provided
in the full paper [13]. Define RE = pmn + p − 1, to be
the recovery threshold of Entangled Polynomial component
of GCSA codes. Let f1,1, f1,2, · · · , f`,Kc

, α1, α2, · · · , αS be
(S+L) distinct elements from the field F. For all l ∈ [`], k ∈
[Kc], we define cl,k,i, i ∈ {0, 1, · · · , RE(Kc − 1)} to be the
coefficients satisfying

Ψl,k(α)=
∏

k′∈[Kc]\{k}
(α+(fl,k′−fl,k))

RE =

RE(Kc−1)∑
i=0

cl,k,iα
i,

i.e., they are the coefficients of the polynomial Ψl,k(α) =∏
k′∈[Kc]\{k} (α+ (fl,k′ − fl,k))

RE , which is defined here by
its roots. Now for all l ∈ [`], s ∈ [S], let us define

∆l,Kc
s =

∏
k∈[Kc]

(fl,k − αs)RE . (12)

Split the L = `Kc instances of A and B matrices into

Al,k = AKc(l−1)+k, (13)
Bl,k = BKc(l−1)+k, (14)

for all l ∈ [`], k ∈ [Kc]. Further, for each matrix Al,k, we par-
tition it into m× p blocks, denoted as A1,1

l,k ,A
1,2
l,k , · · · ,A

m,p
l,k .



Similarly, for each matrix Bl,k, we partition it into p × n
blocks, denoted as B1,1

l,k ,B
1,2
l,k , · · · ,B

p,n
l,k . Now, for all l ∈

[`], k ∈ [Kc], let us define

P l,ks =
∑

m′∈[m]

∑
p′∈[p]

Am′,p′

l,k (fl,k − αs)p
′−1+p(m′−1), (15)

Ql,ks =
∑
p′∈[p]

∑
n′∈[n]

Bp′,n′

l,k (fl,k − αs)p−p
′+pm(n′−1), (16)

i.e., we apply EP codes for each Al,k and Bl,k. Note that
the original EP codes can be regarded as polynomials of αs,
whereas here for each (l, k), we construct the EP codes as
polynomials of (fl,k−αs). Now recall that by the construction
of EP codes, the product P l,ks Ql,ks can be written as weighted
sums of the terms 1, (fl,k − αs), · · · , (fl,k − αs)RE−1,

P l,ks Ql,ks =

RE−1∑
i=0

C
(i+1)
l,k (fl,k − αs)i, (17)

where C
(1)
l,k ,C

(2)
l,k , · · · ,C

(RE)
l,k are various linear combinations

of products of blocks of Al,k and blocks of Bl,k, and the
desired product Al,kBl,k can be obtained from them. Now
for all s ∈ [S], let us construct

Ãs = (Ãs1, Ã
s
2, . . . , Ã

s
`), B̃s = (B̃s1, B̃

s
2, . . . , B̃

s
` ), (18)

where for l ∈ [`], we have

Ãsl = ∆l,Kc
s

∑
k∈[Kc]

1

(fl,k − αs)RE
P l,ks , (19)

B̃sl =
∑
k∈[Kc]

1

(fl,k − αs)RE
Ql,ks . (20)

The answer returned by the sth server to the user is constructed
as Ys =

∑
l∈[`] Ã

s
l B̃

s
l . Let us prove that GCSA codes are

R = ((`+ 1)Kc − 1) (pmn+ p− 1) recoverable.

Ys = Ãs1B̃
s
1 + Ãs2B̃

s
2 + · · ·+ Ãs`B̃

s
` (21)

=
∑
l∈[`]

∆l,Kc
s

 ∑
k∈[Kc]

1

(fl,k − αs)RE
P l,ks


 ∑
k∈[Kc]

1

(fl,k − αs)RE
Ql,ks

 (22)

=
∑
l∈[`]

∑
k∈[Kc]

∏
k′∈[Kc]\{k}(fl,k′ − αs)RE

(fl,k − αs)RE
P l,ks Ql,ks

+
∑
l∈[`]

∑
k,k′∈[Kc]
k 6=k′

 ∏
k′′∈[Kc],
k′′ 6=k,k′

(fl,k′′ − αs)RE

P l,ks Ql,k
′

s .

(23)

Let us consider the first term in (23). For each l ∈ [`], k ∈
[Kc], we have∏

k′∈[Kc]\{k}(fl,k′ − αs)RE

(fl,k − αs)RE
P l,ks Ql,ks (24)

=

∏
k′∈[Kc]\{k} ((fl,k − αs) + (fl,k′ − fl,k))

RE

(fl,k − αs)RE
P l,ks Ql,ks

(25)

=
Ψl,k(fl,k − αs)
(fl,k − αs)RE

P l,ks Ql,ks (26)

=

(
cl,k,0

(fl,k − αs)RE
+ · · ·+ cl,k,RE−1

fl,k − αs

)
P l,ks Ql,ks

+

RE(Kc−1)∑
i=RE

cl,k,i(fl,k − αs)i−RE

P l,ks Ql,ks , (27)

where in (26), we used the definition of Ψl,k(·), and in the
next step, we rewrite the polynomial Ψl,k(fl,k −αs) in terms
of its coefficients. Let us consider the first term in (27).(

cl,k,0
(fl,k−αs)RE

+···+ cl,k,RE−1
fl,k−αs

)
P l,ks Ql,ks (28)

=

(
cl,k,0

(fl,k−αs)RE
+···+ cl,k,RE−1

fl,k−αs

)RE−1∑
i=0

C
(i+1)
l,k (fl,k−αs)i

=

RE−1∑
i=0

∑i
i′=0cl,k,i−i′C

(i′+1)
l,k

(fl,k−αs)RE−i

+

RE−2∑
i=0

(fl,k−αs)i
(
RE−1∑
i′=i+1

cl,k,RE−i′+iC
(i′+1)
l,k

)
.

(29)

We further note that both the second term in (23) and the
second term in (27) can be expanded into weighted sums of
the terms 1, αs, · · · , αRE(Kc−1)−1

s . Because RE(Kc − 1) −
1 = R − REL − 1, in the matrix form, answers from any
R = ((`+ 1)Kc − 1) (pmn + p − 1) servers, whose indices
are denoted as s1, s2, · · · , sR, can be written as follows.Ys1...

YsR

 = V̂`,Kc,RE ,RV̂
′
`,Kc,RE ,R ⊗ Iλ/mC, (30)

where V̂`,Kc,RE ,R is defined in (31),

V̂′`,Kc,RE ,R = D(T(c1,1,0, · · · , c1,1,RE−1), · · · ,
T(c`,Kc,0, · · · , c`,Kc,RE−1), IR−REL),

C =

[
C

(1)
1,1, · · · ,C

(RE)
1,1

∣∣∣∣∣ · · ·
∣∣∣∣∣C(1)

`,Kc
, · · · ,C(RE)

`,Kc

∣∣∣∣∣ ∗ · · · ∗
]T

,

and we have used ∗ to represent various combinations of
interference symbols that can be found explicitly by ex-
panding (23), whose exact forms are irrelevant. Now since
f1,1, f1,2, · · · , f`,Kc

are distinct, for all l ∈ [`], k ∈ [Kc], we
must have

cl,k,0 =
∏

k′∈[Kc]\{k}
(fl,k′ − fl,k)RE (32)

are non-zero. Hence, the lower triangular toeplitz matrices
T(c1,1,0, · · · , c1,1,RE−1), · · · ,T(c`,Kc,0, · · · , c`,Kc,RE−1) are
non-singular, and the block diagonal matrix V̂′`,Kc,RE ,R

is



invertible. Guaranteed by Lemma 1 and the fact that the Kro-
necker product of non-singular matrices is non-singular, the
matrix (V̂`,Kc,RE ,RV̂

′
`,Kc,RE ,R

) ⊗ Iλ/m is invertible. There-
fore, the user is able to recover (C

(i)
l,k)l∈[`],k∈[Kc],i∈[RE ] by

inverting the matrix. And the desired products (AlBl)l∈[L] are
recoverable from (C

(i)
l,k)l∈[`],k∈[Kc],i∈[RE ], guaranteed by the

correctness of Entangled Polynomial codes. This completes the
proof of recovery threshold R = ((`+ 1)Kc − 1) (pmn+p−
1). It is also easy to see that the upload cost UA = S/(Kcpm)
and UB = S/(Kcpn). Note that we are able to recover Lmn
desired symbols from R downloaded symbols, the download
cost is D = R

Lmn =
(

(`+1)Kc−1
`Kc

) (
pmn+p−1

mn

)
. Thus the

desired costs are achievable. Note that the encoding procedure
can be considered as products of Confluent Cauchy matrices
by vectors. By fast algorithms [14], the encoding complexity
of (CeA, CeB) =

(
Õ
(
λκS log2 S
Kcpm

)
, Õ
(
κµS log2 S
Kcpn

))
is achiev-

able. Now let us consider the decoding complexity. Note that
the decoding procedure involves matrix-vector multiplications
of inverse of Toeplitz matrix and inverse of confluent Cauchy-
Vandermonde matrix. From the inverse formula of confluent
Cauchy-Vandermonde matrix presented in [15], the matrix-
vector multiplication of the inverse of confluent Cauchy-
Vandermonde matrix V̂`,Kc,RE ,R can be decomposed into
a series of structured matrix-vector multiplications including
confluent Cauchy matrix, transpose of Vandermonde matrix,
Hankel matrix and Toeplitz matrix. By fast algorithms [14],
[16], the complexity of decoding is at most Õ(λµp log2R).
This completes the proof of Theorem 1.

VI. CONCLUSION

Inspired by the idea of Cross Subspace Alignment (CSA)
which originated in secure private information retrieval (PIR)
literature [7]–[9] and has recently found applications in secure
and private distributed computing [9]–[11], we introduce a
new class of codes, called GCSA codes, for coded distributed
batch matrix multiplication (CDBMM). GCSA codes unify,
generalize and improve upon state of art algorithms (EP codes
[5], LCC codes [6]) for CDMM. GCSA codes, which include
both LCC codes and EP codes as special cases, bridge the
extremes of matrix partitioning based approaches (EP codes)
and batch processing approaches (LCC codes), and allow
a tradeoff between server computation complexity, which
may be improved by emphasizing the matrix partitioning
aspect, and communication costs, which may be improved
by emphasizing the batch processing aspect. Even when no
matrix partitioning is used, GCSA codes improve upon LCC
codes in download-constrained settings due to cross-subspace

alignment. Further code constructions based on CSA that
generalize LCC codes for N -linear batch computations and
multivariate polynomial evaluations, as well as extensions to
include X-secure and B-byzantine settings are included in the
full paper [13].
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V̂`,Kc,RE ,R ,


1

(f1,1−α1)RE
· · · 1

f1,1−α1
· · · 1

(f`,Kc−α1)RE
· · · 1

f`,Kc−α1
1 · · · αR−REL−1

1
1

(f1,1−α2)RE
· · · 1

f1,1−α2
· · · 1

(f`,Kc−α2)RE
· · · 1

f`,Kc−α2
1 · · · αR−REL−1

2

...
...

...
...

...
...

...
...

...
...

1
(f1,1−αR)RE

· · · 1
f1,1−αR

· · · 1
(f`,Kc−αR)RE

· · · 1
f`,Kc−αR

1 · · · αR−REL−1
R

 (31)




