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Abstract—In the fifth generation and beyond (B5G), delay
constraints emerge as a topic of particular interest, e.g. for
ultra-reliable low latency communications (URLLC) such as
autonomous vehicles and enhanced reality. In this paper, we study
the performance of a two-user uplink NOMA network under
statistical quality of service (QoS) delay constraints, captured
through each user’s effective capacity (EC). We propose novel
closed-form expressions for the EC of the NOMA users and
show that in the high signal to noise ratio (SNR) region, the
“strong” NOMA user has a limited EC, assuming the same delay
constraint as the “weak” user. We demonstrate that for the weak
user, OMA achieves higher EC than NOMA at small values of
the transmit SNR, while NOMA outperforms OMA in terms of
EC at high SNRs. On the other hand, for the strong user the
opposite is true, i.e., NOMA achieves higher EC than OMA at
small SNRs, while OMA becomes more beneficial at high SNRs.
This result raises the question of introducing “adaptive” OMA /
NOMA policies, based jointly on the users’ delay constraints as
well as on the available transmit power.

Index Terms—NOMA, QoS, low latency, effective capacity,
B5G.

I. INTRODUCTION

Non-orthogonal multiple access (NOMA) schemes have

attracted a lot of attention recently, allowing multiple users to

be served simultaneously with enhanced spectral efficiency;

it is known that the boundary of achievable rate pairs (in

the case of two users) using NOMA is outside the capacity

region achievable with orthogonal multiple access (OMA)

techniques [1] or other schemes [2]. Superior achievable rates

are attainable through the use of superposition coding at the

transmitter and of successive interference cancellation (SIC)

at the receiver [3], [4]. The SIC receiver decodes multi-user

signals with descending received signal power and subtracts

the decoded signal(s) from the received superimposed signal,

so as to improve the signal-to-interference ratio. The process

is repeated until the signal of interest is decoded. In uplink

NOMA networks, the strongest user’s signal is decoded first

(as opposed to downlink NOMA networks in which the inverse

order is applied).

Besides, in a number of emerging applications, delay quality

of service (QoS) becomes increasingly important, e.g., ultra

reliable low latency communication (URLLC) systems. Fur-

thermore, in future wireless networks, users are expected to

necessitate flexible delay guarantees for achieving different

service requirements. In order to satisfy diverse delay require-

ments, a simple and flexible delay QoS model is imperative

to be applied and investigated. In this respect, the effective

capacity (EC) theory can be employed [5], [6] [7], with EC

denoting the maximum constant arrival rate which can be

served by a given service process, while guaranteeing the

required statistical delay provisioning. We studied the delay-

constrained communications for a downlink NOMA network

in [4] and with secrecy constraints [8] in [9]. The present

analysis complements [4], focusing on uplink transmissions.

NOMA, as a more spectrum-efficient technique, is considered

to be promising for supporting the massive number of devices

to access the uplink connections. Hence, we believe that it is

important to investigate the delay-constrained achievable rate

for an uplink NOMA network.

In this paper, we provide a performance evaluation of the

uplink transmission for a two-user NOMA network under

delay constraints, captured through the users’ ECs. We note

that the EC is a QoS aware data-link layer metric [6], that

captures the achievable rate under a delay violation probability

threshold.

In this work, we first derive novel closed-form expressions

for the ECs of both users; we then provide four Lemmas for

the asymptotic performance of the network with NOMA and

OMA. The conclusions drawn are supported by an extensive

set of simulations. The paper is organized as follows. In

Section II we investigate the EC of a two user uplink NOMA

system under the delay QoS constraints. Simulation results are

given in Section III, followed by conclusions in Section IV.

II. EFFECTIVE CAPACITY OF TWO-USER NOMA UPLINK

NETWORK

Assume a two-user NOMA uplink network with users U1

and U2 in a Rayleigh block fading propagation channel, with

respective channel gains during a transmission block denoted

by |h1|
2< |h2|

2. The users transmit corresponding symbols

S1, S2 respectively, with power E[|Si|
2] = Pi, i = 1, 2 and

the total power PT =
∑2

i=1 Pi = 1. Here, Pi is the power

coefficient for the user i and normalized transmission powers

are assumed [10]. The received superimposed signal can be

expressed as [11]

Z =

2∑

i=1

√
PihiSi + w, (1)
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where w denotes a zero mean circularly symmetric complex

Gaussian random variable with variance σ2. The receiver

will first decode the symbol of the strong user treating the

transmission of the weak as interference. After decoding it,

the receiver will suppress it from Z and decode the signal of

the weak user. Following the SIC principle and denoting by

ρ = 1
σ2 the transmit SNR, the achievable rates, in b/s/Hz, for

user Ui, i = 1, 2, is expressed as: [12]

Ri = log2

[
1 +

ρPi|hi|
2

1 + ρ
∑i−1

l=1 Pl|hl|2

]
. (2)

To clarify further, let θi be the statistical delay QoS ex-

ponent of the i-th user, and assume that the service process

satisfies the Gärtner-Ellis theorem [6]. The delay exponent θi
captures how strict the delay constraint is [6]. A slower decay

rate can be represented by a smaller θi, which indicates that the

system is more delay tolerant, while a larger θi corresponds to

a system with more stringent QoS requirements. Applying the

EC theory in a uplink NOMA with two users, the i-th user’s

EC over a block-fading channel, is defined as:

Ei
c = −

1

θiTfB
ln
(
E
[
e−θiTfBRi

])
(in b/s/Hz) , (3)

where Tf is the fading-block length, B is the bandwidth and

E [·] denotes expectation over the channel gains. By inserting

Ri into (3), we obtain the following expression for the EC of

the i-th user

Ei
c =

1

βi

log2

(
E

[
(1 +

ρPi|hi|
2

1 + ρ
∑i−1

l=1 Pl|hl|2
)βi

])
(4)

where βi = −
θiTfB

ln 2 , i = 1, 2, is the normalized (negative)

QoS exponent.

A. ECs in a Two-user NOMA Uplink Network

For the ordering of the channel gains we make use of the

theory of order statistics in the following analysis [13].

Assuming a Rayleigh wireless environment, the channel

gains, denoted by xi = |hi|
2, i = 1, 2, are exponentially

distributed with probability density function (PDF) and cumu-

lative density function (CDF) respectively given by f(xi) =
e−xi , F (xi) = 1− e−xi .

Then, according to order statistics [13], the ordered channel

gains have respective PDFs fi:2(xi), i = 1, 2, and joint PDF

f(x1, x2) that are expressed as

f1:2(x1) = 2e−2x1 , (5)

f2:2(x2) = 2e−x2
(
1− e−x2

)
, (6)

f(x1, x2) = 2e−x1e−x2. (7)

As a result, the EC of User 1, denoted by E1
c is expressed

as

E1
c =

1

β1
log2(E[(1 + ρP1x1)

β1 ])

=
1

β1
log2

(∫ ∞

0

(1 + ρP1x1)
β1f1:2(x1)dx1

)

=
1

β1
log2

( 2

P1ρ
× U

(
1, 2 + β1,

2

ρP1

))
. (8)

where U(·, ·, ·) denotes the confluent hypergeometric function

[4]. On the other hand, the EC of the User 2 is evaluated as

E2
c =

1

β2
log2

(
E

[(
1 +

ρP2x2

1 + ρP1x1

)β2
])

=
1

β2
log2

(∫ ∞

0

∫ ∞

x1

(
1 +

ρP2x2

1 + ρP1x1

)β2

f(x1, x2)dx2dx1

)

=
1

β2
log2

(
2P 1−β2

2 (ρP2)
β2e

1
ρP2 e

−
(P1−P2)

ρP2

)

+
1

β2
log2

(
−β2∑

j=0

(
−β2

j

)
(ρP1)

j ×

∞∑

k=0

(−1)k(P2 − P1)
k

k! (1 + j + k)

×
[
Γ[2 + β2 + j + k,

1

ρP2
]

− (ρP2)
−1−j−kΓ[1 + β2,

1

ρP2
]
])

, (9)

with Γ(·, ·) denoting the incomplete Gamma function [4].

The proof for deriving E1
c is omitted due to space limitations

while for E2
c is provided in Appendix I.

In order to perform a comparative performance analysis,

here we provide the achievable data rates for a two-user OMA

network, denoted by R̃i, i = 1, 2, given as

R̃i =
1

2
log2

(
1 + ρPT |hi|

2
)
, i = 1, 2 (10)

Note that 1
2 is due to the equal allocation of resources to both

users. The corresponding expressions are obtained for the ECs

of both users in a OMA network, denoted by Ẽi
c, given as

Ẽi
c =

1

βi

log2

(
E

[
(1 + ρPT |hi|

2)
βi
2

])

i.e, (11)

Ẽ1
c =

1

β1
log2

(
2

ρ
× U

(
1, 2 +

β1

2
,
2

ρ

))

Ẽ2
c =

1

β2
log2

(
2

ρ

1∑

k=0

(
1

k

)
(−1)k × U

(
1, 2 +

β2

2
,
1 + k

ρ

))

The proof is omitted due to space limitations.

B. Asymptotic Analysis

We first perform an asymptotic analysis with respect to the

SNR. Our results are summarized in Lemma 1.

Lemma 1: In the low and high SNR regimes, respectively,

the following conclusions hold:

1) When ρ → 0, then, E1
c → 0, E2

c → 0, Ẽ1
c → 0, Ẽ2

c → 0,

E1
c − Ẽ1

c → 0, E2
c − Ẽ2

c → 0;

2) When ρ → +∞, then E1
c → +∞, E2

c →

1
β2

log2

(
E

[(
1 + P2|h2|

2

P1|h1|2

)β2
])

, Ẽ1
c → +∞, Ẽ2

c →

+∞, E1
c − Ẽ1

c → +∞, E2
c − Ẽ2

c → −∞.

Proof: : The proof is provided in Appendix II.

Lemma 1 indicates that the ECs of both users are van-

ishingly small at low values of ρ, irrespective of employing

NOMA or OMA. On the other hand, at high SNRs, we notice



that the EC of the strong user with NOMA is limited to a finite

value. On the contrary, for the weaker user, when ρ >> 1, its

achievable EC in the NOMA uplink increases without bound.

This is the exact opposite of the downlink scenario, where

it is the weaker user which is limited in terms of EC, when

ρ >> 1 [4].

Now, the question is how the ECs evolve with ρ between

the two asymptotic regimes. To answer this question and to

further analyze the impact of ρ on the individual EC, we look

at the derivatives with the respect of ρ [4].

Lemma 2: For the EC of the User 1, in a two-user uplink

network the following hold:

1)
∂E1

c

∂ρ
≥ 0 and

∂Ẽ1
c

∂ρ
≥ 0, ∀ρ;

2) When ρ → 0, then lim
ρ→0

(
∂(E1

c−Ẽ1
c )

∂ρ
) =

P1−
1
2

ln 2 E[|h1|
2];

3) When ρ >> 1, then
∂(E1

c−Ẽ1
c )

∂ρ
≈ 1

2ρ ln 2 ≥ 0 and it

approaches 0 when ρ → ∞.

Proof: : The proof is provided in Appendix III.

Lemma 2 indicates that for User 1, when the transmit SNR

ρ is very small, the EC with OMA increases faster than the EC

with NOMA. On the other hand, Lemma 2 shows that when

the transmit SNR is very large, the EC with NOMA increases

faster than with OMA.

Combining Lemma 2 and Lemma 1, we can conclude that,

E1
c − Ẽ1

c starts at vanishingly small value, first decreases, and

subsequently increases to ∞ at a gradually reducing speed.

This means that for the weaker user, OMA achieves higher EC

than NOMA at small values of the transmit SNR ρ. At high

values of ρ, NOMA becomes more beneficial for the weak

user. Finally, when ρ → ∞ the performance gain of NOMA

over OMA reaches a constant value in the case of User 1.

Lemma 3: For the EC of the User 2, in a two-user uplink

network the following hold:

1)
∂E2

c

∂ρ
≥ 0 and

∂Ẽ2
c

∂ρ
≥ 0, ∀ρ;

2) When ρ → 0, then lim
ρ→0

(
∂(E2

c−Ẽ2
c )

∂ρ
) = P2

2 ln 2E[|h2|
2]

3) When ρ >> 1, then
∂(E2

c−Ẽ2
c )

∂ρ
≈ − 1

2 ln 2
1
ρ
< 0 and it

approaches 0 when ρ → ∞.

Proof: The proof is provided in Appendix IV.

Lemma 3 indicates that, for User 2, when the transmit SNR

ρ is very small, the uplink EC with NOMA increases faster

than that with OMA. On the other hand, when the transmit

SNR is very large, the uplink EC with OMA increases faster

than that with NOMA. Combining Lemma 3 and Lemma 1, we

can conclude that, E2
c−Ẽ2

c starts at an initial vanishingly small

value, first increases, and subsequently decreases to −∞ with

a gradually diminishing rate. This means that for the stronger

user, NOMA achieves higher EC than OMA at small values

of the transmit SNR ρ. At high values of ρ, OMA becomes

more beneficial for the strong user. Finally, when ρ → ∞ the

performance gain of OMA over NOMA reaches a constant

value, for the stronger user.

Finally, we investigate the sum ECs when using OMA and

NOMA, denoted by VN and VO ,

VN = E1
c + E2

c , (12)

VO = Ẽ1
c + Ẽ2

c . (13)

Our conclusions are drawn in Lemma 4.

Lemma 4: For the sum EC with NOMA, denoted by VN ,

and with OMA, denoted by VO, in a two-user uplink network,

the following hold:

1) ∂VN

∂ρ
≥ 0 and ∂VO

∂ρ
≥ 0, ∀ρ;

2) When ρ → 0, VN → 0, lim
ρ→0

(∂VN

∂ρ
) = P1

ln 2E[|h1|
2] +

P2

ln 2E[|h2|
2] ≥ 0, and VO → 0, lim

ρ→0
(∂VO

∂ρ
) =

P1

2 ln 2E[|h1|
2] + P2

2 ln 2E[|h2|
2] ≥ 0;

3) When ρ >> 1, VN → ∞, lim
ρ→∞

(∂VN

∂ρ
) = 0, and VO →

∞, lim
ρ→∞

(∂VO

∂ρ
) = 0.

Proof: The proof is provided in Appendix V.

Lemma 4 indicates that when NOMA is applied, the sum

EC has a constant increasing rate at small value of the transmit

SNR ρ that depends on the average of the channel power gains

and the allocated power coefficients. A similar conclusion is

reached when using OMA. On the other hand, when ρ >> 1,

Lemma 4 indicates that the rate at which the sum ECs increase

reaches a plateau, both in the case of NOMA and OMA.

III. NUMERICAL RESULTS

In this section, the Lemmas presented in Section II will

be validated through Monte Carlo simulations. We consider a

two user uplink NOMA system, with the following settings:

normalized transmission powers for both users, P1 = 0.2,

P2 = 0.8, normalized delay exponent β1 = β2 = −1 for

both users, unless otherwise stated.

In Fig. 1 the ECs of the two-user uplink NOMA and OMA

networks are depicted versus the transmit SNR. We note that

for the weak user, OMA is advantageous than NOMA for

low transmit SNRs, and NOMA is advantageous OMA at

high transmit SNRs. Reverse conclusions can be drawn for

the strong user. We notice also that the EC of the strong user

converges at high SNRs. This provides numerical validation

for Lemma 1.

Figs. 2 and 3, show respectively the EC of User 1 and User

2, versus the transmit SNR, for different values of β1 = β2 =
β. When the delay constraints become more stringent, i.e., β

decreases (equivalently, θ increases), the individual link-layer

rates in NOMA decrease, for both users.

In Fig. 4, the ECs of the strong and weak users are depicted

across different SNR values, (ρ ∈ {1, 10, 30, 40, 50} dB,

as functions of the (negative) normalized delay exponent,

for NOMA and OMA scenarios. We notice that the EC of

each user is identical for NOMA and OMA, for small and

large values of the normalized delay exponent. And with the

transmit SNR ρ increasing, the EC increases for both users.

Fig. 5 shows the difference of the EC in NOMA and the EC

in OMA of the weak user. This curve starts initially at zero,
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then decreases to a certain minimum and starts increasing at

the high values of transmit SNR. This confirms Lemma 2.

When the delay is equal to −1, we see that for ρ ∈ [−20, 15]
dB, the difference values are negative, indicating that OMA

outperforms NOMA in this range. But when ρ > 15 dB,

the values are positive, i.e., NOMA offers better link-layer

rates. However, the particular ranges depend not only on the

delay exponents but also on the power allocation coefficients.

By increasing the transmission power of the weak user and

reducing the transmission power of the strong user, we notice

that the range is reduced. That range expands when we do the

inverse. Also, when the delay becomes more stringent, e.g.,

β1=β2=-2, the zero crossing moves from 15 to 25 dB.

Figure 6 shows the difference of the EC in NOMA and the

EC in OMA for the strong user. This curve starts initially

-20 -10 0 10 20 30 40

The transmit SNR  (dB)

0

0.5

1

1.5

2

2.5

3

3.5

4

E
C

2
 (

b/
s/

H
z)

( =-1)
( =-2)
( =-5)

Fig. 3. E2
c versus the transmit SNR ρ for several delays.
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at zero, then increases to a certain maximum and starts

decreasing without bound at high values of the transmit SNR.

This confirms Lemma 3. We note that the maximum of these

curves decreases when the delay becomes more stringent.

To investigate the impact of ρ on the performance of the

total link-layer rate for the two-user system, in Fig. 7 the

plots for VN in NOMA and VO in OMA, versus the transmit

SNR are depicted for various delay exponents. The curves

demonstrate that for both NOMA and OMA, the total EC for

the two users starts at the initial value of 0 and then increases

with the transmit SNR, as outlined in Lemma 4. When ρ is

very small, the total link-layer rate for the two user in NOMA,

VN , increases faster than VO in OMA. On the contrary, with

the increase of the transmit SNR, VO becomes gradually higher

than VN . At very high values of the transmit SNR, the gap
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c versus ρ, for various normalized delay exponent.

between the sum EC with NOMA and OMA increases further.

Finally, when the delay becomes more stringent, the sum EC

of both NOMA and OMA decreases.

Finally, Figs 8 and 9 depict the sum ECs versus ρ, for

several values of the (negative) normalized delay exponent.

In Fig. 8, the delay of the strong user is fixed, while the delay

exponent of the weak user varies. It is shown that in this case,

the highest delay QoS (i.e., the smallest negative normalized

delay exponent) of the weak user corresponds to the highest

gap between the sum ECs VN −VO . On the other hand, when

the delay of the weak user is fixed, Fig. 9 shows that the

smallest delay Qos (i.e., the highest negative normalized delay

exponent) for the strong user corresponds to the largest gap

in VN − VO.

The curve of VN − VO starts at zero, increases to a
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maximum, and returns to negative values. The transition to

zero is at around ρ = 25, and ρ =20 respectively for the figures

8 and 9. That means from 0 to 25dB (20dB in the Figure 9),

the total link-layer rate of NOMA is higher than the OMA

one. And when ρ becomes larger than this transition point,

the total link-layer rate of OMA outperforms the NOMA one.

IV. CONCLUSIONS AND FUTURE WORK

The concept of the EC enabled us to study the achievable

data-link layer rates when the delay QoS guarantees are in

place in the form of delay exponents. We investigated the

EC for the uplink of a two-user NOMA network, assuming

a Rayleigh block fading channel. We derived novel closed-

form expressions for the ECs of the two users and provided a

comparison between NOMA and OMA. In NOMA networks,

we showed that the ECs of both users decrease as the delay
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constraints become stringent. On the other hand, at high

transmit SNRs, the EC of the weak user can surpass the EC

of the strong user, as the latter is limited due to interference.

This provides the possibility of switching between NOMA and

OMA according to the individual users’ delay constraints and

transmit powers. In future work, the impact of user pairing

will also be investigated.

APPENDIX I

For the second user, we have:

E2
c =

1

β2
log2

(
2

∫ ∞

0

(
ρP2

1 + ρP1x1
)β2e−x1

×

∫ ∞

x1

(1 + ρP1x1

ρP2
+ x2

)β2

e−x2dx2dx1

)
.

Set z = 1+ρP1x1

ρP2
+x2, which means we have x2 = z− 1+ρP1x1

ρP2

and dx2 = dz. Then,

E2
c =

1

β2
log2

(
2e

1
ρP2

∫ ∞

0

(
ρP2

1 + ρP1x1
)β2e−x1e

P1x1
P2

∫ ∞

1+ρx1
ρP2

zβ2e−zdzdx1

)

=
1

β2
log2

(
2(ρP2)

β2
2 e

1
2ρP2

∫ ∞

0

(1 + ρP1x1)
−β2

(1 + ρx1)
β2
2 e

(2P1−2P2−1)x1
2P2

[
W β2

2 ,
1+β2

2
(
1 + ρx1

ρP2
)
]
dx1

)

=
1

β2
log2

(
2P2(ρP2)

β2e
1

ρP2 e
−

(P1−P2)

ρP2

∫ ∞

1
ρP2

P
−β2

2 (1 + ρP1y)
−β2e(P1−P2)yΓ(1 + β2, y)dy

)
,

where W is the Whittaker W function.

Using the binomial expansion, we have (1 + ρP1y)
−β2 =∑−β2

j=0

(
−β2

j

)
(ρP1y)

j . and we get the expression given in (9).

APPENDIX II

By inserting ρ → 0 into (8) and (9), we get 1) of Lemma

1, i.e.,

lim
ρ→0

(E1
c − Ẽ1

c ) =
1

β1
log2(

E[(1 + ρP1|h1|
2)β2 ]

E[(1 + ρ|h1|2)
β2
2 ]

) = 0,

lim
ρ→0

(E2
c − Ẽ2

c ) =
1

β2
log2


E[(1 + ρP2|h2|

2

1+ρP1|h1|2
)β2 ]

E[(1 + ρ|h2|2)
β2
2 ]


 = 0.

In the same way, by inserting ρ → ∞ into (8) and (9), we

get 2) in Lemma 1, given below.

lim
ρ→∞

E2
c →

1

β2
log2(E[(1 +

P2|h2|
2

P1|h1|2
)β2 ]),

lim
ρ→∞

(E1
c − Ẽ1

c ) =
1

β1
log2(ρ

β1
2

E[( 1
ρ
+ P1|h1|

2)β2 ]

E[( 1
ρ
+ |h1|2)

β2
2 ]

) = ∞,

lim
ρ→∞

(E2
c − Ẽ2

c ) =
1

β2
log2(

E[(
1
ρ
+P1|h1|

2+P2|h2|
2

1
ρ
+P1|h1|2

)β2 ]

ρ
β2
2 E[( 1

ρ
+ |h2|2)

β2
2 ]

) =−∞.

APPENDIX III

To analyze the trends of E1
c and Ẽ1

c with respect to ρ, we

start with

∂E1
c

∂ρ
=

1

β1 ln 2

(
E[(1 + ρP1|h1|

2)β1 ]
)′

E[(1 + ρP1|h1|2)β1 ]

=
P1

ln 2

E[|h1|
2(1 + ρP1|h1|

2)β1−1]

E[(1 + ρP1|h1|2)β1 ]
≥ 0.

Similarly, for user 1 in OMA we have

∂Ẽ1
c

∂ρ
=

1

β1 ln 2

(
E[(1 + ρ|h1|

2)
β1
2 ]
)′

E[(1 + ρ|h1|2)
β1
2 ]

=
1

2 ln 2

E[|h1|
2(1 + ρ|h1|

2)
β1
2 −1]

E[(1 + ρ|h1|2)
β1
2 ]

≥ 0.

Then, we get that

∂(E1
c − Ẽ1

c )

∂ρ
=

P1

ln 2

E[|h1|
2(1 + ρP1|h1|

2)β1−1]

E[(1 + ρP1|h1|2)β1 ]

−
1

2 ln 2

E[|h1|
2(1 + ρ|h1|

2)
β1
2 −1]

E[(1 + ρ|h1|2)
β1
2 ]

,

and lim
ρ→0

(
∂(E1

c−Ẽ1
c )

∂ρ
) =

(P1−
1
2 )

ln 2 E[|h1|
2] ≤ 0. When ρ >> 1,

we have

∂(E1
c − Ẽ1

c )

∂ρ
) =

P1

ln 2

E[|h1|
2(ρP1|h1|

2)β1−1]

E[(ρP1|h1|2)β1 ]

−
1

2 ln 2

E[|h1|
2(ρ|h1|

2)
β1
2 −1]

E[(ρ|h1|2)
β1
2 ]

=
1

2ρ ln 2
≥ 0.

When ρ → ∞, this term approaches 0.



APPENDIX IV

E2
c = 1

β2
log2(E[(1 +

ρP2|h2|
2

1+ρP1|h1|2
)β2 ]), and

∂E2
c

∂ρ
=

1

β2 ln 2

(
E[(1 + ρP2|h2|

2

1+ρP1|h1|2
)β2 ]
)′

E[(1 + ρP2|h2|2

1+ρP1|h1|2
)β2 ]

=
1

ln 2

E[ P2|h2|
2

(1+ρP1|h1|2)2
(1 + ρP2|h2|

2

1+ρP1|h1|2
)β2−1]

E[(1 + ρP2|h2|2

1+ρP1|h1|2
)β2 ]

≥ 0.

In the same way, for the user 2 in OMA, we have

∂Ẽ2
c

∂ρ
=

1

β2 ln 2

(
E[(1 + ρ|h2|

2)
β2
2 ]
)′

E[(1 + ρ|h2|2)
β2
2 ]

=
1

2 ln 2

E[|h2|
2(1 + ρ|h2|

2)
β2
2 −1]

E[(1 + ρ|h2|2)
β2
2 ]

≥ 0, and

∂(E2
c − Ẽ2

c )

∂ρ
=

1

ln 2

E[ P2|h2|
2

(1+ρP1|h1|2)2
(1 + ρP2|h2|

2

1+ρP1|h1|2
)β2−1]

E[(1 + ρP2|h2|2

1+ρP1|h1|2
)β2 ]

−
1

2 ln 2

E[|h2|
2(1 + ρ|h2|

2)
β2
2 −1]

E[(1 + ρ|h2|2)
β2
2 ]

.

When ρ → 0, we have that lim
ρ→0

(
∂(E2

c−Ẽ2
c )

∂ρ
) =

(P2−
1
2 )

ln 2 E[|h2|
2]. When ρ is very large,

∂(E2
c − Ẽ2

c )

∂ρ
=

E[ P2|h2|
2

ρ2( 1
ρ
+P1|h1|2)2

(1 + ρ
ρ

(P2|h2|
2)

( 1
ρ
+P1|h1|2)

)β2−1]

ln 2E[(1 + ρ
ρ

P2|h2|2

( 1
ρ
+P1|h1|2)

)β2 ]

−
1

2 ln 2

1

ρ

E[|h2|
2( 1

ρ
+ |h2|

2)
β2
2 −1]

E[( 1
ρ
+ |h2|2)

β2
2 ]

=
E[ P2|h2|

2

ρ2(P1|h1|2)2
(1 + P2|h2|

2

P1|h1|2
)β2−1]

ln 2E[(1 + P2|h2|2

P1|h1|2
)β2 ]

−
1

2 ln 2

1

ρ

E[(|h2|
2)

β2
2 ]

E[(|h2|2)
β2
2 ]

=
P2

ρ2P 2
1

E[ |h2|
2

(|h1|2)2
(1 + P2|h2|

2

P1|h1|2
)β2−1]

ln 2E[(1 + P2|h2|2

P1|h1|2
)β2 ]

−
1

2 ln 2

1

ρ

=

P2

P 2
1 ln 2

A− 1
2 ln 2ρ

ρ2
,

where A =
E[

|h2|2

(|h1|2)2
(1+

P2|h2|2

P1|h1|2
)β2−1]

E[(1+
P2|h2|2

P1|h1|2
)β2 ]

, unrelated to ρ. Hence,

when ρ is very large,
∂(E2

c−Ẽ2
c )

∂ρ
can be approximated by

− 1
2 ln 2

1
ρ

, and it gradually approaches 0 when ρ → ∞.

APPENDIX V

Note that VN = E1
c + E2

c . By using Lemma 1, we have

lim
ρ→0

(VN ) = 0 and lim
ρ→∞

(VN ) = ∞. Then, we get that

∂VN

∂ρ
=

∂(E1
c + E2

c )

∂ρ
=

P1

ln 2

E[|h1|
2(1 + ρP1|h1|

2)β1−1]

E[(1 + ρP1|h1|2)β1 ]

+
1

ln 2

E[ P2|h2|
2

(1+ρP1|h1|2)2
(1 + ρP2|h2|

2

1+ρP1|h1|2
)β2−1]

E[(1 + ρP2|h2|2

1+ρP1|h1|2
)β2 ]

≥ 0.

When ρ → 0, we have lim
ρ→0

(∂VN

∂ρ
) = P1

ln 2E[|h1|
2] +

P2

ln 2E[|h2|
2]. When ρ → ∞, we get that

lim
ρ→∞

∂VN

∂ρ
=

1

ρ ln 2
+

E[ P2|h2|
2

(P1|h1|2)2
(1 + P2|h2|

2

P1|h1|2
)β2−1]

ρ2 ln 2E[(1 + P2|h2|2

P1|h1|2
)β2 ]

=0.

For VO in the case of OMA, we note that VO = Ẽ1
c+Ẽ2

c . By

using Lemma 1, we have lim
ρ→0

(V0) = 0 and lim
ρ→∞

(V0) = ∞.

Then,

∂V0

∂ρ
=

∂(Ẽ1
c + Ẽ2

c )

∂ρ
=

1

2 ln 2

E[|h1|
2(1 + ρ|h1|

2)
β1
2 −1]

E[(1 + ρ|h1|2)
β1
2 ]

+
1

2 ln 2

E[|h2|
2(1 + ρ|h2|

2)
β2
2 −1]

E[(1 + ρ|h2|2)
β2
2 ]

≥ 0.

When ρ → 0, we have lim
ρ→0

(∂VO

∂ρ
) = 1

2 ln 2E[|h1|
2] +

1
2 ln 2E[|h2|

2]. When ρ → ∞, we have that lim
ρ→∞

(∂VO

∂ρ
) =

lim
ρ→∞

( 1
2ρ ln 2 + 1

2ρ ln 2 ) = lim
ρ→∞

( 1
ρ ln 2 ), which equals to 0.
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