
Neural Network Coding
Litian Liu, Amit Solomon, Salman Salamatian, Muriel Médard

Research Lab of Electronics, MIT, Cambridge, MA
Email: {litianl, amitsol, salmansa, medard}@mit.edu

Abstract—In this paper we introduce Neural Network Coding
(NNC), a data-driven approach to joint source and network
coding. In NNC, the encoders at each source and intermediate
node, as well as the decoder at each destination node, are
neural networks which are all trained jointly for the task of
communicating correlated sources through a network of noisy
point-to-point links. The NNC scheme is application-specific and
makes use of a training set of data, instead of making assumptions
on the source statistics. In addition, it can adapt to any arbitrary
network topology and power constraint. We show empirically
that, for the task of transmitting MNIST images over a network,
the NNC scheme shows improvement over baseline schemes,
especially in the low-SNR regime.

Index Terms—Network Coding, Deep Learning, Neural Net-
works

I. INTRODUCTION

In recent years, there has been an increased effort towards
data-driven code constructions, e.g., [1]–[5]. As opposed to
the traditional methods, data-driven approaches make no as-
sumptions on the source statistics, which leads to a significant
improvement when looking at complex sources of data such
as images. Instead, such methods aim at discovering efficient
codes by making use of a (potentially large) pool of data, in
conjunction with a learning algorithm. A successful candidate
for the latter is Neural Network (NN), which has tremendous
potential in many application domains. Many of the previous
works have focused on the point-to-point communication
problem, under various channels. For example, learning the
physical layer representation is studied for single-input and
single-output (SISO) system in [1], multiple input and multiple
output (MIMO) system in [2] and orthogonal frequency-
division multiplexing (OFDM) system in [3]. NN-based joint
source channel coding (JSCC) is proposed for images in [4],
and for text in [5]. Though traditional techniques are optimal
in the asymptotic regimes, in practical scenarios, it was shown
in [1]–[5] that NN-based methods were competitive, and even
out-performed state of the art methods in some signal-to-noise
ratio (SNR) regimes.

In this work, we shift the scope to the network perspective,
and make a first step in broadening our understanding of
the benefits and challenges of data-driven approaches for a
networked communication scheme. More precisely, we look
at the problem of multi-casting correlated sources over a
network of point-to-point noisy channels. The problem of
multi-casting correlated sources has a long history starting
from the seminal work of Slepian and Wolf (S-W) [6]. In
the S-W problem, a direct edge exists from each source
to the destination. Csiszár showed in [7] that linear codes
are sufficient to achieve the S-W bound. For the scenario
where correlated sources have to be communicated over a

Fig. 1. NNC overview. (a) Overview with N = 4 source nodes and M = 2
destination nodes. (b) Nodes vi, vj to node vk .

point-to-point network, the achievable rates were derived in
[8]. It has been shown in [9] that random linear network
coding can be used for multi-casting correlated sources over
a network, with error exponent generalizing the linear S-W
coding [7]. However, for arbitrarily correlated sources, either
maximum a posterior (MAP) decoders or minimum entropy
(ME) decoders are required for random linear network coding.
Despite the efforts toward reducing the complexity of ME or
MAP decoders [10] [11], it is in general NP-hard to find a ME
or MAP solution. The decoding complexity of the proposed
joint coding scheme of [9] has motivated Ramamoorthy et
al. [12] to seek a separation between source and network
coding. Such separation would allow the use of efficient
source codes at the sources, followed by efficient network
codes, thus allowing an overall efficient code construction.
Unfortunately, such separation turned out to be impossible
in general. Following this, joint source and network coding
schemes with low-complexity decoders have been proposed,
but those suffer from restricted settings. For example, in [13]
sources are restricted to be binary and in [14] the number of
sources is restricted to be two. To the best of our knowledge,
there is no existing practical joint source and network coding
scheme for multi-casting arbitrarily correlated real-life signals
over a point-to-point network of arbitrary topology.

To this end, we propose an application-specific novel code
construction based on NN, which we refer to as Neural
Network Coding, or NNC for short. The NNC scheme has
the following main benefits: (a) it makes no assumptions on
the statistics of the source, but rather makes use of a seed
dataset of examples; (b) it is an end-to-end communication
scheme, or equivalently, a joint source and network coding
scheme; (c) it has practical decoders; (d) it can be applied to
any network topology; and (e) it can also be used with various
power constraints at each of the source and intermediate nodes.
Figure 1(a) demonstrates a NNC applicable scenario, where

ar
X

iv
:2

10
1.

03
89

3v
1

 [
cs

.I
T

]
 1

5
D

ec
 2

02
0

arbitrarily correlated signals are multi-cast over a communi-
cation network. In the network, there are four source nodes and
two destination nodes. In fact, NNC can find wide applications
from Internet of Things (IoT) to autonomous driving, where
correlated signals generated by distributed measurements need
to be combined for processing at central processors. In IoT and
autonomous driving, signals are task-specific, leading to an
efficient application-specific scheme. Also, latency, bandwidth
and energy can be extremely constrained in both cases, pre-
cluding computationally demanding long-block length source
and channel coding techniques, let alone joint multi-casting
scheme with ME or MAP decoders [9].

In NNC, the encoders at the source nodes and intermediate
nodes, as well as the decoders at the destination nodes, are
NNs as shown in Figure 1(b). The resulting network code
construction is jointly designed with the encoding phase and
decoding phase of the transmission, where real-valued input
signals are mapped into channel inputs, and channel outputs
are reconstructed into real-valued signals. The end-to-end
NNC scheme can be optimized through training and testing
offline over a large data set, and can be readily implemented.
Of particular interest for these codes, is the power-distortion
trade-off they achieve. In other words, for a given topology
and power constraints on the nodes, what is the expected
distortion that the code achieves, where the distortion measure
is specified. NNC is reminiscent of the auto-encoder [15]
structure. An auto-encoder is a NN trained to minimize the
distortion, e.g. Mean Square Error (MSE), between its output
and input. The end-to-end NN structure that results from
NNC scheme is similar to the auto-encoder mentioned above,
with some additional constraints imposed by the topological
structure of the physical communication network. Our exper-
imental results showed the benefit of having non-linear code
construction in this setup. Furthermore, we illustrate through
experiments on images that NNC achieves better performance
compared to a separated scheme based on a compression
scheme (JPEG [16]), followed by capacity achieving network
coding. While still in its infancy, we believe that NNC and
its variants may pave the way to an efficient way to exploit
non-linearity in codes, which appears to be an important
component to more complex networked settings.

The rest of the paper is organized as follows. Section II
describes our system model and Section III presents our design
principle. Section IV studies the power-distortion trade-off
of NNC under a variety of network conditions. Section V
summarizes the paper and discusses possible extensions.

II. SYSTEM MODEL

Throughout the paper, we use x, ~x,X, ~X to denote a scalar,
a vector, a random variable, and a random vector respectively.
We model the communication network as an acyclic directed
graph G = (V, E) [17]. Elements of V are called nodes and
elements (i, j) of E are called links. Each of the links (i, j)
is assigned an energy constraint pi,j ≥ 0, which specifies the
maximum signal energy that can be sent from node vi to node
vj . We consider two disjoint subsets S, D of V , where each

Fig. 2. An end-to-end NN example. There are n = 784 virtual sources located
at N = 2 source nodes, and there are M = 2 destination nodes. Each link
consists of 32 channels. Each node has an inner NN, to construct and decode
network codes. For example, the inner NN at each destination node has input
dimension 64 and output dimension 784. Each link is implemented with a
non-trainable NN layer of width 32.

element in S is called a source node and each element in D
is called a destination node. Let N and M denote |S| and |D|
respectively. We consider n virtual sources {si}ni=1 located at
N source nodes. Each si generates a random variable Xi ∈ R,
i = 1, . . . , n, according to the joint density function fX1,...,Xn

.
{Xi}i are arbitrarily correlated. The resulting random vector
is denoted by ~X ∈ Rn. Observe that n may not be equal
to N . This setup encompasses the case in which some of
the sources are co-located, or some physical sources generate
random variables of higher dimension, by grouping some of
the sources into a source node in S . Thus, when appropriate
we may refer to a source node s ∈ S to represent the collection
of virtual sources which are co-located at s (c.f. Experiments
section IV).

We model each link in the network as a set of parallel
channels. More precisely, two nodes vi and vj in the network
are connected via ki,j parallel noisy channels. On each link
(i, j) in the network, vi may transmit any signal ~Wi,j in
Rki,j , subject to the average power constraint on the link,
i.e. E[~W 2

i,j] ≤ pi,j . The signal ~Wi,j on each link then gets
corrupted by noise. Node vj receives a corrupted signal ~Yi,j ∈
Rki,j . In the special case of independent zero-mean Additive
White Gaussian Noise (AWGN) channels, the node vj receives
~Yi,j = ~Wi,j+ ~Ni,j , where each element of the ki,j-dimensional
vector ~Ni,j is a zero-mean Gaussian random variable with
variance σ2

i,j . Note that this setup models wireless point-to-
point communication where the ki,j independent channels are
obtained by constructing orthogonal sub-channels from the
available bandwidth [18].

We study the multi-cast problem where information gen-
erated at the source nodes must be communicated to the
destination nodes. At each destination node t ∈ D, an estimate
~Xt of the source ~X is reconstructed. Performance of the
multi-casting scheme can be evaluated by a tuple of distortion
measure δts, with each one of which defined between the
source ~X and the estimation ~Xt at a destination t.

III. NEURAL NETWORK CODING

In NNC, we design the channel inputs at the source nodes,
and at the intermediate nodes jointly – this makes NNC a joint

source and network coding scheme. Existing joint source and
network coding schemes, e.g., [9], [13], [14], [19], assume
error-free point-to-point transmission on each link, and focus
on the network layer operations. The physical layer then relies
on a separate channel coding scheme with potentially high
latency, as it is assumed that each link is employing an error
correcting code with a large block length. In contrast, in
NNC the signal inputs are directly transmitted over the noisy
channels, i.e. there are no underlying physical layer codes.
As such, the communication problem described in Section II
can be decomposed into three phases as shown in Figure 1(a):
the encoding phase, the transmission phase and the decoding
phase. NNC operates in a one-shot manner over all three
phases. In the encoding phase, real-valued signals at the source
nodes are directly mapped into network codes. The length of
a network code ~Wi,j is designed to match the number of
independent channels ki,j consisted in link (i, j). ~Wi,j can
therefore be transmitted concurrently through the noisy chan-
nels over link (i, j). In the transmission phase, network codes
~Wi,js are directly constructed at node vi from the incoming
noise-corrupted network codes

{
~Yl,i : l ∈ c(i)

}
, where c(i) is

the set of direct predecessors of vi. In the decoding phase, each
destination node reconstructs the transmitted signals directly
from the noise-corrupted network codes it receives. NNC does
not involve any long block-length source or channel coding
techniques, and therefore is free of their associated latency
penalty and computational cost.

Note that by picking a non-linear activation, the resulting
joint source and network code is non-linear by design. As
mentioned in Section I, the non-linearity in codes may be
crucial in constructing efficient codes for the problem at
hand. We design the network code from node vi to node vj
by constructing a NN with input dimension diin and output
dimension ki,j . When vi 6∈ S , diin =

∑
l∈c(i) kl,i. When

vi ∈ S, diin is the dimension of signal generated at vi. During
a transmission, the concatenation of noise-distorted network
codes received at vi, {~Yl,i : l ∈ c(i)}, is fed into the NN if
vi 6∈ S . Or the generated signal is fed into the NN if vi ∈ S.
The NN output is the network code ~Wi,j to be transmitted
over link (i, j).

Similarly, we reconstruct the input signal as ~Xt by decoding
the received noise-distorted network codes with a NN at each
destination node t. Note that NNs at destination nodes are
low-complexity decoders, since each layer of a NN is an
affine transformation followed by an element-wise non-linear
function. We say that the set of functions for constructing
and decoding network codes at each node specifies a NNC
policy for the communication system, if each of them can be
represented as a NN. Under a NNC policy, the end-to-end
resulting encoding-decoding can be seen as a series of NNs
connected via noisy links, as given by the physical network
topology. It will be convenient to represent those the noisy
links by NN-layers as well, with the main difference that
those layers have fixed (non-trainable) parameters which will
correspond to the channel statistics. Thus, under a NNC policy,

we construct an end-to-end NN, where some of the layers have
non-trainable parameters. The end-to-end NN has physical
topology of the communication system embedded, and has
NNs which are used for constructing and decoding network
code as its sub-graphs. We refer to the NNs for constructing
and decoding network code as inner NNs henceforth. Overall,
there are N input layers and M output layers in the end-to-
end NN. Each input layer has width equal to the dimension
of source generated at the node. All output layers have width
n. An illustration of an end-to-end NN is given in Figure 2.

With ~X partitioned and fed into the input layers, the outputs
of the end-to-end NN simulate { ~Xt}t, the reconstruction
at destination nodes under current NNC policy. Recall that
δt is the distortion measure between the source ~X and the
estimation ~Xt at a destination node t, as defined in Section II.
Parameters {θl}l of the NNC policy are initialized randomly
and are trained to minimize∑

t

δt +
∑
i,j

λi,jE[~W 2
i,j]. (1)

over a large data set sampled from fX1,...,Xn . Note the
optimization problem is the Lagrangian relaxation of the
problem discussed in Section II. We control the transmission
power implicitly by penalizing power in the objective function
through {λi,j}: The larger λi,j is, the more the power on link
(i, j) is penalized. The parameters of the NN policy can be
trained and tested offline1, using a variety of available tools,
e.g., [20], [21]. Note that for the simple topology of a single
hop link, NNC reduces to deep JSCC in [4] with soft control
on transmission power.

IV. PERFORMANCE EVALUATION

We studied the performance of NNC by experimenting with
multi-casting an MNIST image [22] over a butterfly network,
as shown in Figures 2,3. In this setup, there are two source
nodes (N = 2) and two destination nodes (M = 2). A
normalized MNIST image, with pixel values between 0 and 1,
is split between the two source nodes, such that each source
node observes only one half of the image. In other words,
392 out of n = 28× 28 virtual sources (pixels) are co-located
at each source node, where the top 392 pixels are located at
the first source node, and the rest at the second. Each link
in the butterfly network consists of 32 independent parallel
AWGN channels (ki,j = 32, ∀i, j), with zero-mean noise of
variance 10−4. We experimented over different power con-
straints, resulting in different SNR over the links. Performance
is evaluated by the peak signal to noise ratio (pSNR) at each
destination node, defined as

pSNRt = 10 log10(
max{Xi}2

E[(~Xt − ~X)2]
), (2)

1For the best performance, efforts are in general required to optimize over
the choice of hyper-parameters as well, as is the case in other applications
of NNs. Hyper-parameters, such as the number of layers and the activation
functions in every inner NN, can also be tuned and tested offline before
implementation.

Fig. 3. Illustration of network codes construction in NNC. (a) Butterfly network where the top destination node has a weak receiver. Both incoming links
to the top receiver suffer from low SNR. (b) Butterfly network with a weak link from the top source node to the top destination node. Transmission on that
link suffers from low SNR. The numbers on the links represent the average power per transmission on each link. (c) Butterfly network where the top source
node has a weak transmitter. Both outgoing links from the top source node suffer from low SNR.

where max{Xi} is the largest value of input pixels. The choice
of pSNR as a distortion measure is natural for images [23].
The pSNR is essentially a normalized version of the MSE and
can be used for performance comparison between inputs with
different pixel ranges.

In each experiment, we learnt a NNC policy with every
inner NN set to be two-layer fully-connected with activation
function ReLU: f(x) = x+ = max(0, x). Note that the hyper-
parameters here may not be optimal, but the results still serve
as a proof of concept. A NNC policy is trained to minimize

min
{θl}l

2∑
t=1

Hb(~X, ~X
t) +

∑
i

λi,jE[~W 2
i,j], (3)

where Hb(~X, ~X
t) is the binary cross entropy between the

original image and the reconstructed image at destination node
t. Note the dependence of Hb and ~Wi,j on {θl}l is omitted
in the expression for simplicity. We use binary cross entropy
Hb(~X, ~X

t), defined as

Hb(~X, ~X
t) = − 1

n

∑
i

Xi log(X
t
i) + (1−Xi) log(1−Xt

i),

in the objective function instead of pSNR as an engineering
tweak to speed up the training process. Each NNC policy is
learnt through training over 60000 MNIST training images for
150 epochs, and is tested on 10000 MNIST testing images.
Note that the training set and test set are disjoint. We imple-
mented the NN architecture in Keras [20] with TensorFlow
[21] backend. Adadelta optimization framework [24] is used
with learning rate of 1.0 and a mini-batch size of 32 samples.

In our experiments, we studied power-distortion trade-off of
NNC under a variety of network conditions. Different network
condition is enforced by different choice of {λi,j}: The higher
λi,j is, the less power is expected to be sent on link (i, j). We
call a link in the network “weak” if transmission on the link
suffers from lower SNR compared to other links. Weak links
are denoted by dashed arrows in the diagrams. We say a node
has weak transmitter/receiver if all its outgoing/incoming links
are weak. The nodes and links in the network are “equally
strong” if power sent on all links are penalized with the
same λ. We first qualitatively studied NNC’s performance
in heterogeneous networks. We then quantitatively studied
NNC’s performance in homogeneous networks. We analyzed

its power allocation strategy, and demonstrated the benefit
of allowing non-linearity in network code construction and
having a joint coding scheme through comparison.

A. Heterogeneous Networks

Our first set of experiments studies the performance of
NNC under a variety of network conditions. For each network
condition, we visualize in Figures 2,3 the power-distortion
trade-off by showing an instance of test image reconstruction.

Figure 2 shows the transmission of an MNIST image over a
butterfly network where all nodes and links are equally strong.
Power sent on every link (i, j) is equally penalized with a small
penalization weight λi,j in this experiment, resulting in high
SNR on all links, so image reconstruction at both destination
nodes is successful.

Figure 3(a) shows one network where the top destination
node has a weak receiver. Incoming signals to the top receiver
suffer from a low SNR. As a result, the top destination node
reconstructs the image poorly, while the bottom destination
node performs a much better reconstruction.

Figure 3(b) shows another type of such network where only
the top link is weak. As a result, the reconstruction of the upper
half of the image at the top destination node is poorer than
that at the bottom destination node. Both destination nodes
reconstruct the lower half of the image well, as both links from
the bottom source node have high SNR. Note that the middle
link carries enough information about both halves of the image
to allow the top destination node to partially reconstruct the
top half of the image. This is a result of the network adjusting
to the top link suffering from low SNR, and therefore uses its
power in other links.

The last example of a heterogeneous link conditions is
depicted in Figure 3(c). In this network, the top source node
has a weak transmitter and both outgoing links from the top
source node suffer from low SNR. As a result, both destination
nodes cannot reconstruct the upper half of the image well.
Note that both destination nodes reconstruct well the lower
half of the image, as SNR on both outgoing links from the
bottom source are high. Furthermore, we notice that the bottom
destination node performs better on the top half of the image
than the top destination node. This might be explained by the
bottom destination node being able to infer the top half of the
image better than the top destination node with knowledge

λ P nonzero > 3dB
10−5 31.4 76% 59%
10−4 6.2 67% 40%
10−3 1.1 28% 8%
10−2 0 0% 0%

TABLE I
Illustration of power allocation in a homogenous butterfly network. λ is the

power penalization parameter. P is the average transmission power per
image. nonzero is the average percentage of all channels with nonzero

power allocation per image. > 3dB is the average percentage of channels
with SNR greater than 3dB.

Fig. 4. Illustration of transmission quality with different power. The first
row of each subfigure is the original image, and the following row is
reconstruction at one of the two destination nodes of a butterfly network.
The two reconstructed images at both destination nodes were similar. (a) low
power, (b) medium power, (c) high power.

from the lower half of the image, as the two halves of the
image are correlated.

B. Homogeneous Networks

Our second set of experiments studies the power-distortion
trade-off of NNC on a homogeneous butterfly network, where
all nodes and links are equally strong. Note that since the noise
on each link is fixed, this is equivalent to studying the SNR-
distortion trade-off. The transmission power per image is im-
plicitly controlled by the value of λ. As expected, the quality of
the reconstruction improves as transmission power increases,
from Figure 4(a) (low power) to Figure 4(b) (medium power),
and finally to Figure 4(c) (high power). Note that when the
transmission power is almost forced to be zero, as shown in
Figure 4(a), both destination nodes reconstruct the average of
training data. It is essentially the best possible reconstruction
as no information flows from the sources to destinations. In
addition, Table I illustrates the power allocation of NNC with
different power budget. When limited on power, i.e., λ is large,
NNC prefers to send information on less channels with higher
SNR rather than spreading energy over more channels. Indeed,
by not allocating power to some channels, the power budget
can be used to improve the quality of the channels which carry
information. This is in line with the intuition from the water-
filling algorithm [25].

We compared the performance of NNC with two baseline
methods. The first competitor is a linear analog of NNC,
the Analog Network Coding scheme (ANC) [26]: each node
amplifies and forwards the sum of its inputs. All amplification

Fig. 5. pSNR at the two destination nodes, using NNC and ANC, as a
function of the average transmission power per image. The pSNR at two
destination nodes are equal under ANC. Note that NNC performs better in
lower transmission power.

factors are the same and the destination nodes decode knowing
the amplification factor and the network topology. Note that a
28× 28 MNIST image can be sent by NNC in one-shot, but
has to be sent over the network in 13 transmissions by ANC,
as there is no compression scheme in the ANC baseline and
thus at most 64 pixels can be sent in a single transmission.
All distortion in the reconstruction comes from the noise in
the channel under the ANC baseline.

Figure 5 compares the performance of NNC and the ANC
baseline. Transmission power in ANC is controlled by ampli-
fication factor. The average transmission power and pSNR at
both destination nodes in Figure 5 are averaged over 300 runs
over the test set. Note that performances of both scheme are
“symmetric” at destination nodes, reconstructing images with
similar pSNR. Such “symmetric” performance can be expected
since the network is homogeneous. Overall, NNC outperforms
the ANC baseline when transmission power is low, and the
ANC baseline outperforms NNC when transmission power is
high. This is consistent with [26] which shows that ANC is
in fact capacity-achieving in the high-SNR regime.

The second competitor, the JPEG baseline, is a scheme
that separates source coding from network coding: images
are compressed through the JPEG compression algorithm at
source nodes, and are then transmitted by capacity-achieving
network codes through error-free channel codes over the
network. Distortion in the reconstruction under the JPEG
baseline only comes from compression in source coding, as
the transmission is assumed to be error-free. Notice that the
JPEG baseline has potentially a high latency due to error-free
channel coding, which operates on a large block length.

In our experiments, the JPEG baseline reconstructs high
quality images with impractically high power. With the JPEG
baseline, average pSNR between a reconstructed image and
the original image ranges from 17 to 46. However, the
minimum power threshold for using the JPEG competitor is
tremendously high as 1051 per image. The need of such high
transmission power is explained by JPEG algorithm hardly

compressing MNIST images. Before compression, each half
MNIST image is 392 bytes. After compression, the average
file size of half images ranges from 350 bytes to 580 bytes for
different qualities. For small images like MNIST, the overhead
of the JPEG algorithm is significant. The same problem exists
for other compression schemes like JPEG2000. Insufficient
compression by JPEG is a representative example of how
traditional schemes may lack the ability to adapt their rates
to different communication scenarios.

V. CONCLUSION

In this paper, we proposed a novel way of constructing
network codes using NN. Our scheme, NNC, provides a
practical solution for multi-casting arbitrarily correlated sig-
nals over networks of arbitrary typologies in an application-
specific manner. NNC can be easily learnt and tested offline
and implemented in a distributed fashion. We examined the
performance of NNC under a variety of network conditions
through experiments.

Three possible extensions of the problem arise naturally.
First of all, a separate NNC policy can be learnt for each task
when multiple tasks exist asynchronously in a system. Thanks
to the simplicity of NNC implementation, multiple functions
can be implemented at one node. Signals can be designed
with a flag piggybacked to trigger task-specific functions
for constructing and decoding network codes at each node.
Second, NNC can also be extended with little effort to the
theoretically hard case when each destination node has to
reconstruct a subset of the sources [27], [28]; in the multi-
casting problem all source signals must be reconstructed at
every destination node. Third, a functional variation of NNC
can be applied when the destination nodes are interested in
functions of the input, rather than the input itself. For exam-
ple, in aforementioned experiments, destination nodes can be
interested in classifying which hand-written digit is sent, rather
than reconstructing the image itself. These extensions are not
specifically discussed in this paper due to space constraints.

Future work includes testing NNC’s performance with a va-
riety of source types, network topologies and channel models.
For example, an erasure channel can be readily implemented
by a drop-out NN layer. Previous studies on point-to-point
transmission, such as text transmission in [5] and transmission
over a multi-path channel in [3], can be extended with NNC
scheme to transmission over a network. An additional direction
could be extending NNC over elements drawn from a finite
field (as opposed to real numbers), which would allow NNC to
be used in a digital domain. Previous works on the quantization
of NNs, e.g., [29], can be referred to for this extension.

ACKNOWLEDGMENT

The authors would like to thank Yushan Su and Alejandro
Cohen for their technical help and constructive comments.

REFERENCES

[1] T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate:
Channel auto-encoders, domain specific regularizers, and attention,”
in Proc. of IEEE Int. Symp. on Signal Processing and Information
Technology (ISSPIT), Dec. 2016, pp. 223–228.

[2] T. J. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, 2017.

[3] A. Felix, S. Cammerer, S. Dörner, J. Hoydis, and S. Ten Brink,
“OFDM-autoencoder for end-to-end learning of communications sys-
tems,” in Proc. IEEE Int. Workshop Signal Proc. Adv. Wireless Commun.
(SPAWC), 2018.

[4] E. Bourtsoulatze, D. B. Kurka, and D. Gündüz, “Deep joint source-
channel coding for wireless image transmission,” IEEE Transactions on
Cognitive Communications and Networking, 2019.

[5] N. Farsad, M. Rao, and A. Goldsmith, “Deep learning for joint source-
channel coding of text,” in Proc. IEEE Int. Conf. on Acoustics, Speech
and Signal Processing(ICASSP). IEEE, 2018, pp. 2326–2330.

[6] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. theory, vol. 19, no. 4, pp. 471–480, 1973.

[7] I. Csiszar, “Linear codes for sources and source networks: Error expo-
nents, universal coding,” IEEE Trans. Inf. theory, vol. 28, no. 4, pp.
585–592, 1982.

[8] L. Song and R. W. Yeung, “Network information flow-multiple sources,”
in Proceedings. 2001 IEEE Int. Sym. Inf. Theory, 2001, p. 102.

[9] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,”
IEEE Trans. Inf. theory, vol. 52, no. 10, pp. 4413–4430, 2006.

[10] G. Maierbacher, J. Barros, and M. Médard, “Practical source-network
decoding,” in 2009 6th International Symposium on Wireless Communi-
cation Systems. IEEE, 2009, pp. 283–287.

[11] T. P. Coleman, M. Médard, and M. Effros, “Towards practical minimum-
entropy universal decoding,” in Data Compression Conference. IEEE,
2005, pp. 33–42.

[12] A. Ramamoorthy, K. Jain, P. A. Chou, and M. Effros, “Separating
distributed source coding from network coding,” IEEE/ACM Trans.
Netw., vol. 14, no. SI, pp. 2785–2795, 2006.

[13] Y. Wu, V. Stankovic, Z. Xiong, and S.-Y. Kung, “On practical design for
joint distributed source and network coding,” IEEE Trans. Inf. theory,
vol. 55, no. 4, pp. 1709–1720, 2009.

[14] A. Lee, M. Médard, K. Z. Haigh, S. Gowan, and P. Rubel, “Minimum-
cost subgraphs for joint distributed source and network coding,” in Proc.
NETCOD, 2007.

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[16] G. K. Wallace, “The JPEG still picture compression standard,” IEEE
Transactions on Consumer Electronics, vol. 38, no. 1, pp. xviii–xxxiv,
1992.

[17] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[18] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[19] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Transactions on Networking (TON), vol. 11, no. 5, pp. 782–
795, 2003.

[20] F. Chollet et al., “Keras,” https://keras.io, 2015.
[21] M. Abadi et al., “TensorFlow: Large-scale machine learning on

heterogeneous systems,” 2015, software available from tensorflow.org.
[Online]. Available: http://tensorflow.org/

[22] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[23] S. T. Welstead, Fractal and wavelet image compression techniques.
SPIE Optical Engineering Press Bellingham, Washington, 1999.

[24] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv
preprint arXiv:1212.5701, 2012.

[25] J. G. Proakis, M. Salehi, N. Zhou, and X. Li, Communication systems
engineering. Prentice Hall New Jersey, 1994, vol. 2.

[26] I. Maric, A. Goldsmith, and M. Médard, “Analog network coding in
the high-SNR regime,” in 2010 Third IEEE International Workshop on
Wireless Network Coding. IEEE, 2010, pp. 1–6.

[27] X. Yan, R. W. Yeung, and Z. Zhang, “The capacity region for multi-
source multi-sink network coding,” in 2007 IEEE Int. Sym. Inf. Theory.
IEEE, 2007, pp. 116–120.

[28] L. Song, R. W. Yeung, and N. Cai, “Zero-error network coding for
acyclic networks,” IEEE Trans. Inf. theory, vol. 49, no. 12, pp. 3129–
3139, 2003.

[29] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proc. IEEE Computer
Vision and Pattern Recognition, 2018, pp. 2704–2713.

https://keras.io
http://tensorflow.org/

	I Introduction
	II System model
	III Neural Network Coding
	IV Performance Evaluation
	IV-A Heterogeneous Networks
	IV-B Homogeneous Networks

	V Conclusion
	References

