
ar
X

iv
:2

20
1.

08
98

5v
1

 [
cs

.N
I]

 2
2

Ja
n

20
22

Actor-Critic-Based Learning for Zero-touch Joint

Resource and Energy Control in Network Slicing

Farhad Rezazadeh1, Hatim Chergui1, Loizos Christofi2, and Christos Verikoukis1
1 Telecommunications Technological Center of Catalonia (CTTC), Barcelona, Spain

2 eBOS Technologies Ltd, Lakatamia, Cyprus

Contact Emails: {frezazadeh, hchergui, cveri}@cttc.es, loizos.christofi@ebos.com.cy

Abstract—To harness the full potential of beyond 5G (B5G)
communication systems, zero-touch network slicing (NS) is viewed
as a promising fully-automated management and orchestration
(MANO) system. This paper proposes a novel knowledge plane
(KP)-based MANO framework that accommodates and exploits
recent NS technologies and is termed KB5G. Specifically, we
deliberate on algorithmic innovation and artificial intelligence (AI)
in KB5G. We invoke a continuous model-free deep reinforcement
learning (DRL) method to minimize energy consumption and
virtual network function (VNF) instantiation cost. We present
a novel Actor-Critic-based NS approach to stabilize learning
called, twin-delayed double-Q soft Actor-Critic (TDSAC) method.
The TDSAC enables central unit (CU) to learn continuously to
accumulate the knowledge learned in the past to minimize future
NS costs. Finally, we present numerical results to showcase the
gain of the adopted approach and verify the performance in terms
of energy consumption, CPU utilization, and time efficiency.

Index Terms—Actor-Critic, AI, B5G, energy efficiency, knowl-
edge plane, network slicing, resource allocation, zero-touch.

I. INTRODUCTION

N
ETWORK slicing is a key enabler for B5G syetems, as

it proposes a way of severing the network into differ-

ent segments by leveraging network softwarization and vir-

tualization technologies such as software-defined networking

(SDN) and network function virtualization (NFV). To automate

network slicing orchestration, zero-touch network and service

management (ZSM) framework reference architecture [1] has

been designed by ETSI, but the closed-loop operation of its

building blocks is still an open research problem to fulfill an

efficient and robust zero-touch management. Indeed, we still

need a knowledge plane (KP) that plays the role of a pervasive

system within the network by building and maintaining high-

level models of what the network is supposed to do, in order to

provide services and advice to other elements of the network

[2]-[3]. Specifically, the quest of automation and optimal con-

trol in dynamic telecommunication environments has aroused

intensive research on the applications of DRL. The DRL can

provide a promising technique to be incorporated in NS and

solve the control and optimization issues.

In this context, [4]-[5] have presented softwarization ap-

proaches in NS. In [6], the authors have proposed vrAIn

as a dynamic resource controller based on DRL for optimal

allocation of computing and radio resources. Li et al. have

proposed a deep deterministic policy gradient (DDPG)-based

solution to enhance energy efficiency and obtain the optimal

power control scheme [7]. Correspondingly, [8] has proposed

a method to learn the optimum solution for demand-aware

resource management in C-RAN NS. They have developed a

DRL method as GAN-DDQN to handle resource management

in NS. In [9], has leveraged advantage Actor-Critic (A2C) and

incorporated the long short-term memory (LSTM) to track the

user mobility and improve the system utility. More recently, Liu

et al. have proposed a DRL-based method called, DeepSlicing

where they decompose NS problem into a master problem and

several slave problems wherein DDPG agents learn the optimal

resource allocation policy [10]. In this paper, we present the

following contributions:

• We propose a KP for B5G NS dubbed KB5G and elaborate

on how KP can join the architectural aspects of NS to

make a harmonization in a continuous control setting

through revisiting ZSM operational closed-loop building

blocks. Specifically, we consider CPU and energy con-

sumption control and optimization.

• We propose TDSAC as an algorithmic innovation in NS.

This stochastic Actor-Critic approach supports continuous

state and action spaces in telecommunication while stabi-

lizing the learning procedure and improve time efficiency

in B5G. Moreover, it benefits from a model-free approach

to underpin dynamism and heterogeneous nature of NS

while reducing the need for hyperparameter tuning.

• We develop a 5G RAN NS environment called smartech-

v2. It integrates both CPU and energy consumption simu-

lators with an OpenAI Gym-based standardized interface

to ensure reproducible comparison of different DRL algo-

rithms.

II. KNOWLEDGE-BASED BEYOND 5G (KB5G) NETWORKS

As depicted in Figure 1, the KP encompasses machine

learning (ML) and intelligent decision to handle knowledge

discovery, data analysis, and optimization. In what follows we

elaborate on the steps in KB5G:

1) Network Slicing → Analytics Platform: The analytics

platform is gathering enough information to offer a complete

view of the network and provide current and historical data

for feeding learning algorithms. This data is categorized into

http://arxiv.org/abs/2201.08985v1

Figure 1: Proposed zero-touch KB5G network slicing.

two types, namely, users’ data and operators’ data, where both

can be either local data or global data. This platform can

rely on protocols and functions, such as network configuration

protocol (NETCONF) [11] and network data analytics function

(NWDAF) [12].

2) Analytics Platform → ML → Intelligent Decision: The

collected data is utilized by cloud computing platforms to feed

learning algorithms for knowledge discovery, data analysis,

optimization, and generally manage and control the network

to facilitate inferencing. The data analysis represents hidden

patterns in big data and can predict and model the future be-

havior of the network. The KB5G benefits from some indicative

abilities of intelligent behavior like learning from experience.

3) Intelligent Decision → SDN Controller(s): In SDN, the

northbound application programming interfaces (APIs) present

an abstraction of network functions with a programmable

interface to dictate the behavior of the network at the top

of the SDN stack. Using declarative languages for the SDN

northbound interface and translating intelligent decisions to

specific control directives is an open research question yet.

The SDN controller receives the declarative primitives through

its northbound interface and then renders the intent-driven

language into specific imperative control actions [3].

4) SDN Controller(s) → Network: Due to robustness issues,

we consider the distributed control logic [13]. The distributed

SDN consists of multiple interconnected network domains. In

NS we have software-defined radio (SDR) for C-RAN, transport

controllers, and virtual network function orchestration (NFVO)

for cloud-native Core. The SDN concept can be applied in

the KB5G through packet forwarding control protocol (PFCP)

instead of OpenFlow-enabled protocol. Indeed, OpenFlow does

not support all aspects of quality of service (QoS) issues and

it is also packet-based, while PFCP is session-based [14]-[15].

III. SYSTEM MODEL

Figure 1 shows the considered C-RAN CU-DU split-based

network architecture. A total of N access points (APs) are

covering M single-antenna users in a downlink setup, and

are connected to CU hosting control agents and running as

a set of VNFs of the same type. We define L ∈ N as

the number of slices in the network, and assume that the

mobile network operator (MNO) collects the free and unused

resources from the tenants and allocate them to the slices in

need in a periodic fashion to avoid over-heading. A maximum

of X ∈ N VNFs can be deployed on top of the cloud, endowed

with Z (z = 1, . . . , Z) active CPUs having a processing

capability of Pz million operations per time slot (MOPTS)

[16]. Let us denote hm = [h1,m, h2,m, ..., hN,M]H ∈ CN×1

as vector of channel gains from the N APs to the M users,

where (·)H is the conjugate transpose and C represents the

complex set. Moreover, we consider the optimal beamforming

vector vm = [v1,m, v2,m, ..., vN,M]H ∈ CN×1 associated with

user m and whose expression is given by [17] as vm =
√
pm

(IN+
∑

M
j=1

1
σ̂2 hjh

H
j)

−1
hm

∥

∥

∥(IN+
∑

M
j=1

1
σ̂2 hjh

H
j)

−1
hm

∥

∥

∥

, where pm is beamforming

power, IN denotes the N × N identity matrix and σ̂2 is

the noise variance. Therefore we model the received signal

rm ∈ C at user m as rm = h
H
mvmsm +

∑M
j 6=m h

H
mvjsj +nm,

where sj ∈ C is data signal to user m and received noise

nm is the white Gaussian noise with zero mean and variance

σ2. Let define the following channel model [18], hn,m =
10−L

∗(dn,m)/20
√
ϑn,mΘn,mgn,m, where L∗(dn,m) denotes the

path loss with a distance of dn,m. Moreover, ϑn,m is the

antenna gain, Θn,m is the shadowing coefficient and gn,m is

the small-scale fading coefficient. Then the achievable rate for

user m is given by Rm = log

1 +

∣
∣h

H
mvm

∣
∣
2

∑M
j 6=m |hH

mvj |2 + σ2

︸ ︷︷ ︸

SINRm

,

where SINR stands for signal-to-interference-plus-noise ratio.

Let define Gn ∈ C1×N as Gn = [0,...,0,
︸ ︷︷ ︸

n-1

1, 0, ..., 0], n > 0.

Then the power consumption for AP n serving all potential m

users can be written as [19], En
w =

∑M
m=1 v

H
mG

H
n Gnvm. Note

that the circuit power and fronthaul power consumption can

be neglected because they are small compared with transmit

power. Moreover, we consider energy consumption incurred by

the running processors. The computing resource model follows

that in [20]. We suppose ∆m is a fraction of a CPU core,

∆m = θ̂Rm + C0
︸ ︷︷ ︸

baseband

+ δ

N∑

n=1

Υ|vn,m|
︸ ︷︷ ︸

transmission

, where baseband processing

refers to coding, modulation and fast Fourier transform (FFT).

Furthermore, θ̂ is experimental value, C0 denotes constant

complexity for FFT, δ > 0 is slope parameter and Υ(·) denotes

the step function. The energy consumed by processor z in

Watts is given by ιP 3
z , where ι parameter denotes the processor

structure [21]. We define constant value ψ for VNF deployment

and then compute energy consumption in CU with respect to

total ∆m. Therefore, the whole energy consumption in network

is given by

E(t)
Net =

Z∑

z=1

ιP 3
z +

X∑

x=1

ψx

︸ ︷︷ ︸

baseband

+

N∑

n=1

M∑

m=1

v
H
mG

H
n Gnvm

︸ ︷︷ ︸

transmission

(1)

The objective is to minimize the overall network cost with

respect to the incurred computing resources and energy con-

sumption at each decision time step and thereby the continuous

model-free DRL optimization is given by

min
1

M (t)
(E(t)

Net) (2a)

subject to pm ≤ Pmax, m ∈M, (2b)

SINRm ≥ SINRth,l, m ∈M, l ∈ L, (2c)

∆m ≤ ∆th,l, m ∈M, l ∈ L. (2d)

Note that the higher traffic can induce higher costs. We consider

the number of users (M (t)) at each decision time step to

normalize and balance network cost with respect to heavy and

low traffic periods. Moreover, Pmax is an experimental value

while SINRth,l and also ∆th,l are predefined thresholds for

slice l.

IV. PROBLEM FORMULATION

Problem (2) can be formulated from a Markov decision

process (MDP) perspective, where the objective is to achieve

lower total costs under user QoS, predefined thresholds, and

computing resource constraints. This reflects the correlation be-

tween energy consumption and CPU usage, where beamform-

ing power pm for each user affects SINR that in turn influences

computing resource consumption. The MDP can be solved by

finding an optimal policy for selecting the best actions with

respect to beamforming power and computing resource alloca-

tion. Indeed, the MDP is mathematically characterized by a 5-

tuple (S,A, P, γ,R) where S is the state space, A refers to the

action space, P denotes the transition probability from current

state s to the next state s′, γ is the reward discounting hyperpa-

rameter, and R stands for the reward function. The state value

function for the policy π is an explicit measure of how much

reward to expect, Vπ(s) = Eπ [
∑∞

n=0 (γ
nRt+n+1|St = s)] and

is defined as action-value function (referred as Q-Function)

Qπ(s, a) = Eπ [
∑∞

n=0 (γ
nRt+n+1|St = s, At = a)]. The con-

cerned MPD problem is defined as follows:

-State space: The state space provides input data about pos-

sible network configurations for agent via interaction with NS

environment parameters. In our scenario, the state transits to the

next state at each time step t by S(t) = {S(t)
1 , S

(t)
2 , S

(t)
3 , S

(t)
4 },

where (S
(t)
1) is the number of arrival requests for each slice cor-

responding to each VNF, (S
(t)
2) refers to computing resources

allocated to each VNF, (S
(t)
3) shows energy status, (S

(t)
4) refers

to number of users being served in each slice.

-Action space: We consider vertical scaling for computing

resources consists of either scaling up or down procedure.

The CU selects continuous value action with respect to traffic

fluctuations to learn how to properly scaling up/down a VNF

and thereby according to time step, we have A(t)
CPU ∈ {o|o ∈

R,−C(t)
Net ≤ o ≤ C(t)

Z − C(t)
Net}, where A(t)

CPU is vertical

scaling action for CPU resources, C(t)
Z is CPU capacity and

C(t)
Net denotes the total CPU requirements. Moreover, we assign

beamforming power according to SINR constraint, A(t)
P ∈

{o|o ∈ R, 0 ≤ o ≤ P(t)
max} the complete continuous multi-

action space is given by A , A(t)
CPU ∪ A(t)

P .

-Reward: Due to to guide the agent for learning good results,

we define χ
(t)
T as constraints function that is given by the

following piecewise function,

χ
(t)
T

=

{

0, if SINRm ≥ SINRth,l and ∆m ≤ ∆th,l

1, otherwise
(3)

Accordingly, we define the penalty function as ε
(t)
m =

−̺m1
(

χ
(t)
T = 1

)

, where ̺m is the penalty coefficient for not

fulfilling constraints and ̺SINR
m > ̺CPU

m . The objective is

maximize the total return R(t),

R(t) =

1
1

M(t)
(E

(t)
Net

)
+
∑M

m=1 ε
(t)
m

ω̂
(4)

where ω̂ is a hyperparameter that guarantees R(t) ∈ [−1, 1].
Deep neural network (DNN) uses this return function for

training while satisfying the main goal of overall objective

function (2).

V. TWIN-DELAYED DOUBLE-Q SOFT ACTOR-CRITIC

Actor-Critic methods are a combination of policy optimiza-

tion and Q-Learning. We use ρπ(st) and ρπ(st, at) to denote

the state and state-action distribution respectively that induced

by policy π in NS environment π(at|st). Unlike the DDPG

[22] and TD3 [23], the TDSAC benefits from stochastic policy

gradient. The basic idea behind policy-based algorithms is to

adjust the parameters φ of the policy in the direction of the

performance gradient ∇φJ(πφ) concerning the policy gradient

theorem [24]. The goal in standard RL is to learn a policy

π(at, st) which maximizes the expected sum of rewards. We

consider a more general entropy-augmented objective concern-

ing stochastic policies approach where augments the objective

with a policy entropy term H over ρπ(st). Maximum entropy

RL can optimize the expected return and also the entropy

of the policy and thereby improves the exploration efficiency

of the policy. The objective for finite-horizon MDPs is given

by, Jπ = E

[
∑T

i=t γ
i−t[ri + αH(π(·|si))]

]

. As we mentioned

before, γ is the discount factor. The temperature parameter α

determines the relative importance of the H against the reward,

thereby handle the stochasticity of the optimal policy. Maxi-

mum entropy RL gradually proceeds toward the conventional

RL α → 0.

Let us define entropy-augmented accumulated return or soft

return as Gt =
∑T

i=t γ
i−t[ri − α log π(ai|si)]. Then we can

define soft Q-value with respect to policy π as Qπ(st, at) =
E[r] + γE[Gt+1]. We use soft policy iteration method for

learning optimal maximum entropy policies that alternates

between soft policy evaluation and soft policy improvement.

In the soft policy iteration, we wish to compute the value of

a policy π according to the maximum entropy objective [25],

thus the soft Q-value can be learned by applying a Bellman

operator T π under policy π repeatedly as, T πQπ(s, a) =
E[r] + γE[Qπ(s

′, a′) − α log π(a′|s′)], The optimality and

convergence of soft policy iteration have been verified in [26].

The main goal is to find a new policy πnew that is better

than the current policy πold and thereby Jπnew
≥ Jπold

. This

particular choice of update can be accomplished by maximizing

the entropy-augmented objective (Jπ) with respect to soft Q-

value, πnew = argmax
π

E[Qπold
(s, a)− α log π(a|s)].

Our method (TDSAC) incorporates the following key ap-

proaches. The main aim is to stabilize the learning and improve

time efficiency while mitigating very high sample complexity

and meticulous hyperparameter tuning: 1) The (clipped) double

Q-learning technique [23] parameterizes critic networks and

critic targets by θ1, θ2 and θ′1,θ′2 respectively. Unlike the TD3

in TDSAC, the next state-actions used in the target come from

the current policy (φ) instead of a target policy. 2) The target

in Q-learning depends on the model’s prediction so cannot be

considered as a true target. To address this problem, we use

another target network instead of using Q-network to calculate

the target. 3) In TDSAC, the delayed strategy updates the

policy, temperature, and target networks less frequently than

the value network to estimate the value with a lower variance

to have better policy [23]. 4) Experience replay enables RL

to reuse and also memorize past experiences to solve the

catastrophic interference problem. In our method, we store

(st, at, rt, st+1) to train deep Q-Network and sample random

many batches from the experience replay β (buffer/queue) as

training data. We take a random batch B for all transitions

(stB , atB , rtB , stB+1).

Let us define Qθ(s, a) and πφ(a|s) as parameterized func-

tions to approximate the soft Q-value and policy, respectively.

We consider a pair of soft Q-value functions (Qθ1 , Qθ2)
and separate target soft Q-value functions (Qθ′

1
, Qθ′

2
). We

calculate the update targets of Qθ1 , Qθ2 according to y =
r + γ(min

i=1,2
Qθ′

i
(s′, a′)) − α log πφ(a

′|s′), a′ ∼ πφ we can

Algorithm 1: TDSAC-based Network slicing

Initialize actor network φ and critic networks θ1, θ2
Initialize (copy parameters) target networks θ′

1, θ′

2
Initialize learning rate ℓα, ℓQ, ℓπ
Initialize replay buffer β
Import custom gym NS environment (‘smartech–v2’)

while t < max_timesteps do

if t < start_timesteps then
a = env.action_space.sample()

else
Select action a ∼ πφ(a|s)

end

next_state, reward, done, _ = env.step(a)

store the new transition (st, at, rt, st+1) into β
if t ≥ start_timesteps then

sample batch of transitions (stB , atB
, rtB , stB+1)

θi ←− θi − ℓQ∇θi
JQ(θi), i=1,2 #Update soft Q-function

if t mod freq then
φ←− φ + ℓπ∇φJπ(φ) #Update policy weights

α←− α− ℓα∇αJ(α) #Adjust temperature

θ′

i ←− τθi + (1− τ)θ′

i i=1,2 #Update target network
end

end

if done then
obs, done = env.reset(), False

end

t=t+1
end

train soft Q-value by directly minimizing,

JQ(θi) = E[(y −Qθi(s, a))
2], i = 1, 2 (5)

To obtain lower variance estimates, we use the reparameter-

ization trick [25] and reparameterize the policy using a neural

network transformation where a = fφ(ξ; s). Therefore, the

policy update gradients with respect to experience replay (β)

is given by

∇φJπ(φ) = E[−∇φα log(πφ(a|s)) + (∇aQθ(s, a)

−α∇a log(πφ(a|s))∇φfφ(ξ; s))]
(6)

We can update temperature α by minimizing the following

objective

J(α) = E[−α log πφ(a|s)− αH] (7)

To enforce action bounds in algorithms with stochastic policy,

we use an unbounded Gaussian as the action distribution [26].

The proposed approach is summarized in Algorithm 1.

VI. NUMERICAL RESULTS

We use a PyTorch custom environment interfaced through

OpenAI Gym as the most famous simulation environment in

the DRL community and evaluate our method described in

Section V against other SoA DRL approaches, namely, TD3

[23], DDPG [22], and SAC [26] with a minor change to

keep all algorithms consistent. We consider three slices (A,

B, and C) with different constraints where the number of new

service requests for VNFs follows a distributed homogeneous

Poisson process. There exist 20 APs and a maximum of 50

registered subscribers assigned to different slices randomly and

the algorithm computes the computing requirements to allocate

to the relevant VNF. The dedicated subscribers to Slice-A are

less than Slice-B and Slice-C. Table I provides a comparison

of architectures and hyperparameters while Table II presents

Table I: Comparison of hyperparameters tuning in simulation.

Architecture DDPG SAC TD3 our Method (TDSAC)

Method Actor-Critic Actor-Critic Actor-Critic Actor-Critic

Model Type Multilayer perceptron Multilayer perceptron Multilayer perceptron Multilayer perceptron

Policy Type Deterministic Stochastic Deterministic Stochastic

Policy Evaluation TD learning Double Q-learning Clipped double Q-learning Clipped double Q-learning

No. of DNNs 4 6 6 5

No. of Policy DNNs 1 1 1 1

No. of Value DNNs 1 2 2 2

No. of Target DNNs 2 3 3 2

No. of hidden layers 2 2 2 5

No. of hidden units/layer 200 256 400/300 128

No. of Time Steps 2e6 2e6 2e6 2e6
Batch Size 64 256 100 128

Optimizer ADAM ADAM ADAM ADAM

ADAM Parameters (β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)

Nonlinearity ReLU ReLU ReLU GELU [28]

Target Smoothing (τ) 0.001 0.005 0.005 0.001

Exploration Noise θ, σ = 0.15, 0.2 None N (0, 0.1) None

Update Interval (freq) None None 2 2

Policy Smoothing None None ǫ ∼ clip(N (0, 0.2),−0.5, 0.5) None

Expected Entropy(H) None -dim(Action) None -dim(Action)

Actor Learning Rate 0.0001 0.0001 0.001 0.001

Critic Learning Rate 0.001 0.0001 0.001 0.001

Discount Factor 0.99 0.99 0.99 0.99

Replay Buffer Size 1e6 1e6 1e6 1e6

network parameters. The DNNs structure for the actor-critic

networks and target networks are the same. We have set the

hyperparameters following extensive experiments [27]. The

evaluation computes every 20000 iterations concerning the av-

erage return over the best 3 of 5 episodes. The start_timesteps

denotes the initial time steps for random policy to fill the buffer

with enough samples. Moreover, the curves are smoothed for

visual clarity in terms of the confidence interval.

Table II: Network parameters in simulation.

Network Parameter Value

Channel bandwidth 10 MHz

Background noise (σ2) -102 dBm

Antenna gain (ϑn,m) 9 dBi

Log-normal shadowing (Θn,m) 8 dB

Small-scale fading distribution (gn,m) CN (0, I)

Path-loss at distance dn,m (km) 148.1+37.6 log2(dm,n) dB

Distance dm,n distributed uniformly [0, 600]

(ι, Pz) (10−26, 109)

As shown in Figure 2, the learning curve of TDSAC outper-

forms all other algorithms in the final performance. Note that

0 20 40 60 80 100

Time Steps (2e4)

0.5

0.4

0.3

0.2

A
v
e
ra

g
e
 R

e
tu

rn

Figure 2: Learning curves of the smartech-v2 network slicing

environment and continuous control benchmarks.

the scenario has a big and complex state space. The learning

procedures are based on interaction with the NS environment.

The NS has different network configurations and parameters

(states) and thereby the curves experience high fluctuation

during learning. As we mentioned in Sec. IV, we use a reward-

penalty approach for constraints and thresholds in Problem (2).

Indeed, this experimental approach (Eqn. 4) can lead the agent

to good results because the problem formulation (2) is general.

Figure 3 demonstrates the time efficiency of the different

algorithms in terms of the wall-clock time consumption on the

custom NS environment (smartech-v2). The results show that

the TDSAC method yields performance improvement and it has

comparable performance to TD3 and lower than SAC. Note

TDSAC SAC TD3 DDPG

0

500

1000

1500

2000

2500

W
a
ll
-c

lo
c
k
 t

im
e
 (

s
)

Figure 3: Time efficiency comparison of different algorithms

on the custom environment (smartech-v2).

that DDPG uses 4 DNNs (Table I) in its architecture and this

results in lower wall-clock time consumption compared to other

methods but it has the lowest average return between methods

and thereby we should compare wall-clock time with average

return. All evaluations were run on a single computer with a

3.40 GHz 5 core Intel CPU and evaluation is according to the

average per 50 time steps and based on 100 evaluations.

We consider the trade-off between CPU resource usage and

energy consumption by defining a cross-layer and correlated

cost function (Eqn. 1). Figures 4-(a), 4-(b), and 4-(c) show that

the performance of TDSAC is better than other approaches.

The agent learns to decrease VNFs instantiation and thereby

reduce energy in the baseband part while tuning optimal

wireless transmission power. In some scenarios, DDPG cannot

(a) Energy (Slice A)

0 25 50 75 100

Time Steps (2e4)

200

250

300

350

400

A
v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti

o
n
 (

W
/u

)

(b) Energy (Slice B)

0 25 50 75 100

Time Steps (2e4)

200

250

300

350

400

A
v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti

o
n
 (

W
/u

)

(c) Energy (Slice C)

0 25 50 75 100

Time Steps (2e4)

200

250

300

350

400

A
v
e
ra

g
e
 p

o
w

e
r

c
o
n
s
u
m

p
ti

o
n
 (

W
/u

)

(d) Energy (Network)

0 25 50 75 100

Time Steps (2e4)

10

15

20

25

30

35

40

45

C
P
U

 u
ti

li
z
a
ti

o
n
(%

)

(e) CPU utilization

Figure 4: Network performance and costs comparison between TDSAC and other DRL benchmarks. The curves are smoothed

for visual clarity. The solid lines demonstrate the mean and the shaded regions correspond to confidence interval over 3 trials.

learn perfectly because of some issues such as overestimation

and lack of stable learning behavior, whereas the TDSAC,

TD3, and SAC used the referred techniques (see Section (V))

to reduce overestimation, stabilize the training, surmount the

curse of dimensionality, solve gradient explosion, and mitigate

catastrophic forgetting problems. Note that a large part of

energy consumption is constant and agent cannot minimize

these values. In Figures 4-(d) and 4-(e), we consider MNO and

slices (tenants) as a unified network where slices are isolated

and trade-off computing resources with MNO. As shown in

Figures 4-(d) and 4-(e), the TDSAC has a better performance

compared with other methods. The TDSAC has better resource

control between MNO and tenants. We consider CPU utilization

efficiency as the ratio of exploited computing resources with

respect to the total available CPU for the execution of a VNF.

VII. CONCLUSION

To fulfill zero-touch NS, a knowledge-based scheme with an

efficient resource provisioning ability should be adopted. We

have proposed a KP for B5G NS called, KB5G and elaborated

on how KP can solve control and optimization problems in NS.

Specifically, we have deliberated on algorithmic innovation and

AI-driven approach and also proposed a continuous model-free

DRL method called, TDSAC to minimize energy consumption

and VNF instantiation cost. Meanwhile, we have compared

the network performance and costs between TDSAC and other

DRL benchmarks. We have shown that the proposed solution

outperforms other DRL methods.

ACKNOWLEDGEMENT

This work has been supported in part by the research projects

5GSTEPFWD (722429), MonB5G (871780), 5G-SOLUTIONS

(856691), AGAUR(2017-SGR-891) and SPOT5G (TEC2017-

87456-P).

REFERENCES

[1] ETSI GS ZSM 002, “Zero-touch Network and Service Management
(ZSM); Reference Architecture,” 2019.

[2] D. D.Clark et al., “A knowledge plane for the Int.,” in SIGCOMM, 2003.
[3] A. Mestres et al., “Knowledge-defined networking,” in ACM SIGCOMM

Computer Communication Review, Vol. 47, no. 3, 2017.

[4] NGMN Alliance, “5G White Paper”, Feb 2015.

[5] ETSI Group Spec., “Network Functions Virtualization (NFV): Manage-
ment and Orchestration, V1.1.1”, Dec. 2014.

[6] Jose A. Ayala-Romero et al., “vrAIn: A Deep Learning Approach
Tailoring Computing and Radio Resources in Virtualized RANs,” in ACM

Mobicom, 2019.
[7] H. Liet al., “Deep Deterministic Policy Gradient Based Dynamic Power

Control for Self-Powered Ultra-Dense Networks,” in Globecom, 2018.
[8] Y. Hua et al., “Gan-powered deep distributional reinforcement learning

for resource management in network slicing,” in IEEE JSAC, vol. 38, no.
2, pp. 334-349, 2019.

[9] R. Li et al., “The LSTM-based Advantage Actor-Critic Learning for
Resource Management in Network Slicing with User Mobility,” in IEEE

Communications Letters, vol. 24, no. 9, pp. 2005-2009, 2020.
[10] Q. Liu et al., “DeepSlicing: Deep Reinforcement Learning Assisted

Resource Allocation for Network Slicing,” in arXiv:2008,07614, 2020.
[11] 5G - Configuration with NETCONF, 2019, [Online]. Available:

https://wiki.onap.org/display/DW/5G+-+Configuration+with+NETCONF.
[12] S. Barmpounakis et al., “Data Analytics for 5G Networks: A Complete

Framework for Network Access Selection and Traffic Steering,” in Int.

Journal on Advances in Telecommun., vol. 11, no. 3 & 4, 2018.
[13] T. Thomas and N. T.Bhuvan, “Study on Distributed SDN Controllers and

Failover Mechanisms,” in IJIRCCE, Vol. 5, no. 4, pp. 7183-7185, 2017.
[14] LTE-Interface between the Control plane and the User Plane of EPC

Nodes (3GPP TS 29.244 version 14.0.0 Release 14), 2017.
[15] I. Alawe et al., “On evaluating different trends for virtualized and SDN-

ready mobile network,” in IEEE CloudNet, 2017.
[16] S. Moe et al., “Machine Learning in Control Systems: An Overview of

the State of the Art,” in AI XXXV, SGAI 2018, pp. 250-265, 2018.
[17] E. Bjornson et al., “Optimal multiuser transmit beamforming: A difficult

problem with a simple solution structure,” in IEEE Signal Processing

Magazine, vol. 31, no. 4, pp. 142-148, 2014.
[18] Y. Shi et al., “Group sparse beamforming for green Cloud-RAN,” in IEEE

Transactions on Wireless Commun., Vol. 13,No. 5, pp. 2809-2823, 2014.
[19] M. Peng et al., “Energy-efficient resource allocation optimization for

multimedia heterogeneous cloud radio access networks,” in IEEE Trans.

Multimedia, vol. 18, no. 5, pp. 879-892, 2016.
[20] Y. Liao et al., “How much computing capability is enough to run a cloud

radio access network?,” in IEEE Comm. Letters, vol. 21, no. 1, pp. 104-
107, 2017.

[21] J. Tang et al., “System cost minimization in cloud RAN with limited
fronthaul capacity,” in IEEE TWC, vol. 16, no. 5, pp. 3371-3384, 2017.

[22] T.P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” in ICLR, 2016.

[23] S. Fujimoto et al., “Addressing function approximation error in actor-
critic methods,” in ICML, 2018

[24] D. Silver et al., “Deterministic policy gradient algorithms,” in ICML,

2014.
[25] T. Haarnoja et al., “Soft actor-critic algorithms and applications,” in

arXiv:1812.05905, 2018.
[26] T. Haarnoja et al., “Soft actor-critic: Off-policy maximum entropy deep

reinforcement learning with a stochastic actor,” in ICML, 2018.
[27] F. Rezazadeh et al., “Continuous Multi-objective Zero-touch Network

Slicing via Twin Delayed DDPG and OpenAI Gym,” in IEEE GLOBE-

COM, 2020.
[28] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),”

[Online]. Available: https://arxiv.org/pdf/1606.08415.pdf

	I Introduction
	II Knowledge-based Beyond 5G (KB5G) Networks
	III System model
	IV Problem formulation
	V Twin-delayed double-Q Soft Actor-Critic
	VI Numerical Results
	VII Conclusion
	References

