
Experimental Study on Probabilistic ToA and AoA
Joint Localization in Real Indoor Environments

Chunhua Geng
MediaTek USA Inc.
Irvine, CA, USA

chunhua.geng@mediatek.com

Traian E. Abrudan
Nokia Bell Labs
Espoo, Finland

traian.abrudan@nokia-bell-labs.com

Veli-Matti Kolmonen
Nokia Bell Labs
Espoo, Finland

veli-matti.kolmonen@nokia-bell-labs.com

Howard Huang
Nokia Bell Labs

Murray Hill, NJ, USA
howard.huang@nokia-bell-labs.com

Abstract—In this paper, we study probabilistic time-of-arrival
(ToA) and angle-of-arrival (AoA) joint localization in real indoor
environments. To mitigate the effects of multipath propagation,
the joint localization algorithm incorporates into the likelihood
function Gaussian mixture models (GMM) and the Von Mises-
Fisher distribution to model time bias errors and angular
uncertainty, respectively. We evaluate the algorithm performance
using a proprietary prototype deployed in an indoor factory
environment with infrastructure receivers in each of the four
corners at the ceiling of a 10 meter by 20 meter section. The
field test results show that our joint probabilistic localization
algorithm significantly outperforms baselines using only ToA
or AoA measurements and achieves 2-D sub-meter accuracy
at the 90%-ile. We also numerically demonstrate that the joint
localization algorithm is more robust to synchronization errors
than the baseline using ToA measurements only.

Index Terms—Indoor positioning, probabilistic localization,
time-of-arrival (ToA), angle-of-arrival (AoA), multipath propa-
gation, prototype, field tests

I. INTRODUCTION

With the proliferation of ubiquitous wireless devices, rang-
ing from sensors to cell phones to VR/AR equipment to robots,
the capability of determining the device positions in complex
indoor environments has becomes integral in modern wireless
networks. Indoor localization enables wide-scale applications
and services, including indoor navigation, warehouse asset
tracking and management, contextual-aware marketing and
customer assistant, building surveillance, location based health
services, among others [1]. For this reason, it has attracted
considerable research interest from both academia and industry
in the past decade.

One of the fundamental challenges in wireless indoor lo-
calization is multipath propagation. Due to reflections and
diffraction by walls and conductive objects in the indoor en-
vironments, multiple replicas of the same transmitted wireless
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signal may arrive at receivers with different delays and com-
plex gains, and from multiple angles w.r.t. line-of-sight (LOS).
Consequently, the harsh propagation conditions pose serious
challenges in deconvolving the LOS component, and leads
to significant consequences for localization performance. For
instance, in the widely-accessible time-of-arrival (ToA) local-
ization systems [2]–[4], multipath introduces positive channel
biases, which degrade the localization accuracy significantly
in hostile environments. Similarly, for angular estimation in
angle-of-arrivial (AoA) localization, multipath appears as a
combination of several coherent signals arriving at the antenna
array at different angles, which makes the angular estimation
very challenging.

To effectively mitigate channel bias errors, a Bayesian
probabilistic algorithm has been introduced recently [5] for
ToA localization, where the channel bias is modeled as a
random variable (RV) following Gaussian mixture models
(GMM), and incorporated into a maximum-a-posterior (MAP)
estimation to determine the device position in a robust way.
This algorithm has been generalized from various perspectives.
For instance, in [6], [7] the probabilistic algorithm has been
applied to hybrid positioning with both cellular networks and
global navigation satellite systems (GNSS); in [8], it has
been extended to account for the channel correlations among
different locators; and in [9] a computational efficient approach
based on expectation propagation [10] is proposed to solve the
non-linear and non-convex MAP estimation.

In this paper, to improve the indoor localization accuracy
we advocate a joint ToA and AoA probabilistic 3-D localiza-
tion algorithm, and evaluate its performance with a carefully
designed prototype system in real indoor environments. In
the joint localization algorithm, we leverage the probabilistic
approach for ToA positioning in [5], and directional statis-
tics [11] to model the uncertainty of the AoA estimates. The
adoption of directional statistics here is motivated by the fact
that angles are periodic in their nature, i.e., they are defined
on a circle of sphere, rather than Euclidean space. Therefore,
the standard Gaussian distribution is not the most appropriate.
To the best of our knowledge, directional statistics have been
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used for the first time for 2-D AoA positioning in [12], [13] by
employing the von Mises distribution, and for 3-D positioning
in [14], [15] by employing the more general von Mises-
Fisher distribution. Other 2-D probabilistic AoA positioning
approaches can be found in [16], [17].

Notably, in previous studies (e.g., [18], [19]), joint ToA
and AoA localization has been mostly analyzed from a theo-
retical perspective and evaluated with simulated data in 2-D
layout. Specifically, for the probability approach, an example
can be found in a very recent study in [13]. One of the
main contributions in our paper is that we experimentally
demonstrate the superiority of probabilistic joint ToA and
AoA localization in real world. Towards this end, we set up
proprietary ToA and AoA localization systems (both having
multiple locators) in a real indoor factory environment and
assess the joint ToA and AoA localization performance with
over-the-air measurements, in order to capture the effects
of real propagation conditions of the complex indoor en-
vironments, as well as the hardware imperfections. Real-
world measurements have also been used in several previous
studies on indoor localization. For instance, in [20]–[23], the
localization algorithms using a single locator (i.e., access
point in WiFi or base station in LTE) have been evaluated
in indoor environments. Specifically, Chronos in [20] is based
on trilateration to estimate the target position; MonoLoco in
[21] is based on triangulation with the help of multipath
reflections; SPRING in [22] and the LTE testbed in [23] use
angular and ranging measurements to directly compute the
target location. In [24], a localization system, named SpotFi, is
developed based on jointly processing ToA, AoA, and received
signal strength indicator (RSSI) from multiple locators, where
the ranging measurements are specifically utilized to help
identify the AoA LOS component. It is noteworthy that many
aforementioned algorithms (e.g., in Chronos, MonoLoco and
SpotFi) rely on low-level measurements, such as channel state
information (CSI) per subcarrier per antenna. In our algorithm,
what we need is only high-level ToA and AoA estimations for
each locator, which is an advantage since in many applications
and services the low-level information like CSI is not disclosed
by the vendors. The field test results demonstrate that our joint
localization algorithm significantly outperforms the baselines
using either ToA or AoA data only, achieving sub-meter
level accuracy at 90%-ile for horizontal localization (given
inter-locator distances no less than 10 meters). In addition,
we also numerically illustrate that compared with the ToA
baseline, the joint localization algorithm is much more robust
to synchronization errors.

II. PROBLEM FORMULATION

Consider a joint ToA and AoA localization system with K
ToA locators and B AoA locators. We denote the unknown
user device (UD) location by x = [x, y, z].1 All ToA locators

1We assume the localization system is an uplink system, where the UD
broadcasts the positioning reference signals, and the locators receive the
signals and estimate the user’s position. The algorithm presented in this paper
can be easily adapted for downlink systems.
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Fig. 1: Illustration of the 3-D angular positioning.

are time-synchronized with each other, but not with the UD.
Denote the ToA of the positioning reference signal at k-th ToA
locator by2

tk = ||pk − x||+ τ + γk + nk, ∀k ∈ {1, 2, . . . ,K} (1)

where pk = [xk, yk, zk] is the position of the k-th ToA locator
(in the World frame), τ is the unknown transmit time of the
reference signal with respect to the clock at locators, γk rep-
resents the channel bias introduced by unresolvable multipath
and NLOS reflections, and nk ∼ N (0, σ2) accounts for both
the locator synchronization errors and the ToA measurement
error due to thermal noise. Following [5], we assume that the
channel bias γk is a RV following GMM with Lk components,
i.e.,

p(γk) =

Lk∑
i=1

wik

σ̃ik
√
2π

exp

[
− 1

2σ̃2
ik

(γk − µik)2
]

(2)

where wik, σ̃2
ik, and µik represent the weight, variance, and

mean value of the i-th Gaussian component for the k-th
locator.

The model for angular positioning is illustrated in Fig. 1. We
consider B AoA locators whose 3-D positions are represented
in the World frame by a 3 × 1 vectors lb, and whose 3-D
orientations are represented by a 3 × 3 orthogonal matrices
Ωb. Both the positions and orientations of all B AoA locators
(b ∈ {1, 2, . . . , B}) are assumed to be known with reasonable
accuracy. The AoA locators are equipped with phased antenna
arrays that are able to estimate the directions of the incoming
signals. These directions are defined w.r.t the local frame of
coordinates of each of the locators. Let us denote the user’s
position vector in the locator’s frame by rb. The user’s position
vector expressed in the World frame can be written as

x = lb + Ωbrb (3)

Since there is no range information available at the AoA
locator, the length of rb is unknown, i.e., only its direction
ub = rb/‖rb‖ can be estimated. From Eq. (3), we can express

2For notation brevity, we convert time to distance by multiplying with the
speed of light implicitly.



the true direction of the user as a function of user’s true
position x, as follows

ub(x) = ΩT
b

x− lb
‖x− lb‖

. (4)

Throughout this paper, we adopt the unit-vector model intro-
duced in [14] to represent the direction of arrival, as well as
the corresponding 3-D directional statistics approach. Errors in
estimating the directions of arrival are modeled by using the
von Mises-Fisher distribution, which is the correspondent of
the 2-D normal distribution to the two-dimensional unit sphere
S2 ⊂ R3. For a 3×1 unit vector u ∈ S2, the von Mises-Fisher
distribution is given by

VMF(u|µ, κ) = c exp
(
κµTu

)
. (5)

where µ is the mean direction, κ is the concentration param-
eter, and c = κ/(4π sinhκ) is the normalization constant.
As mentioned earlier, the reason for adopting a directional
statistics approach is that the natural parameter space of
angles is not an Euclidean space, but a sphere. Angles are
periodic in their nature, and therefore, the natural support of
the corresponding probability density functions should be the
unit sphere.

III. PROBABILISTIC TOA AND AOA POSITIONING

A. Probabilistic ToA posiitoning

For ToA localization, the least square (LS) optimization
technique is widely used [25]. For instance, the well-known
nonlinear LS method solves the optimization below to deter-
mine the UD position x (and the unknown transmit time τ as
a byproduct)

(x̂, τ̂) = argmin
x,τ

K∑
k=1

(||pk − x||+ τ − tk)2 (6)

The main disadvantage of the LS-based approach is that it
does not take into account the channel bias errors γk and thus
degrades the localization accuracy in positioning-challenge
environments such as urban canyon and indoors.

To overcome the above drawback, in the Bayesian prob-
abilistic ToA localization algorithm [5], the channel bias
is incorporated into a MAP estimator as a RV to robustly
determine the UD location. Denote the ToA measurement
vector for all locators by t = [t1 t2 ... tK ]T . The UD position
and the unknown signal transmit time can be estimated as
follows (with a non-informative prior p(x, τ)),

x̂, τ̂ = argmax
x,τ

ln p(t|x, τ) (7)

Assuming that the ToA measurements from different locators
are independent, the joint log-likelihood is given by

ln p(t|x, τ) =
K∑
k=1

ln p(tk|x, τ)

=

K∑
k=1

ln

∫
p(tk|x, τ, γk)p(γk)dγk (8)

where p(tk|x, τ, γk) is a Gaussian distribution with mean
||xk−x||+τ+γk and variance σ2. Given Eq. (2), the estimator
(7) can be rewritten as

x̂, τ̂ = argmax
x,τ

K∑
k=1

ln p(tk|x, τ)

= argmax
x,τ

K∑
k=1

ln

{ Lk∑
i=1

wik

σik
√
2π

exp

[
− (tk − ||pk − x|| − τ − µik)2

2σ2
ik

]}
(9)

where σ2
ik = σ̃2

ik + σ2.

B. Probabilistic AoA positioning

Using the model outlined in Section II, the noisy directional
estimates at the b-th AoA locator are assumed to have a von
mises-Fisher distribution with the mean direction µb = ûb,
and a concentration parameter κb whose value reflects the
reliability of the estimate. Given B locators whose directional
estimates are ûb, and assuming that they are affected by inde-
pendent errors, the joint log-likelihood of the user’s position
may be expressed using Eqs. (4), and (5):

L∠(x) =

B∑
b=1

lnVMF(ub(x); ûb, κb),

= B ln c+

B∑
b=1

κbû
T
b ΩT

b

x− lb
‖x− lb‖

(10)

The user’s position can be estimated by maximizing the above
joint likelihood, i.e.,

x̂ = argmax
x
L∠(x) (11)

C. Probabilistic joint positioning

For the problem of joint ToA and AoA positioning, we
assume that the measurements from ToA and AoA locators
are all independent. As a result, we could solve the following
estimation problem to estimate the user position,

x̂, τ̂=argmax
x,τ

[
K∑
k=1

ln p(tk|x, τ)+
B∑
b=1

lnVMF(ub|ûb(x), κb)

]
(12)

Solving the non-convex optimization problem (12) requires a
trade-off between convergence speed and computation com-
plexity. Possible solutions include, e.g., gradient ascent [14],
expectation propagation [10], and Monte Carlo methods [13].

IV. PROTOTYPE SETUP

To evaluate the performance of the probabilistic ToA and
AoA joint localization in real indoor environments, we build
a prototype based on proprietary ToA and AoA localization
systems in the ARENA2036 research building,3 which aims

3For the proprietary ToA localization system, a similar hardware setup is
used in 5GCAR project for outdoor positioning [26].



Fig. 2: The experiment area in an indoor factory environment. The area of interest is 20 meters × 10 meters, as shown in the red rectangle
in the left figure. At each corner of the area, there is a pair of co-located ToA and AoA locators, as depicted by the yellow cuboids in the
right figure. The heights of the locators are around 7.3 meters.

Fig. 3: The top-down view of the experiment area. The green triangles
and dots indicate the positions of the locators and TPs, respectively.

to offer a realistic indoor factory environment for developing
and testing concepts of future transport [27]. The entire
ARENA2036 building is 130m long and 46m wide, with
a sawtooth roof and folded aluminum façade (as shown in
Fig. 2). In our experiment, we focus on a smaller area inside
with a size of 20m×10m. In each corner of this area, a pair
of co-located ToA and AoA locators was installed with height
around 7.3m.

In our prototype, the UD broadcasts wideband Pseudo-
Noise (PN) sequences (with length 4096) and BlueTooth
Low Energy (BLE) signals as the ToA and AoA position-
ing reference signals, respectively. The ToA reference signal
bandwidth is around 50 MHz. At each ToA locator, only one
antenna is employed to receive signals. Sliding correlators with
thresholding [28] are used to measure the ToA of reference
signals for each ToA locator. To achieve high synchronization
accuracy, all 4 ToA locators are synchronized with a central
server using the White Rabbit (WR) protocol [29]. In our
prototype, the synchronization error is less than 1 nanosecond.
The lengths of the cables connecting different ToA locators
to the central server are carefully measured and subtracted
from the measured ToAs to derive the final ToA values used
for positioning. At the AoA locators, the AoA estimation is
obtained by using a planar antenna array with 7 dual-polarized
elements that receives BLE signals.

V. EXPERIMENT RESULTS

In this section, we use over-the-air measurements from the
proprietary joint ToA and AoA localization system in the
ARENA2036 experiment area (described in Section IV) to

Fig. 4: The CDF of horizontal localization errors for different local-
ization algorithms in the field test. Note that the curves correspond
to unfiltered (raw) measurements.

evaluate the positioning performance in real indoor environ-
ments. As shown in Fig. 3, there are totally 28 test points (TPs)
in that area. We took both ToA and AoA measurements at each
TP. To avoid sophisticated training of the probabilistic models,
in this study we heuristically choose the following parameters
for the probabilistic localization algorithms: Lk = 1, µ1k = 0,
σ̃2
1k = 1, σ2 = 10−5, and κ = 10, where k ∈ {1, 2, 3, 4}.4
We compare the localization performance of the joint posi-

tioning algorithm with the baseline approaches using either
ToA or AoA data only. Specifically, for the baseline with
AoA measurements only, we use the probabilistic algorithm
presented in Section III-B. For the baseline with ToA mea-
surements only, we note that in our filed test since the ToA
probabilistic model only includes a single Gaussian compo-
nent, the nonlinear LS approach achieves similar or slightly
better performance compared with the probabilistic algorithm
in Section III-A with parameters mentioned before in this
section. As a result, we adopt the nonlinear LS algorithm as
the ToA baseline here. Fig. 4 depicts the empirical cumulative
distribution functions (CDF) of horizontal localization error
for all three algorithms in the field test. It shows that the joint
positioning algorithms significantly outperforms the baselines.
A detailed comparison is given in Table I. As shown, in terms

4It is possible to improve the localization performance by learning and
fine-tuning the parameters in the probabilistic models, which, however, is out
the scope of this paper. For instance, see [5], [8] for training GMM in ToA
localization.



Fig. 5: Mean and standard deviation (STD) of horizontal localization errors at each TP for different positioning algorithms: TOA only – top
row, AoA only – middle row, joint ToA+AoA – bottom row. Colorbar encodes the mean and the standard deviation values in meters.

of mean, RMS, 50%-ile and 90%-ile localization errors, the
joint positioning algorithm outperforms the ToA baseline by
29.3%, 15.3%, 26.9%, and 44.0%, respectively, and the AoA
baseline by 43.8%, 32.9%, 38.8%, and 57.0%, respectively.
The overall localization performance depends on key factors
such as: the density and geometry of the deployed locators,
antenna array, time synchronization, and propagation environ-
ment.

TABLE I: Horizontal Localization Error
Joint ToA-only AoA-only

Mean 0.763m 1.079m 1.357m
RMS 1.528m 1.803m 2.276m
50% CDF 0.522m 0.714m 0.853m
90% CDF 0.981m 1.753m 2.282m

Fig. 5 further depicts the mean and standard deviation (STD)
of horizontal localization errors for all three positioning algo-
rithms at each TP. One can find that for the joint positioning
algorithm, in almost all TPs, the mean and STD of localization
errors are both in the sub-meter level (not the case for ToA-
only and AoA-only baselines). The long tail of the joint
positioning error in Fig. 4 mainly comes from A06 and A23,
which is due to the severe NLOS and multipath errors which
are not well-captured in the probabilisitic model.5

It is well known that synchronization among locators is
essential for ToA localization. In practice, it is challenging to
maintain accurate synchronization, unless some sophisticated

5We expect that a more sophisticated well-trained model could further
improve the localization performance.

Fig. 6: The impact of synchronization errors on joint ToA+AoA
positioning and the ToA baseline, where η is the standard deviation
of the zero-mean Gaussian synchronization error, with the unit meter
(i.e., converted from time by multiplying with the speed of light).

synchronization protocols (e.g., WR in our prototype) are
applied. One may wonder how larger synchronization errors
affect the performance of joint ToA and AoA localization.
To model additional synchronization errors (besides the errors
already induced by the WR protocol in real measurements), we
add each ToA measurement together with an i.i.d Gaussian RV
of mean 0 and variance η2. Fig. 6 shows the CDF of horizontal
localization error for the joint localization algorithm and the
ToA baseline, with respect to different η2 values. One can find
that by leveraging additional AoA data, the former is much
more robust to synchronization errors than the latter.

VI. CONCLUSION

In this work, we advocate a joint probabilistic ToA and
AoA 3-D localization algorithm and evaluate its performance



in an indoor factory environment with proprietary localization
systems. The prototype is with 4 pairs of co-located ToA and
AoA locators, each of which is at a corner at the ceiling of
a 10 meter by 20 meter section, where the WR protocol is
employed to achieve high accuracy synchronization among
ToA locators. In the joint localization algorithm, only ToA and
AoA measurements are needed, and the low-level information
like CSI is not required. To mitigate multipath, the ToA
channel bias error and angular uncertainty (due to multipath
and NLOS reflections) are modeled as RVs following GMM
and von Mises-Fisher distributions, respectively. In the field
test, the joint localization algorithm is able to achieve sub-
meter level accuracy at 90%-ile for horizontal localization,
which significantly outperforms the baselines using either ToA
or AoA data individually. In addition, we numerically assess
how different synchronization errors affect the performance of
the joint localization algorithm. It turns out that, compared
with the baseline using only ToA measurements, the joint
localization algorithm is much more robust to synchroniza-
tion errors by leveraging additional AoA data. Future work
includes evaluating the algorithm comprehensively in more
indoor scenarios, and generalizing the algorithm to reject
outlying measurements and track mobile users.
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