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On Energy Efficient Uplink Multi-User

MIMO with Shared LNA Control
Zehao Yu, Cong Shen, Pengkai Zhao, and Xiliang Luo

Abstract—Implementation cost and power consumption are
two important considerations in modern wireless communica-
tions, particularly in large-scale multi-antenna systems where
the number of individual radio-frequency (RF) chains may be
significantly larger than before. In this work, we propose to
deploy a single low-noise amplifier (LNA) on the uplink multiple-
input-multiple-output (MIMO) receiver to cover all antennas.
This architecture, although favorable from the perspective of
cost and power consumption, introduces challenges in the LNA
gain control and user transmit power control. We formulate an
energy efficiency maximization problem under practical system
constraints, and prove that it is a constrained quasi-concave
optimization problem. We then propose an efficient algorithm,
Bisection – Gradient Assisted Interior Point (B-GAIP), that solves
this optimization problem. The optimality, convergence and
complexity of B-GAIP are analyzed, and further corroborated
via numerical simulations. In particular, the performance loss
due to using a shared LNA as opposed to separate LNAs in
each RF chain, when using B-GAIP to determine the LNA gain
and user transmit power, is very small in both centralized and
distributed MIMO systems.

I. INTRODUCTION

Energy efficiency of communication systems is of signifi-

cant practical importance and has become a hot research topic

in both academia and industry. This is mainly due to the

increasing global energy demand and the requirement of green

radio [1]. In addition, despite the significant development of

battery technology, it has not been able to fully keep pace

with the practical demand from portable devices such as

smartphones and tablets [2]. From the operators’ perspective,

reducing both the operation cost and carbon dioxide emissions

[3] is becoming essential to their business bottom line. As a

result, research on energy efficient wireless communications

has been prolific over the past decade [4]–[7].

The energy efficient design become especially crucial with

the introduction of multiple-input-multiple-output (MIMO),

particularly with the increased emphasis on massive MIMO [8]

in 5G standards [9]. A typical system architecture of massive

MIMO assigns a separate radio-frequency (RF) chain to each

transmit or receive antenna. When the number of antennas

is large, hardware cost and power consumption increase sub-

stantially, which has motivated extensive studies on massive

MIMO with inexpensive hardware components such as low-

resolution Analog-to-Digital Converter (ADC) [10], Digital-

to-Analog Converter (DAC) [11], mixers and oscillators [12].
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School of Information Science and Technology, ShanghaiTech University.

In this paper, we follow the same design philosophy and

study an attractive low-complexity MIMO receiver structure,

where a single low-noise amplifier (LNA) [13] is used to cover

all receive antennas at the base station (BS). This architecture

has the benefits of reduced implementation cost and lower

power consumption, compared to the separate LNA approach

where each RF chain uses an independent LNA for gain

control. The shared-LNA structure is previously used by multi-

channel communications [13] where signals from different

channels are non-overlapping in the frequency domain. This

feature mostly relies on LNA’s wider bandwidth and more

relaxed saturation point compared to other RF components like

ADC. Fortunately, we will show in this work that the shared-

LNA structure can be adopted by (large-scale) multi-antennas

even when they are using the same spectrum. One intuitive

solution is to program down-conversion parameters of different

receiver paths (especially the configuration of mixer and by-

pass filters), so that within shared LNA, signals from these

receiver paths are not overlapping in the frequency domain.

However, reducing the number of LNAs also introduces

some important design challenges. For the separate LNA re-

ceiver structure, each receive antenna will have an independent

LNA to adjust the power of the received signal for further

processing. This gain can be optimized based on the individual

receive power of the RF chain, resulting in maximum flexibil-

ity. For the shared LNA structure, however, the single LNA

gain control must accommodate all receive antennas. Hence,

it is conceivable that performance degradation may occur if

inappropriate power amplification happens on some RF chains,

resulting in ADC overflow or underflow1.

Intuitively, the performance disadvantage of shared LNA

may be significant when the range of receive power values

across all BS antennas is large, and the channel paths experi-

ence independent fading (both large- and small-scale). In this

scenario, a single LNA may not satisfy the power amplification

requirements for all antennas, resulting in a performance

degradation. To evaluate this interesting case, we study both

centralized and distributed MIMO layouts in this paper, and

focus on the large-scale regime (i.e., massive MIMO). For

the centralized layout, [8] studies the system capacity where

the number of BS antennas approaches infinity while the

number of single-antenna users remains fixed. In addition,

a more complete asymptotic analysis where the number of

BS antennas and/or users approaches infinity has been carried

out in [17]. Regarding the energy efficiency analysis, most of

1In our work, similar to the existing literature, we also consider using low-
resolution ADCs [14]–[16] following the LNA gain control, to reduce the
power consumption and overall cost.
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the studies are carried out addressing different aspects such

as power allocation algorithm [18], transmit antenna selection

[19], and link adaptation [20]. In the distributed MIMO layout,

the BS antennas are spread out in the coverage area and

connected to the BS via fiber or cable [21]. This architecture

has recently attracted a lot of research interest because of

its potential in offering higher data rate [22], owing to the

reduced minimum access distance of users to the scattered

BS antennas. The capacity of multi-user large-scale MIMO

systems with distributed layout has been evaluated in [21]–

[23], but studies on its energy efficiency are limited [24].

In this paper, we study the energy efficient system design of

an uplink multi-user MIMO (MU-MIMO) system deploying

the shared LNA receiver structure, with both centralized and

distributed MIMO layouts. More specifically, we focus on

the joint optimization of shared LNA gain control and user

transmit power control that can optimize the system energy

efficiency, which is defined as the ratio between spectral effi-

ciency and overall energy consumption [25]. We first formulate

the energy efficiency optimization problem under realistic

engineering constraints, and then show that it is a constrained

quasi-concave optimization problem. An efficient algorithm,

Bisection – Gradient Assisted Interior Point (B-GAIP), is

proposed and its optimality is proved. Furthermore, we analyze

its convergence and complexity with the help of an equivalent

interpretation of B-GAIP. Numerical simulation results are

provided to evaluate the benefits of shared LNA. The main

contributions of this paper are summarized as follows.

• We propose a shared LNA receive structure for uplink

MU-MIMO systems, which has reduced implementa-

tion/operation cost and near-optimal energy efficiency.

• We formulate the energy efficiency optimization problem

by considering several practical constraints. To solve this

problem, we transfer the original problem under a fixed

LNA gain into a constrained quasi-concave optimization

problem, and then prove its concavity with respect to the

LNA gain. These properties guarantee the feasibility and

accuracy of our proposed solution.

• We propose B-GAIP, which is a two-step algorithm

that finds the optimal power vector and LNA gain. By

using the combination of gradient assisted interior point

and bisection search, the algorithm solves the energy

efficiency optimization problem in an efficient manner.

We also show that the algorithm guarantees convergence

to the global optimal solution and analyze its complexity.

The rest of this paper is organized as follows. Section II

presents the system model. Section III introduces the con-

straints and formulates the optimization problem. In Section

IV we design and evaluate the proposed algorithm. Section V

presents comprehensive numerical simulations to evaluate the

performance. Finally, conclusions are drawn in Section VI.

Notations: Throughout this paper, vectors are written as

bold letters x, and can be either row or column and their

dimensions will be explicitly stated when defined. Matrices are

written as bold capital letters A. x◦y represents the Hadamard

product of two vectors, and AH denotes the Hermitian of A.

|| · || denotes the l2 norm unless stated otherwise, and |X |

denotes the cardinality of set X . [A]ij is the element at the

ith row and jth column of the matrix A. x ∼ CN (x̄, σ2)
denotes a complex Gaussian random variable x with mean x̄
and variance σ2. diag(x1 , . . . , xn) denotes an n×n diagonal

matrix with diagonal elements x1 , . . . , xn.

II. SYSTEM MODEL

Consider an uplink single-cell MU-MIMO system with ra-

dius R0. For the convenience of analysis, we assume a circular

coverage area centered around the BS. In the system, K user

equipments (UEs) are randomly and uniformly distributed in

the coverage area, and each UE is equipped with a single

antenna. The BS deploys M antennas, which may locate either

entirely at the cell center (centralized MIMO) or randomly

and uniformly distributed in the coverage area and connect

to the BS via fiber or cable (distributed MIMO) [21]. We

denote the set of all BS antennas as M and the set of UEs

as K, with cardinalities |M| = M and |K| = K , respectively.

Note that in both layouts, all the UEs are randomly and

uniformly distributed over the cell. Also, in both centralized

and distributed MIMO layouts, signals from all antennas will

be jointly processed.

Assume that all UEs simultaneously transmit data to the

base station, the received vector at the BS can be written as

y = GPx+ z, (1)

where y ∈ CM×1 is the signal vector at the BS receive

antennas and z ∼ CN (0, σ2
NIM ) ∈ CM×1 is an additive white

Gaussian noise (AWGN) vector with mean 0 and covariance

σ2
NIM , with IM denoting the identity matrix with dimension

M . P = diag(
√
p1 , . . . ,

√
pK) is the real-valued diagonal

transmit amplitude matrix, and Px ∈ CK×1 is the transmitted

vector of the K UEs. G ∈ CM×K is the channel matrix

between K UEs and M BS antennas, whose elements is

gmk , [G]mk. The channel matrix G models the independent

fast fading, geometric attenuation, and log-normal shadow

fading. As a result, element gmk is given by

gmk = hmk

√

βmk, (2)

where hmk is the fast fading coefficient from the kth UE to the

mth BS antenna, and it follows a circularly symmetric com-

plex Gaussian distribution with zero mean and unit variance;√
βmk represents the geometric attenuation and shadow fading

which are assumed to be independent and constant over the

coherent intervals.

In this paper, we adopt the WINNER II path loss model in

[26], where the path loss in dB domain is

βdB
mk = 46 + 20 log 10(dmk) + Vmk. (3)

In model (3), dmk is the distance from UE k to BS antenna

m and Vmk denotes the shadow fading which follows the log-

normal distribution. The power decay can be written as βmk =
10(−βdB

mk
/10).

In order to reduce implementation cost and conserving en-

ergy, we use a single LNA to amplify the received signals from

all K UEs at the BS, as opposed to the traditional one-LNA-

per-RF-chain approach. The receiver structure is illustrated in
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Fig. 1. The receiver structure with shared LNA control. Note that transmitters
in the above illustration are from different uplink users. The receive antennas
are for one BS and can be either co-located or distributed.

Fig. 1, where a common LNA is applied to amplify the signals

of all receive antennas. The gain of this common LNA is

denoted as ΩdB in the dB domain and Ω = 10(Ω
dB/10). The

amplified received signal vector can be written as

ỹ =
√
Ωy. (4)

We consider a finite range with discrete values for parameter

ΩdB, i.e., ΩdB
min 6 ΩdB 6 ΩdB

max and ΩdB is an integer.

After power amplification, each component of the signal

vector will pass through an individual low-resolution ADC.

We adopt the fixed ADC noise model2 as in [27]:

ŷ = ỹ + nq, (5)

where the additive noise vector nq ∈ CM×1 is uncorrelated

with the ADC input ỹ, and its elements are modeled as

independent complex Gaussian random variables with zero

mean and variance σ2
ADC.

We assume that the BS has perfect knowledge of the CSI.

By using a zero-forcing (ZF) detector F , (GHG)−1GH

(which requires M > K), the quantized signal vector ŷ is

processed as follows:

r = Fŷ = (GHG)−1GH ŷ. (6)

Since we have FG = IK , r is given by

r =
√
ΩPx+

√
ΩFz+ Fnq. (7)

Take the kth component of the vector r as an example, we

have

rk =
√

Ωpkxk +
√
Ωfkz+ fknq, (8)

where fk denotes the kth row of matrix F. As a result, the

signal-to-noise ratio (SNR) of the kth UE at the output of the

BS receiver can be calculated as

Γk =
Ωpk

(Ωσ2
N + σ2

ADC)‖fk‖2
. (9)

By using SNR Γk, we define the spectral efficiency (SE)

via modified Shannon capacity:

Rk =

{

log2(1 +Ad ∗ Γk), Γk < Γmax

log2(1 +Ad ∗ Γmax), Γk > Γmax
(10)

2Note that under most of the ADC models, such as the additive quantization
noise model (AQNM), the power of quantization noise changes with the power
of ADC input signals. However, since LNA is used to control the power gain,
it is convenient and appropriate to assume a fixed ADC noise [13], [27], [28].

where Ad denotes the coding gain and possibly multi-antenna

diversity gain, which in practice is obtained via off-line

fitting via link adaptation simulations. Γmax is the maximum

achievable SNR at the receiver, which is often dominated by

phase noise and IQ mismatch3.

Finally, the energy efficiency is defined as the ratio between

spectral efficiency and consumed power of the system [25].

Note that in our model, and also in other literature [13], [20],

the overall consumed power includes the circuit power and the

transmit power. Therefore, the energy efficiency defined here

is a system-level metric rather than that of only the tranceivers.

As a result, we have:

U(p,Ω) =

∑K
k=1 Rk

Pc +
∑K

k=1 pk/η
, (11)

where Pc denotes the circuit power of both the transmitters

and the receivers, η is the power amplifier efficiency, and

p = [p1, p2, ..., pK ] is the power allocation vector. More-

over, we define SE vector under configuration p and Ω as

R = [R1, R2, ..., RK ]. Note that there is a one-to-one mapping

between power pk and spectral efficiency Rk for a given Ω.

Hence, U(p,Ω) can also be written as U(R,Ω). We further

use U(Ω) to denote the maximum energy efficiency under all

feasible power vectors.

A. Implementation Considerations for Shared Power Amplifier

In Fig. 1, we have illustrated the concept of a shared LNA

that uses one power amplifier for all receive RF chains in an

uplink MU-MIMO system. Conventionally, shared LNA has

been adopted in multi-channel communications [13] where

signals from different channels are non-overlapping in the

frequency domain. It is not straightforward how such a shared

LNA structure can be extended to multi-antenna receivers,

where signals from different antennas are on the same fre-

quency. In this section, we discuss two possible implemen-

tations, shown in Fig. 2, that can effectively and efficiently

implement shared power amplifier for a multi-antenna receiver.

The first implementation is to leverage the RF framework

proposed in [30], which is built on a super-heterodyne receiver.

The details of this implementation is depicted in Fig. 2(a). In

this structure, although different receive antennas are using

the same frequency channel, by programming the frond-end

mixers and filters, these receive (Rx) paths can be tuned

as non-overlapping in the frequency domain at the input of

the shared amplifier. In addition, mixers and filters after the

amplifier can further isolate the shared-amplifier output from

each baseband path.

Another possible implementation is shown in Fig. 2(b),

where a direct-conversion receiver is used and synchronized

switches at the input and output of shared amplifier are

applied. Assuming sample-and-hold type ADCs and power

amplifiers, if the switches at the input and output of shared

3IQ mismatch refers to phase and gain imbalance between in-phase (I) and
quadrature (Q) paths [29]. For a given Γmax from RF impairment, the baseband
demodulation capability is accordingly designed with no extra demodulation
gain when the input SNR is beyond Γmax. Such observation motivates the
usage of a SNR cap in Eqn. (10).
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(b) High-speed switch implementation

Fig. 2. Two possible shared amplifier implementation structures.

amplifier have well synchronized timing to ensure the same

Rx path, and switching periodicity is aligned with the ADC

sampling rate, then the baseband processor can collect the right

digital samples from different Rx paths using one amplifier.

A final comment is that although we focus on LNA in

this paper, our work can be directly extended to any power

amplifiers in the Rx path of the receiver, such as Intermediate

Frequency (IF) amplifier or baseband amplifier. Besides these

two possible implementations, other novel RF structures for

shared power amplifiers can be further developed, which is an

open topic in the 5G RF research.

III. FORMULATING THE ENERGY EFFICIENCY

OPTIMIZATION PROBLEM

Before presenting the system design problem and looking

into its structure, we first introduce the constraints that capture

three important engineering limitations in practical systems.

• Each UE’s transmit power pk is subject to a maximum

power value, and is obviously non-negative:

0 6 pk 6 Pmax, k ∈ K. (12)

• To avoid ADC saturation, each ADC’s input power is

capped by a maximum value PADC
max :

Ω(gmP2gH
m + σ2

N ) 6 PADC
max , m ∈M, (13)

where gm denotes the mth row of matrix G. Note that

for each m ∈ M, there exits a combined limitation on

all of the transmit power Pk, ∀k ∈ K.

• Since the effective SNR and SE at the receiver are capped,

the limitation on transmit power can be presented as

Ωpk
(Ωσ2

N + σ2
ADC)‖fk‖2

6 Γmax, k ∈ K. (14)

Note that (10) has already shown that, when the SNR

at the receiver achieves the maximum value Γmax, the

spectral efficiency will stay at log2(1+Ad∗Γmax) without

further increase. This means that when the received and

processed signal of the kth UE already achieved the

maximal SNR, there is no gain to increase transmit power

pk. As a result, the limitation in (14) is an equivalent

interpretation of (10).

We comment that these constraints will limit the tunable

parameters into a bounded subspace. With these practical

limitations, the energy efficiency maximization problem under

a shared LNA can be formally presented as

maximize
p,Ω

U(p,Ω)

subject to (12), (13), (14). (15)

We first note that there are two optimizable variables p and

Ω. For Ω, since only a finite set of values can be used, we

always have

maximize
p,Ω

U(p,Ω) = maximize
Ω

maximize
p

U(p,Ω), (16)

which means that we can optimize p and Ω sequentially.

The following lemma shows that, when the LNA gain Ω is

fixed, the aforementioned three constraints form a convex set

with respect to the power vector p.

Lemma 1. Under a fixed LNA gain Ω, (12), (13) and (14)

are all linear constraints on the power vector p, and therefore

form a convex set with respect to p.

Proof. (12) and (14) are straightforward convex sets. For (13),

it can be re-written as

Ω

(

K
∑

k=1

|gmk|2pk + σ2
N

)

6 PADC
max , m ∈M, (17)

which is a combined linear limitation on all the components

of the power vector, and thus is convex. Finally, the lemma

is immediately proven using the property that convexity is

preserved under set intersections [31].

We proceed to evaluate the objective function U(p,Ω) in

(11). Theorem 1 states that U(p,Ω) is a strictly quasi-concave

function under a fixed LNA gain Ω, and Lemma 2 establishes

the global optimality of local optimum for strictly quasi-

concave functions. Then, Theorem 2 further shows that the

objective function is concave in Ω. These three results lay the

theoretical foundation of the proposed algorithm in Section IV.

Theorem 1. The objective function U(p,Ω) in Problem 15 is

a strictly quasi-concave function with respect to the power
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allocation vector p. Thus, for a given LNA gain Ω, the

original optimization problem (15) becomes a constrained

quasi-concave optimization problem as follows:

maximize
p

U(p,Ω)

subject to (12), (13), (14). (18)

Proof. See Appendix A.

We note that any strictly concave function is also strictly

quasi-concave but the reverse is generally not true. Moreover,

an important property of an optimization problem whose

objective function is strictly quasi-concave is that a local

optimal solution must be the global optimal one, as formally

presented in Lemma 2. The proof can be found in [32].

Lemma 2. Suppose function f is strictly quasi-concave. Then

the local maximum of f is also the global maximum.

Note that all the properties we have established so far are

for a fixed LNA gain Ω. The following theorem establishes

the influence of Ω on the maximum energy efficiency under

all feasible power vectors.

Theorem 2. The energy efficiency function U(Ω) is concave

in the LNA gain Ω.

Proof. See Appendix B.

IV. THE B-GAIP ALGORITHM FOR ENERGY EFFICIENCY

OPTIMIZATION

In this section, we propose the Bisection – Gradient Assisted

Interior Point (B-GAIP) algorithm that solves Problem (15)

under both small and large system dimensions. This algorithm

is essentially a two-step implementation of (16) as follows.

First, we fix the LNA gain Ω and design a gradient assisted

interior-point (GAIP) algorithm to optimize the power vector,

leveraging the strict quasi-concavity property established in

Theorem 1. On top of GAIP, we use a bisection search

method to find the optimal LNA gain for the maximum

energy efficiency, based on its concavity in Ω as shown in

Theorem 2. In addition to the detailed description of the

proposed algorithms, we present the proof of convergence and

analyze the algorithm complexity.

A. GAIP: Optimizing Power Allocation under A Fixed LNA

Gain

The heuristic gradient or gradient-based optimization meth-

ods are commonly used in energy efficient power allocation

problems [13], [18], [20]. This method is well-known and

widely-used due to its effectiveness and succinctness. How-

ever, under the problem setting of this paper, the optimization

objective is a strictly quasi-concave function with convex

constraints. Note that (12) and (14) are limitations on a single

UE transmit power and the total number of these constraints is

2K , while (13) is a combination of all the UE transmit powers

and the total number of the limitations is M . As the system

dimension becomes large, so does the number of constraints

on the power allocation vector and LNA gain. Therefore, a

straightforward adoption of the gradient descent algorithm [31]

may have very slow convergence, or not converge at all within

a reasonable time period of solving the problem.

To cope with this challenge, especially to make the algo-

rithm efficient and applicable for large system dimensions, we

resort to the interior-point method [31], [33]. The interior-

point method is an optimization algorithm which transfers

constrained optimization problems into unconstrained ones.

The main idea is to construct a penalty function which

“punishes” the objective function when it approaches or falls

out of the boundary of the feasible set. In particular, we chose a

logarithmic penalty function in our problem, which is concave.

Since we consider a fixed LNA gain Ω in this subsection, we

simply write U(p, G) as U(p) for convenience. The penalty

function can then be written as

ϕ(p, ξ) = U(p) + ξB(p)

=U(p) + ξ

K
∑

k=1

[

ln pk + ln(Pmax − pk)

+ ln

(

Γmax −
Ωpk

(Ωσ2
N + σ2

ADC)‖fk‖2
)

]

+ ξ

M
∑

m=1

ln

[

PADC
max − Ω

(

K
∑

k=1

|gmk|2pk + σ2
N

)]

.

(19)

Note that B(p) represents the penalty for approaching the

boundaries, while ξ is the penalty factor which decides the

intensity of penalty. We can see from (19) that when p is

about to violate the constraints in (12), (13) and (14), the latter

two terms of (19) will reduce the original objective function

U(p) by a value that is inversely proportional to the distance

between p and the boundary of the feasible set. Intuitively, as

the penalty factor ξ approaches to zero, the penalty function

ϕ(p, ξ) is approaching to U(p) as well.

We then resort to the gradient descent method to find the

optimal value of the unconstrained optimization function in

(19). In particular, the partial derivative of the penalty function

with respect to pk can be derived as

∂ϕ(p, ξ)

∂pk
=

∂U(p)

∂pk
+ ξ

(

1

pk
− 1

Pmax − pk
− Tk

Γmax − Tkpk

)

+ ξ

M
∑

m=1

−Ω|gmk|2

PADC
max − Ω

(

∑K
k=1 |gmk|2pk + σ2

N

) ,

(20)

where we define Tk = Ω
(Ωσ2

N
+σ2

ADC
)‖fk‖2 , and the first term

∂U(p)
∂pk

in (20) is given by

∂U(p)

∂pk
=

AdTk

ln 2(1 +AdΓk)(Pc + Psum)
− Rsum

η(Pc + Psum)2
.

(21)

We further define the gradient metric over power vector p

as ∇ϕ(p, ξ) = [ ∂ϕ∂p1
, . . . , ∂ϕ

∂pK
]. Finally, the proposed GAIP

algorithm is compactly presented in Algorithm 1.

B. B-GAIP: Optimizing Both LNA Gain and Power Allocation

The GAIP algorithm presented in IV-A only optimizes the

power values under a fixed LNA gain. A naive approach would
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Algorithm 1: Gradient Assisted Interior Point Method

Parameters: initial penalty factor ξ(0); coefficient c;
error limit ǫ; maximum loop count Lmax;

step size tl
Input: Ω, channel coefficients

Output: popt and Uopt = U(popt)
1 Randomly choose the initial power vector p(0) from the

feasible set;

2 Set initial penalty function value ϕ(p(0), ξ(0)) using (19);

3 Set iteration index i = 0;

4 do

5 pcurr = p(i); ϕopt = ϕ(p(i), ξ(i));
6 for l = 1 to Lmax do

7 Calculate gl = ∇ϕ(pcurr, ξ
(i))/||∇ϕ(pcurr, ξ

(i))||;
8 Update power vector as pnext = pcurr + tlgl;

9 if ϕ(pnext, ξ
(i)) > ϕopt then

10 Set pcurr = pnext;

11 Set ϕopt = ϕ(pnext, ξ
(i));

12 end

13 end

14 i++;

15 ξ(i) = ξ(i−1) ∗ c;
16 p(i) = popt; ϕ(p

(i), ξ(i)) = ϕopt;

17 while

∣

∣

∣

ϕ(p(i),ξ(i))−ϕ(p(i−1),ξ(i−1))
ϕ(p(i−1),ξ(i−1))

∣

∣

∣
> ǫ;

be to apply Algorithm 1 to all possible values of Ω, i.e.,

sweeping all integer values between ΩdB
min and ΩdB

max, and obtain

the optimal energy efficiency. However, this approach may

have high complexity if the set of feasible Ω is large, and it

does not utilize the concavity property of the objective function

with respect to Ω.

Alternatively, we propose to solve this optimization problem

using a bisection search method, which has lower complexity

than linear sweeping, achieves the same optimal value, and

leverages the concavity to guarantee optimality (see Theorem

2). The overall algorithm that solves Problem (15) is presented

in Algorithm 2.

C. Analysis of the B-GAIP Algorithm

In this section, we will theoretically evaluate the conver-

gence and complexity of the proposed algorithm. In order to do

so, we first reorganize the B-GAIP algorithm into an equivalent

formulation in Sec. IV-C1. This new interpretation, although

does not bear algorithmic novelty, simplifies the convergence

and complexity study in Sec. IV-C2 and IV-C3.

1) An Equivalent Interpretation of B-GAIP: There are three

obstacles to solve the original optimization problem (18): (1)

under a fixed LNA gain, the objective function is strictly quasi-

convex, which is difficult to handle compared to the standard

convex function; (2) for massive MIMO, the system dimension

is large and thus the algorithm complexity is of great impor-

tance to its practical utility; and (3) the engineering constraints

must be satisfied. Therefore, the methods in existing literature

[13], [20], [24] are not applicable in our problem setting.

Algorithm 2: The B-GAIP Algorithm for Solving Prob-

lem (15)

Input: ΩdB
min, ΩdB

max and channel coefficients

Output: optimal power allocation vector popt; optimal

LNA gain ΩdB
opt; global maximum energy

efficiency Umax

1 Set ΩdB
left = ΩdB

min and ΩdB
right = ΩdB

max;

2 while ΩdB
left 6= ΩdB

right do

3 LB = ⌊(ΩdB
left +ΩdB

right)/2⌋;
4 UB = ⌈(ΩdB

left +ΩdB
right)/2⌉;

5 if LB == UB then

6 Set UB = UB + 1;

7 end

8 (popt1, Uopt1)← Algorithm 1 with input ΩdB = LB

and channel coefficients;

9 (popt2, Uopt2)← Algorithm 1 with input ΩdB = UB

and channel coefficients;

10 if Uopt1 > Uopt2 then

11 Set ΩdB
right = LB;

12 else

13 Set ΩdB
left = UB;

14 end

15 if ΩdB
left == ΩdB

right then

16 Set ΩdB
opt = ΩdB

left;

17 Set Umax = max{Uopt1, Uopt2};
18 Choose popt according to Umax;

19 end

20 end

In order to cope with these obstacles, we have proposed

the B-GAIP algorithm in this paper. For the convenience of

the theoretical evaluations, we re-interpret Algorithm 2 and

provide some important comments in the following.

In particular, the procedure of B-GAIP can be reorganized

as follows.

• Step-1: Choose two LNA gain values, LB and UB, as

described in Algorithm 2.

• Step-2: Under these two gains, use Algorithm 1 to find the

maximal energy efficiencies, Uopt1 and Uopt2, respectively.

– Step-2.1: In Algorithm 1, choose the penalty factor

and convert the problem into an unconstrained quasi-

concave optimization problem.

– Step-2.2: Solve the converted problem using the

gradient descent method.

– Step-2.3: Go back to Step-2.1 with a smaller penalty

factor if the accuracy requirement is not met; oth-

erwise return the maximal energy efficiency and the

optimal power vector.

• Step-3: Compare the two outputs of Step-2 and then

decide if the algorithm converges. Go back to Step-

1 if not converge; otherwise return the optimal power

allocation vector and LNA gain.

From the procedure above, we can conclude that the two-

step algorithm has three main layers as follows.
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• The outer layer: Optimize the LNA gain via the bisection

search method;

• The middle layer: Under a given LNA gain, transfer the

constrained problem into an unconstrained optimization

problem via the interior-point method;

• The inner layer: Find the optimal value of the uncon-

strained problem via the gradient descent method.

We will use this interpretation in the following convergence

and complexity analysis.

2) The Convergence Analysis: It is difficult to directly

analyze the convergence of B-GAIP due to its inherent com-

plexity. We thus leverage the equivalent interpretation and

separately study the convergence of each layer, and the overall

convergence of B-GAIP can be proved by a combination

argument. In the following, the convergences of the inner,

middle and outer layers will be presented respectively.

The gradient descent method is used in the inner layer, with

Lmax loops be performed while at each loop l, the argument

p move towards the gradient direction which is also the ascent

direction of function ϕ(p) with a step length that diminishes

in l. Note that only the direction of the gradient is used due

to normalization in our algorithm. As a result, the step length

that is moved at each loop, i.e., ||pnext −pcurr||, is exactly the

step size tl, where we set tl = 0.01/l. When Lmax → ∞,

we have tl → 0 while
∑∞

l=1 tl = ∞, which suggests

that the argument can move an unbounded distance towards

the optimal value if sufficient iterations are allowed, thus

guaranteeing the convergence. Recall that Lemma 2 proves

that the local maximum of our objective function is also the

global maximum, and thus we conclude that the inner layer

not only converges, but also converges to the global optimum.

For the middle layer, we use the interior-point method to

transfer the original constrained optimization problem into

an unconstrained one, and then invoke the gradient descent

method (the inner layer) to solve it. Since we have already

proved the convergence of the inner layer, it is now sufficient

to establish the convergence of the middle layer if we can

prove the equivalence of the original constrained problem and

the converted unconstrained problem. We start the argument by

noting from (19) that the difference between the original and

the converted functions is the boundary penalty B(p), which

is controlled by the penalty factor ξ. At the end of each loop,

the penalty factor ξ is multiplied by a decreasing coefficient c,
which eventually results in ξ → 0, and the converted function

ϕ(p, ξ) then converges to the original objective function U(p).
However, as the penalty factor ξ → 0, the difficulty for the

inner layer to obtain the optimal value increases as it may

approach the boundary of the feasible set. This issue can

be resolved by using the output of the previous iteration as

the starting point for the new iteration [31], as is done in

Algorithm 1. As a result, we can achieve the global optimal

value popt for maximizing U(p) by combining the inner and

middle layers.

Finally, in the outer layer, the bisection search method is

used to optimize the LNA gain. We have already proved that

the optimal power allocation vector under any fixed LNA gain

is achieved. Because of the concavity property (Theorem 2)

and the optimality of the bisection search method [31], we

conclude that the algorithm must converge to the optimum. In

fact, at most log2
(

ΩdB
max − ΩdB

min

)

iterations will be performed

before we reach the optimal value.

3) The Complexity Analysis: In order to quantitatively

study the complexity of Algorithm 1 and 2, we individually

analyze the complexity of each layer like we did in the

convergence analysis. For the inner layer, we perform Lmax it-

erations and within each iteration, the partial derivative of each

UE is calculated separately, resulting in a complexity scaling

O(KLmax). For the middle layer, the number of iterations will

change according to the required accuracy, and therefore, it is a

function of the error limit ǫ. We denote the number of iteration

times as Tǫ and the complexity scaling of this layer should

be O(Tǫ). Finally, for the outer layer, the complexity scaling

of the bisection search is O
(

log2
(

ΩdB
max − ΩdB

min

))

. Putting all

three layers together, the overall complexity of B-GAIP is of

the order:

O
(

KLmaxTǫ log2
(

ΩdB
max − ΩdB

min

))

. (22)

Qualitatively, as discussed before, in the scenario with large

number of BS antennas and UEs, it becomes time-consuming

to determine whether the boundary limitations are violated.

Fortunately, this difficulty is circumvented in Algorithm 1 as

it converts the engineering constraints into penalty items and

therefore transfers a constrained optimization problem to an

unconstrained one, greatly reducing the complexity, especially

when the system dimension is large. In the meanwhile, Algo-

rithm 2 utilizes a bisection approach which reduces the search

time exponentially compared with the intuitive linear search

method. Accordingly, Algorithm 1 and 2 are more efficient

than heuristic solutions and applicable for large scale systems.

V. SIMULATION RESULTS

We resort to system-level simulations of an uplink MIMO

system to numerically evaluate the proposed B-GAIP al-

gorithm. Important simulation parameters can be found in

Table I. In particular, for a given MIMO configuration, many

realizations of the small-scale fading vector hk, the K UE

positions, and the M BS antenna positions (in the case of

distributed MIMO) are randomly generated.

TABLE I
SIMULATION PARAMETERS

Cell radius R0 100 ∼ 1000 m

Background noise σ2

N
-104 dBm

Shadow fading V
Log-normal with

standard deviation of 8 dB

ADC noise σ2

ADC
-60 dBm

Minimal LNA gain ΩdB
min

1 dB

Maximal LNA gain ΩdB
max 70 dB

Diversity gain Ad 1

Circuit power Pc 0.1 W

Power amplifier efficiency η 50%

Maximal transmit power Pmax 20 dBm

Maximal ADC input power PADC
max -20 dBm

Maximal SNR Γmax 35 dB

Step size tl 0.01/l

In the following, we first compare the proposed algorithm

with the heuristic brute force search solution, to verify the
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feasibility and accuracy of the B-GAIP algorithm in Sec.

V-A. Aim at analyzing the energy efficiency performance in

different system settings, in Sec. V-B, we compare the average

maximum energy efficiency with centralized and distributed

MIMO layouts in both small and large system dimensions. In

particular, we evaluate the energy efficiency with different UE

number K , BS antenna number M , and the ratio v = M/K
with different system layouts. After that, we adjust the cell

radius from 100 meters to 1000 meters with a 100m step size

to evaluate the effect of cell radius on energy efficiency in Sec.

V-C. Note that the comparisons are made with both centralized

and distributed MIMO layouts. In addition, we compare B-

GAIP with heuristic algorithms to evaluate the performance

gain of the proposed algorithm in Sec. V-D. Finally, com-

parison between shared and separate LNA is carried out in

Sec. V-E to illustrate the trade-off between energy efficiency

and system costs. These numerical simulation result may offer

guidance to the design and operation of cost-aware massive

MIMO systems.

A. Comparison between B-GAIP and Brute Force Search

It is crucial to verify whether the proposed B-GAIP al-

gorithm will converge to the global optimal solution of the

original optimization problem. In addition to the theoretical

analysis in Section IV-C, we now compare our algorithm

with the naive brute force solution that tries every possible

parameter combination to find out the optimal solution. In

particular, we choose a small system dimension with 2 UEs

and 4 BS antennas in a distributed layout due to the high

complexity of brute force search. We try all possible transmit

power values and the LNA gain in dB domain with 0.1dB

and 1dB step-size, respectively. We change the cell radius

from 100m to 1000m and at each radius, we perform 2000

realizations of the channel parameters including UE and BS

antenna positions, fast fading and shadow fading. In each

realization, we run the proposed B-GAIP algorithm and the

brute force solution separately, under the same computational

environment, to find out the maximum energy efficiency. We

also record the run time in each realization.

Fig. 3 illustrates the average maximum energy efficiency

obtained by the B-GAIP algorithm and the brute force search

under different cell radii. We can clearly see from the figure

that our B-GAIP algorithm has the same energy efficiency as

the brute force solution and therefore converges to the optimal

value4.

Moreover, we compare the complexity between the pro-

posed algorithm and other heuristic brute force search solu-

tions, by comparing their running time. We compare B-GAIP

with three algorithms: (1) naive brute force solution, which

simultaneously searches power vector p and LNA gain Ω for

the optimal values; (2) hybrid solution type 1 (Hybrid1), which

uses brute force search for Ω, while still uses the interior-

point method to find the optimal p; (3) hybrid solution type 2

4Note that while looking the same in the figure, the average maximum
energy efficiency in B-GAIP actually slightly exceeds that of the brute force
search, which is the result of the 0.1dB step-size since it may skip over the
true optimal value.
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Fig. 3. Energy efficiency comparison between the B-GAIP algorithm and the
brute force solution.

(Hybrid2), which uses brute force solution to search p, while

uses bisection search to find the optimal Ω. The results are

shown in Table II5.

We can see from the table that both B-GAIP and Hybrid1

algorithms outperform the other two significantly. It is a direct

consequence of the fact that brute force search of p has an

exponential complexity in the number of UEs. We can see

that the superiority of B-GAIP over Hybrid1 is mainly due

to the use of bisection search method, which reduces the

time complexity of optimizing Ω from a linear order to a

logarithmic order.

In addition to the general comparison of complexity scaling,

we further look into the effect of number of UEs in the system.

Note that the time consumption of B-GAIP and Hybrid1

when there is only one UE is longer that the others, which

is a consequence of the fact that the initialization time of

the interior-point method is rather significant. Furthermore,

the complexities of B-GAIP and Hybrid1 algorithms are

approximately increasing linearly with the number of UEs,

which agrees with the analysis in Section IV.

B. Energy Efficiency with Different Dimensions and Layouts

We now turn our attention to evaluating the energy effi-

ciency performance under different system dimensions and

layouts. There are several parameters to adjust, including

the number of UEs K , the number of BS antennas M , the

ratio v = M/K and the different network topologies, i.e.,

centralized or distributed MIMO layouts. We will evaluate the

influences of these factors respectively.

Fig. 4(a) shows the effect of system dimensions on the

energy efficiency, with both centralized and distributed MIMO

layouts. In this simulation, we let K and M grow simul-

taneously with a fixed ratio v = M/K = 2. We can

observe that the average maximum energy efficiency increases

5Note that the computational environment will affect the time consump-
tions. We carry out the comparison under the same computational environ-
ment, and the results are also averaged over large amount of realizations.
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TABLE II
COMPLEXITY COMPARISON OF DIFFERENT ALGORITHMS

UE numbers

Time [s] Algorithms
B-GAIP

Naive
Brute Force

Hybrid1:
Brute Force: Ω

& Interior-Point: p

Hybrid2:
Brute Force: p
& Bisection: Ω

1 0.0345 0.0195 0.2237 0.0026

2 0.1087 4.2681 0.6989 0.4854

3 0.1210 591.5498 0.8010 70.1647

4 0.1307 70590.9569 0.8852 8696.3573

5 0.1359 \ 0.9625 \
6 0.1390 \ 1.0561 \
7 0.1432 \ 1.1237 \
8 0.1459 \ 1.1867 \
9 0.1490 \ 1.2415 \

10 0.1527 \ 1.3107 \
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Fig. 4. The effect of system dimension on energy efficiency with a fixed ratio v = M/K = 2.

approximately linearly with the system dimension. Note that

even though the energy efficiency in a distributed MIMO

layout outperforms the centralized one when K and M are

large, it is actually the opposite when the system dimension

is small, as depicted in Fig. 4(b) which shows the energy

efficiency performance when the number of UEs grows from

1 to 10, while the BS antennas are twice as many as the

number of UEs. Intuitively, the phenomenon in Fig. 4 can

be explained as follows. When the numbers of transmitters

and receivers are both small, the average access distance in a

centralized layout is shorter than that the distributed layout.

This is because the BS antennas are all co-located in the

center of the coverage area in a centralized layout, while in

the distributed layout, BS antennas are randomly distributed

throughout the cell, which may occasionally result in larger

access distance when the number of antennas is very small. On

the contrary, when the number of antennas grows, the average

access distance in a distributed layout will become shorter than

that in centralized layout, which means less energy consumed

while delivering the same amount of information. Therefore,

the energy efficiency in a distributed layout will eventually

outperform the centralized layout as the system dimension

grows.

Fig. 5 further illustrates the effects of K and M on energy

efficiency, respectively. We see from Fig. 5(a) that the number

of UEs has a significant impact on the energy efficiency, while

Fig. 5(b) implies that the number of BS antennas has much

less effect, especially when M reaches a relatively large value.

As a result, the dominating factor that determines the average

maximum energy efficiency is K .

C. The Effect of Cell Radius

In order to study the effect of cell radius on energy ef-

ficiency, we plot Fig. 6 with different antenna layouts. It is

clear that the average maximum energy efficiency decreases

as the cell radius increases, which is also observed in some

existing papers such as [13], [20]. The curve is convex, which

suggests that the decrease of the energy efficiency is large

when the cell radius is small and the trend will slow down

as the cell radius grows. As a side note, we set K = 2
and M = 4 in this simulation, which is a relatively small

system dimension, and the energy efficiency performance in

the centralized layout will outperform the distributed layout.

Since a large cell radius means that more transmit power will

be needed to convey the same amount of information, it is
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Fig. 5. The effect of K and M on energy efficiency.
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Fig. 6. The effect of cell radius on energy efficiency, with K = 2 and
M = 4.

clear that the energy efficiency will decrease with the growth

of the cell radius.

D. Comparison between Proposed Algorithm and Heuristic

Algorithms

In addition to analyzing the energy efficiency performance

of our proposed algorithm, we also compare B-GAIP with

two commonly adopted heuristic algorithms [13] to evaluate

their performance differences in the distributed MIMO set-

ting. Intuitively, higher transmit power and LNA gain shall

result in higher SNR, and therefore higher energy efficiency

performance. Correspondingly, we consider the following two

heuristic algorithms: (1) use the maximal LNA gain combined

with the corresponding optimal transmit power vector; and

(2) use the maximal transmit power vector combined with the

corresponding optimal LNA gain. Note that the engineering

constraints in (12), (13), and (14) are still enforced when using

these heuristic algorithms.

Fig. 7 shows the energy efficiency performance of three

algorithms under both small and moderate system dimensions.

The performance gap is quite significant, suggesting that

invoking B-GAIP to solve the original optimization problem

is necessary. In addition, two other important observations can

be drawn from Fig. 7.

Fig. 7(a) depicts a situation where the system dimension is

small. It is clear that our proposed algorithm outperforms the

heuristic ones with a large margin. At the maximum point,

the average maximum energy efficiency value achieved by B-

GAIP is 151.4% higher than that of the heuristic algorithm;

while at the minimum point, the advantage becomes 42.4%,

which is still a considerable gain. Meanwhile, we expect an

even higher performance gain of B-GAIP when the system

dimension becomes larger, since the bounded subspace of the

tunable parameters will become larger, which means that there

will be more options available for the algorithm to optimize

with. To validate this conjecture, we run the simulation and

report the corresponding result in Fig. 7(b), where a moderate

system dimension is used as an example to compare the

performance change. We can see from the figure that even at

the minimum point, the performance of B-GAIP is still more

than twice as that of the heuristic algorithm.

Different from the conclusion we draw in Sec. V-C that the

energy efficiency will decrease with the growth of cell radius,

by using the heuristic algorithm with maximum LNA gain, Fig.

7(a) shows that the energy efficiency actually first increases

and then decreases, and Fig. 7(b) indicates that the energy

efficiency will always increase with the cell radius. While

at the first glance, these results seem counterintuitive and

may even contradict the analysis in subsection V-C, a deeper

investigation can explain this phenomenon as follows. On the

one hand, the cell radius does affect the energy efficiency. If

we keep all other parameters, such as LNA gain and transmit
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Fig. 7. Comparison between B-GAIP and the heuristic algorithms, in both small and moderate system dimensions.

power vector, unchanged and only increase the cell radius,

the energy efficiency will decrease. However, the constraints

in the optimization problem may affect the energy efficiency

in a different way. Note that the maximal LNA gain is used

here, which may cause the ADC to saturate rather frequently,

and thus reach the maximum SNR limitation . As a result, the

main factor that keeps the performance from further growing

is the SNR limitation rather than the cell radius in most cases.

This explanation is numerically validated in Fig. 7(b) where

the average access distance is relatively small and so is the

pass loss. In this case, a large LNA gain does not help.

The LNA saturation can be mitigated when the cell radius

becomes larger, and the performance will increase accordingly.

On the other hand, for a small system dimension as Fig.

7(a) shows, the antennas are not very crowded even when

the cell radius is relatively small. Hence, as the cell radius

increases, the performance first reaches the maximum, and

any further-increasing radius will then degrade the energy

efficiency performance.

E. Comparison between Shared LNA and Separate LNA

Our system model uses one shared LNA to amplify the

BS received signals in order to save both implementation cost

and power consumption. One natural question is how much

performance sacrifice we are incurring compared with using a

separate LNA for each RF chain. In this subsection, we aim

to address this question via system simulations.

We first derive energy efficiency under the same system

model but with separate LNA at each RF chain. For clarity,

we use subscript “sep” to denote the signals using the separate

LNA structure throughout this subsection. The received signal

vector is the same as (1), while the amplified signal can be

written as

ỹsep = Ωy, (23)

where Ω = diag(
√
Ω1 , . . . ,

√
ΩM ) denotes the LNA gain

values of the M separate LNAs.

After passing ỹsep through separate ADCs for quantization,

we also adopt a ZF receiver to process the quantized signal

by multiplying it with the pseudo-inverse of the equivalent

channel matrix Ĝ = ΩG, where we have F̂Ĝ = IK . Now

rsep is given by

rsep = Px+ F̂Ωz+ F̂nq. (24)

Like (8), we also take the kth component of the vector rsep as

an example:

rsep,k =
√
pkxk + f̂kΩz+ f̂knq, (25)

where f̂k denotes the kth row of matrix F̂k. As a result, the

SNR of the kth UE can be calculated as

Γsep,k =
pk

σ2
N f̂kΩ2f̂Hk + σ2

ADC‖f̂k‖2
. (26)

Finally, the spectral efficiency and the energy efficiency re-

main the same as (10) and (11), respectively. Note that the

constraints in (13) and (14) will change to the following, while

(12) still holds.

• ADC saturation limitation:

Ωm(gmP2gH
m + σ2

N ) 6 PADC
max , m ∈ M. (27)

• Maximum SNR limitation:

pk

σ2
N f̂kΩ2f̂Hk + σ2

ADC‖f̂k‖2
6 Γmax, k ∈ K. (28)

Note that the objective function and the constraints under

the separate LNA model have similar properties as Theorem 1,

i.e., Usep(p,Ω) is a strictly quasi-concave function with convex

constraints under a fixed LNA gain matrix Ω. Therefore, we

will use a similar method as Algorithm 1 to find the optimal

power allocation vector with given Ω. However, since the

function Usep(Ω) under the separate LNA structure does not

have the concavity property proved in Theorem 2, we resort

to the brute force search solution to find the optimal LNA

gain values, which has a higher complexity. For the ease

of numerical simulations, we only compare the performance
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Fig. 8. Comparison between shared LNA and separate LNA structures under both centralized and distributed MIMO layouts.

under a small system dimension where the numbers of UEs

and the BS antennas are set to 2, i.e., M = K = 2.

Fig. 8 reports the comparison of energy efficiency with

separate and shared LNA structure in both centralized and

distributed MIMO layouts, respectively. We conclude from

the figure that while the separate LNA structure achieves a

better performance, using a shared LNA structure can very

closely approach the performance of the separate LNA. Taking

a deeper look at the statistics, we have that the maximum

performance loss in a centralized layout is 3.21%, while this

loss becomes 4.62% in a distributed layout6. As a result,

using a shared LNA can significantly reduce the hardware cost

and power consumption, while sacrificing very little energy

efficiency. This result sheds important light on the design of

RF front-end power amplifiers in practical MIMO systems.

VI. CONCLUSIONS

Energy efficiency is of great importance in modern wireless

communications, especially when massive MIMO gains its

popularity in 5G systems. The high power consumption of RF

front-end components including LNA and ADC significantly

affects the energy efficiency performance in MIMO systems.

In this paper, we have proposed a shared LNA structure

and showed that combined with low-resolution ADCs, this

architecture saves both hardware costs and reduces power

consumption, while achieving near-optimal performance. In

particular, we formulated the energy efficiency maximiza-

tion problem under real-world engineering constraints, and

revealed several important properties of this problem. We

then proposed the Bisection – Gradient Assisted Interior Point

(B-GAIP) algorithm that solves the optimization problem

precisely and efficiently. The convergence and complexity

analysis of B-GAIP have been studied, and comprehensive

6It is worth noting that we use the same circuit power, i.e., Pc = 0.1 W, in
both LNA structures, while in reality the separate LNA structure should have
more power consumption than the shared LNA structure, which may further
degrade its energy efficiency.

simulations have been performed to validate the effectiveness

of the proposed algorithm.

Although massive MIMO under realistic hardware con-

straints have attracted much attention lately, the existing

literature, including this paper, still leaves many problems

unsolved. For example, the energy efficiency of a massive

MIMO system with imperfect CSI under a similar setting is

of great importance in practice but remains unsolved. How

to incorporate other practical constraints and system design

objectives into this problem is another interesting research

topic, which may be worth investigation in the future.

APPENDIX A

PROOF OF THEOREM 1

Since our proof is based on a given Ω, we use U(p) instead

of U(p,Ω) to simplify the notation. Furthermore, we define

U(p)’s super-level set as

Sα = {p � 0|U(p) > α}. (29)

By using the equivalent definition of quasi-concavity in [31]

that a function f is called strictly quasi-concave if its domain

D and all its super-level sets Sα = {x ∈ D|f(x) > α} are

convex, U(R) is strictly quasi-concave if Sα in (29) is strictly

convex for any real number α.

Now it is sufficient to show the quasi-concavity of U(p)
if we can prove Sα is convex for positive, negative and zero

values of α, respectively. Since we have the property that R �
0 and p � 0, U(p) is therefore nonnegative over all possible

power vector p. As a result, no points exist on the contour

U(p) = α for α < 0, and only one point 0 is on the contour

U(p) = α for α = 0. Hence, Sα is convex when α 6 0.

To prove the case α > 0, we first investigate the property

of Rsum ,
∑K

k=1 Rk. The proof of the following lemma is

straightforward and is omitted.
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Lemma 3. Recall the definition of Rsum(p):

Rsum(p) =

K
∑

k=1

Rk =

K
∑

k=1

log2(1+Ad∗
Ωpk

(Ωσ2
N + σ2

ADC)‖fk‖2
).

(30)

We have that Rsum(p) is concave with respect to the power

allocation vector p and monotonically increasing in each

component of the vector p.

We define Psum ,
∑K

k=1 pk/η, which is a linear function on

p. Since Rsum(p) is concave on p, Sα is convex because Sα

is equivalent to Sα = {p � 0|αPc + αPsum − Rsum(p) 6 0}.
Therefore, the strict quasi-concavity of U(p) is proved.

APPENDIX B

PROOF OF THEOREM 2

For a given power vector p, we can calculate the first

derivative of U(p,Ω) as

∂U(p,Ω)

∂Ω
=

K∑

k=1

Adσ
2

ADCpk

ln 2(Pc + Psum) [(σ2

N
Ω + σ2

ADC)‖fk‖
2 + AdpkΩ] (σ2

N
Ω + σ2

ADC)

,

K∑

k=1

C

P(Ω)
,

where C = Adσ
2
ADCpk is a positive constant and P(Ω)

represents a quadratic polynomial of Ω with all coefficients

positive. As a result, we can calculate the second derivative of

U(p,Ω) as

∂2U(p,Ω)

∂Ω2
=

K
∑

k=1

−CP′(Ω)

P2(Ω)
< 0, (31)

which indicates that U(p,Ω) is a concave function in Ω under

a given p.

Recall that we use U(Ω) to denote the maximum energy

efficiency under all feasible power vector p. Since the maxi-

mum of a set of concave functions is still concave, we have

proved the concavity of U(Ω) on Ω.
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