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Abstract—Cloud computing facilitates the access of appli-
cations and data from any location by a distributed storage
system. Erasure codes offer better a data replication technique
with reduced storage costs for more reliability. This paper
considers the erasure-coded data center with multiple servers
in a wireless network where each is equipped with a base-
station. The cause of latency in the file retrieval process is
mainly due to queuing delays at each server. This work puts
forth a stochastic optimization framework for obtaining the
optimal scheduling policy that maximizes users’ quality of
service (QoS) while adhering to the latency requirements. We
further show that the problem has non-linear functions of
expectations in objective and constraints and is impossible
to solve with traditional SGD like algorithms. We propose
a new algorithm that addresses compositional structure in
the problem. Further, we show that the proposed algorithm
achieves a faster convergence rate than the best-known results.
Finally, we test the efficacy of the proposed method in a
simulated environment.

I. INTRODUCTION

Increased cloud computing services’ requirements are

making companies look at distributed storage systems

where efficient data replication techniques are implemented

for more reliability. Data redundancy helps in providing

more alternatives to the clients in case of node failures.

Most of the cloud-based companies such as Facebook [1],

Microsoft [2], and Google [3] have found the erasure

coding technique as the most prominent solution to reduce

storage cost compared to other techniques [4, 5].

Besides being a promising idea, erasure-coded storage

systems face a troublesome issue, which is the delay

that occurs while downloading files from the data center

by users. There have been much fewer works that have

studied quantitative analysis on queuing delays. Most of

the existing works [6, 7] instead have focused on designing

efficient data systems without making much effort into

analyzing the queues that appear at each data server. Hence,

many researchers have turned their attention towards la-

tency analysis these days making it as an active area [8].

There have been many recent attempts in obtaining latency

bounds in erasure-coded storage systems by proposing

various scheduling policies include ‘block-one-scheduling’

[9], ‘fork-join queue’ [10], ‘probabilistic scheduling’ [11].

It has been shown in [11] that, probabilistic scheduling

policy provides an upper bound on average latency of

erasure-coded storage systems for arbitrary erasure codes

with M/G/1 queues at data servers. The policy entertains

scheduling file requests to all the possible servers. Analysis

of erasure-coded storage systems has been extended to

video streaming case [12] where an optimized service has

been proposed that maximizes the quality of experience

(QoE) for users. More precise latency analysis is pursued in

[12] by assuming service time distribution as exponential.

In this paper, we consider distributed erasure-coded

storage systems in wireless networks where each server is

equipped with a multi-antenna base-station that is capable

of wireless transmissions. Specifically, we formulate the

stochastic optimization problem to find an optimal schedul-

ing policy that maximizes users’ quality of service (QoS)

while adhering to queuing delay and other deterministic

constraints. Since the file transfer medium is considered

wireless, we can no longer assume exponential service time

distributions due to the random fading channels between

user and data center. However, the classical approach is

not suited due to the difficulty in evaluating closed form

expressions for first and second order moments of service

times with the presence of exogenous variables [13]. Re-

cently, the authors in [14] have considered the design of

queuing systems from a stochastic optimization perspective

where the queues have general service time distributions.

By applying ideas of [14], we show that the formulated

problem has at least one of the objective and constraints has

non-linear function of expectations. Hence, is not solvable

with the existing SGD like first-order methods as they

require unbiased estimates of (sub) gradients (see [15]).

Much recent work in [16] has presented a first-order

method that deals with the non-linear functions of expec-

tations via the stochastic compositional gradient descent

(SCGD) algorithm. Since finding true (sub) gradients is

not possible due to the composition structure, the SCGD

algorithm adopts a quasi-gradient approach by estimating

the approximated (sub) gradients. Accelerated version of

SCGD is later proposed in [17]. The structure of the prob-

lem is, however, considered to be unconstrained in [16, 17].

Recently, the CSCGD algorithm has been proposed in [14]

to solve constrained stochastic compositional problems.

Exploring the ideas from [14, 17], we propose a new

algorithm that solves constrained stochastic compositional

problems with a faster convergence rate.

The rest of the paper is organized as follows. Sec. II

details the system model and problem formulations. The

algorithm and theoretical guarantees for it are provided in

Sec. III. Later, we evaluate the performance of the proposed
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Fig. 1: System Model

method in Sec. IV. Finally, we conclude our paper in Sec.

V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a data center, as shown in Fig.1, with M
servers denoted by M that are placed in an area that

is populated by users with mobile devices. Each server

contains a base-station of multiple antennas that serve

users through wireless transmissions, and is also capable

of storing data (see Fig. 1b). We do not consider any

interference management schemes, and hence we assume

all the concurrent data transmissions by servers are trans-

mitted in orthogonal channels. There are N trending files

of current interest, which are picked out of millions and

may be delivered to the users. These selected files are

the most popular ones, and they earned the placement

opportunity at servers. The data objects are represented as

Zi ∀i ∈ {1, ..., N}. Users can request any of these popular

N files from the data center.

A. Coding

Each file Zi is divided into ki number of fixed-size

chunks and then encoded using (ni, ki) Maximum Distance

Separable (MDS) erasure code to generate ni distinct

chunks for a file. These coded chunks are denoted as

C
(1)
i , ..., C

(ni)
i . The encoded chunks are stored in distinct

ni servers for delivery. The servers that store the chunks

corresponding to the file i are denoted by a set Si such

that Si ⊂ M, and |Si| = ni. A typical MDS erasure

code (ni, ki) is in such a way that ni > ki, with the

redundancy factor ni/ki. Hence any subset of ki-out-of-ni

coded chunks can reconstruct the original file. For example,

a simple replication of a file at n servers is nothing but

using (n, 1) erasure code. We assume a centralized system

that knows file placement information and schedules all

the user requests to different servers. Hence, when a file

is requested, the request goes to a set Ai storage nodes

where Ai ⊂ Si, and |Ai| = ki. Each server maintains a

FIFO queue to serve the users, as shown in Fig.1b. When

a file i is requested, all the chunks for other file requests

have not yet been served are waiting.

B. Policy

The central system distributes the users’ requests based

on the file availabilities. It has to pick the optimal choice

out of many options to reduce the latency to schedule a

request of file i to the ki server. We use the Probabilistic

Scheduling policy as proposed in [11] That allows the

choice of every possible subset of ki nodes with a certain

probability. Once a request for a file i arrives, the central

system randomly distributes the ki chunk requests to a

set of nodes Ai with predetermined probabilities P (Ai).
Then each server maintains a local queue containing all

the chunk requests to finally be transmitted by the base-

station. According to the Probabilistic scheduling policy,

the feasible probabilities P (Ai) exist when the following

conditions are satisfied.
m
∑

j=1

πij = ki∀i πij = 0 If j /∈ Si, (1)

where πij is the conditional probability of selecting the

node j for the request i.
When we consider a simple case where only a file is

placed in the system, ideally, in that case, the servers

with which more users have good channels need to be

scheduled. In other words, the probabilities of choosing

such servers are high. The current setting however, is much

more complicated. Although the files are more popular

in the current scenario, the demographic preferences are

unknown at this stage. For example, users that reside at

various geographical locations may have different priorities

towards these files. Hence to reduce the latency, we try

to incorporate all of these scenarios while formulating the

problem.

C. Queuing Model

We assume the file requests follow the Poisson process

with a known rate of λi. We can think of these rates λi as



file popularities. Hence the arrival of chunk requests at node

j follow the Poisson with rate Λj =
∑

i λiπij . The chunk

service time distribution is unknown and is subject to the

fading channel’s random behavior, thus making the queuing

models M/G/1. Let ξij represents the channel constant

corresponding to the user who requested file i, and pj is

the power allocated to the transmissions from the node j.
If the length of coded packet CSi

i is L, then the random

service time Xj for the packets that leave from node j can

be written as

Xj =
L

bj(pj , ξij)
with probability

πijλi
Λj

∀i,

where bj(pj , ξij) = Bj log(1 + pjξij) is Shannon’s ca-

pacity, and Bj is the bandwidth of the channel. Now the

first-order moment for service time can be found as

E [Xj ] = E [E [Xj |ξ]]

= LEξ

[

N
∑

i

πijλi
Λjbj(pj , ξij)

]

= L
N
∑

i

πijλi
Λj

Eξ

[

1

bj(pj , ξij)

]

where Eξ [.] is expectation w.r.t to the only random variable

ξ. Similarly, we can also find second-order moment as

E
[

X2
j

]

= L2
N
∑

i

πijλi
Λj

Eξ

[

1

b2j(pj , ξij)

]

Now the average queuing delay can be calculated using the

Pollaczek-Khinchin (P-K) formula as

Wj(pj , πij) =
ΛjE

[

X2
j

]

2(1− ΛjE [Xj ])

=
L2
∑N

i πijλiEξ

[

1
b2j (pj ,ξij)

]

2
(

1− L
∑N

i πijλiEξ

[

1
bj(pj ,ξij)

]) . (2)

The complicated looking expression in (2) restricts from

finding closed form for any known distributions of channel

constants {ξij}.

D. Problem Formulation

By assuming the information of file placement in servers

is known, we formulate the problem to obtain an optimal

policy that enhances the QoS of users with the following

utility function

U(p) =

M
∑

j=1

ψ

(

E

[

∑

i

bj(pj , ξij)

])

, (3)

where ψ(.) is any function that include such as linear,

log utility functions. A simple observation tells us that

the function in (3) is convex. By imposing constraints on

queuing delay, the problem finally can be written as

max
p,Π

U(p) (4a)

s.t Wj(pj , πij) ≤ Dj ∀j (4b)

M
∑

j=1

pj ≤ P, (1). (4c)

The objective in (4a), and constraint in (4b) functions

are stochastic in nature while the constraints in (4c) are

deterministic which are simpler to project onto. The col-

lection of all the random variables {ξij} is represented as

ξ. The goal is to solve the above problem in online fashion

using independent realizations ξ1, ξ2, ... that are revealed

sequentially. The constraints in (4b) are expressed as non-

linear functions of sample probabilities. Hence, the existing

first-order methods do not apply here due to unbiased

gradient estimates’ requirement to objective and constraint

functions. The constraints in (4b) are convex functions

(see [14, Appendix C]) thus making the whole problem

in (4) convex. To the best of our knowledge, optimizing

QoS in erasure-coded wireless data centers has not been

considered in the existing literature. Algorithmic details to

solve (4), and the theoretical convergence guarantees for it

are provided in the subsequent section.

III. ACCELERATED STOCHASTIC COMPOSITIONAL

GRADIENT DESCENT FOR CONSTRAINED PROBLEMS

Consider the more general constrained stochastic opti-

mization problem

x⋆ = argmin
x∈X

f(E [g(x, ξ)]) +R(x)

s.t. q(E [h(x, ξ)]) ≤ 0 (P)

where the expectation is taken with respect to ξ. Here,

f : Rm → R, g : Rn × R
k → R

m, h : Rn × R
k → R

d,

and q : Rd → R
J are continuous functions. The penalty

function R(x) : Rn → R ∪ {+∞} is an extended real-

valued closed convex function which is allowed to be

non-smooth. The problem can have simple deterministic

constraints as in (4c) which can be added in R(x). It

can be easily verified that the problem formulated in (4)

is a spacial case of (P). Since the distribution of ξ is

unknown, the expectations appearing in (P) cannot be

evaluated in closed-form. Motivated by classical stochastic

approximation methods, the goal is to solve (P) in an online

fashion using only independent realizations ξ1, ξ2, . . . that

are revealed sequentially. This section details the proposed

algorithm for solving (P) and provides the corresponding

convergence rates. For the sake of brevity, we define

F (x) := f(E [g(x, ξ)]), Q(x) := q(E [h(x, ξ)]).

A. Assumptions

We begin with discussing the necessary assumptions on

the functions f , g, q and h. All functions f , q, g, h are

continuously differentiable. Consequently, the gradients of

the objective and constraint functions are well-defined, with



The problem (P) is a convex optimization problem and the

set X is closed and compact, i.e., sup
x,x′∈X ‖x− x′‖

2
≤

Dx <∞. The random variables ξ1, ξ2, ... are independent

and identically distributed. The functions g, h are Lipschitz

continuous in expectation and have bounded second order

moments. The functions f , q are smooth and have bounded

gradients. The functions F , Q, and the inner functions g,

h are smooth.

B. Proposed Algorithm

Algorithm 1 Accelerated Constrained Stochastic Compo-

sitional Proximal Gradient (ACSCPG)

1: Input: x1 ∈ R
n step sizes αt, βt, δt ⊂ (0, 1].

2: Initialize y1 = z1 = 0, w1 = x1.

3: for t = 1, 2, ...
4: Observe the random variable ξt, and update xt+1

= proxαtR(.)

{

xt − αt∇g(xt, ξt)∇f(yt)

−δt∇h(xt, ξt)∇q(zt)∇ℓ(q(zt))

}

(5)

5: Observe the random variable ξt+1, and update the

axillary iterates as

wt+1 =

(

1−
1

βt

)

xt +
1

βt
xt+1, (6)

yt+1 = (1− βt)yt + βtg
(

wt+1, ξt+1

)

,

zt+1 = (1− βt) zt + βth
(

wt+1, ξt+1

)

(7)

6: end

7: Output: x̂ = 2
T

∑T
t=T/2 xt+1.

Similar to the analysis in [14], we define a smooth and

convex function ℓ(w) =
∑J

j=1 ℓj(wj) where ℓj is defined

as

ℓj(x) :=











1
2x

2 0 ≤ x ≤ Cℓ

Cℓx−
C2

ℓ

2 x > Cℓ

0 x < 0

(8)

Gradient of the function is bounded as ∇ℓj(x) =
max{x,Cℓ} for x > 0 and zero otherwise. The parameter

Cl in our case is the upper limit of maxj qj(E [h(x, ξ)])
for any x ∈ X . The penalty function that is defined in (8)

helps in taking the iterate towards the descent direction of

optimal function F as well as towards the feasible region

{x : Q(x) ≤ 0}.

As proposed in [14], CSCGD algorithm carries updates

towards the negative direction of the approximated gradi-

ents of both objective F (x), and penalty ℓ(Q(x)) functions.

However, In the present case, iterates are of similar except,

the steps that track E [g(x⋆, ξ)], and E [h(x⋆, ξ)]. We in-

troduce a new step in (6) that tracks running average of the

optimal solution and is used in auxiliary variable updates

as shown in (7) and that is called extrapolation-smoothing

scheme which is the main reason behind the acceleration

of convergence. The complete procedure is summarized

Algorithm 1. Compared to the CSCGD, ACSCPG estimates

the unknown quantities E [g(x, ξ)], E [h(x, ξ)] with faster

rate. The updates in (6), (7) are carried out in way that the

yt, zt are approximately unbiased estimates of E [g(x, ξ)],
E [h(x, ξ)]. To explicitly see that, let us define the weights

as

ζ
(t)
k =

{

βk
∏t

i=k+1 (1− βi) if t > k ≥ 0

βt if t = k ≥ 0,
(9)

then we have the following relations

xt+1 =

t
∑

k=0

ζ
(t)
k wk+1,

yt+1 =

t
∑

k=0

ζ
(t)
k g(wk+1, ξk+1),

zt+1 =
t
∑

k=0

ζ
(t)
k h(wk+1, ξk+1)

In other words, xt+1 is weighted average of {wt}
t+1
1 , and

yt+1, zt+1 are weighted averages of {g(wk+1, ξk+1)}
t+1
1 ,

{h(wk+1, ξk+1)}
t+1
1 . Hence as t progresses, the estimates

yt, zt reach much nearer to the unbiased gradients of inner

functions.

C. Performance Analysis

This section provides the major theoretical findings of

Algorithm. 1. We begin our analysis by defining a new

objective function by penalizing the constraint as

H̃(x, α, δ) = f̃ (Eg̃ (x, ξ) , α, δ) +R(x), (10)

where

f̃(ỹ, α, δ) = f(y) +
δ

α
p(z), p(z) = ℓ(q(z))

g̃ (x, ξ) = [g (x, ξ) ,h (x, ξ)] , ỹ = [y, z] . (11)

Since the inner function h is Lipschitz and has bounded

gradients, It is simple to prove (see [14, Appendix A,

lemma 3]) that the function p(z) is smooth and have

bounded gradient. Note that H̃(x, α, δ) is convex w.r.t x.

The following theorem establishes the convergence results

of Algorithm. 1.

Theorem 1. Under all the assumptions in Sec.III-A, for the

choice of constants which are selected as

αt = Ct−a, βt = Cbt
−b, δt = Ct−c,

γt = Ct−d, ηt = Ct−e,



TABLE I: Summary of bounds on optimality gap and constraint violation

Choice of constants a, b, c, d, e Optimality gap Constraint violation

a = 0.9048, b = 0.5714, c = 0.7143, d = −0.0952, e = 1.2607 O
(

T−2/21
)

O
(

T−2/21
)

a = 0.8751, b = 0.5714, c = 0.7143, d = −0.1429, e = 1.1652 O
(

T−1/7
)

O
(

T−1/14
)

a = 0.7143, b = 0.5714, c = 0.7143, d = −0.2857, e = 0.8518 O
(

T−2/7
)

O (1)

where C ≥ 0, Cb > 2, a ≥ c, 0 ≤ a ≤ 1, 0 ≤ b ≤ 1, and

0 ≤ c ≤ 1, the following result holds.

2

T

T
∑

t=T/2

E [H (x̂)−H (x⋆)]

≤ O

(

T a−1 + T d + T 4b−4c−d + T−b−d

+ T 2a+4b−6c−d + T 2a−b−2c−d + T−2a

+ T−a−c + T−e + T 2a−2c−e + T e−2a

)

2

T

T
∑

t=T/2

max
j

E [Qj (x̂)]

≤ O

(

T (c−1)/2 + T (d+c−a)/2 + T (4b−3c−d−a)/2

+ T (c−a−b−d)/2 + T (a+4b−5c−d)/2 + T−a

+ T (a−b−c−d)/2 + T (−3a+c)/2 + T (c−a−e)/2

+ T (a−c−e)/2 + T (e−3a+c)/2 + T (c−a)/2),

where H(x) = F (x) +R(x).

The proof is borrowed from [17, Theorem 3]. But

the presence of stochastic constraints are need to be

addressed separately from [14]. Specifically, first, we

bound the absolute value of successive iterate differ-

ence as E

[

‖xt+1 − xt‖
2
]

≤ O(α2
t + δ2t ). Then we

bound the difference of tracking variables and inner func-

tions as E

[

‖yt − ḡ(xt)‖
2
]

≤ O
(

t−4c+4b + t−b
)

and

E

[

∥

∥zt − h̄(xt)
∥

∥

2
]

≤ O
(

t−4c+4b + t−b
)

. Next by deriv-

ing the bound for difference of algorithmic and optimal

solutions, we prove the statement of Theorem. 1. The

complete proof is deferred to Appendix A.

By carefully choosing the constants, we obtain the rates,

as shown in the Table I. Results provided in Theorem 1 are

clearly improved convergence rates as O
(

T−2/21
)

com-

pared to the best known results in [14] O
(

T−1/12
)

. The

improvement is due to making an additional smoothness

assumption condition of inner functions.

Bounds in Table I are expressed in terms of the number

of iterations. The analysis excludes the per-iteration com-

plexity, which is fixed. Aside from the reduced number

of iterations to reach the optimal solution, the number

of oracle calls may be more depending on the required

number of queries per iteration. For example, the addition

of stochastic constraints would result in requiring more

gradient queries. The current approach cannot Improve

the per-iteration complexity, which is the drawback of the

Algorithm. 1.
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Fig. 2: Convergence results for ACSCPG, CSCGD [14]

IV. SIMULATIONS

We consider a data center with M = 10 servers; each

is equipped with a single antenna base-station capable

of wireless file transmissions. The most trending files

N = 100 are considered for placement and the popularities

follow Zipf distribution. Specifically, the probability pk that

k−th most popular file is requested at a given time adheres

to pk ∝ k−s where s is the parameter that characterizes

the skewness in the distribution, which is taken as 2 for

the simulation. All the files are encoded using (8, 4) MDS

erasure code and stored in servers, as explained in Sec.

II. Bandwidth of all the channels is allocated as Bj =
1MBPS ∀j = 1, ...,M . Latency constraint is imposed as

each server’s queuing delay should not go beyond 5ms.

Experiments are conducted in the simulated environment

of a unit radius circle where all the users and servers

are present. The files’ requests are received from various

locations randomly distributed in a unit radius circle with

uniform distribution. The wireless channel between users

and the data center is considered Rayleigh. The attenuation

factor due to the path-loss is considered to k0(d/d0)
−3 with

the parameters k0 = d0 = 1. Eight servers are placed on the

circumference of a 0.5 unit radius circle separated with 45◦

angular difference. The remaining two servers are placed

at the coordinates (−2, 0), (2, 0), which are far away from

the users.

As the first part of the experiments, Algorithm. 1 AC-

SCPG is run on the simulated environment to learn the pol-

icy variables {πij} and power allocations {pj} by trying to

solve the problem (4) in online manner. For the comparison,

CSCGD [14] is also run, and the results are shown in Fig.2.

The two plots represent the evaluation of objective function

U(p) (QoS metric) as in (4a), and constraints violations



Policy Throughput in (12)

Equiprobable 178 kbps

Proposed 183 kbps

TABLE II: Comparison results for Equiprobable and the

proposed policies

maxj (Wj(pj , πij)−Dj) respectively. As shown in Fig.2,

the objective is maximized, while constraint violations

are decreased with the number of iterations as desired.

However, the proposed algorithm outperforms CSCGD in

terms of convergence rate, as supported by theoretical

arguments.

To evaluate the proposed method’s performance in wire-

less networks, we implement a heuristic technique called

equiprobable policy that belongs to the category of prob-

abilistic scheduling [11] for the comparison. As the name

suggests, the policy variables adhere to constraints in (1)

but have equal values. We consider average throughput that

is obtained from the data center as a performance metric

for the comparison and is calculated as

T =
1

M

M
∑

j=1

1

Wj(pj , πij) +
1∑

i E[bj(pj ,ξij)]

. (12)

A good policy should obtain higher throughput. Results

are presented in Table.II, and the policy obtained from the

proposed method outperforms the equiprobable policy by

achieving higher throughput.

V. CONCLUSION AND FUTURE SCOPE

This paper considers the erasure-coded data center in

a wireless network. We propose a new scheduling policy

that optimizes QoS while respecting strict queuing delay

constraints. To solve the problem, we propose a new

algorithm, ACSCPG, which is inspired by [14, 17]. Finally,

we show that the proposed algorithm beats CSCGD [14]

both theoretically and in a simulated environment of a data

center. We also show that the policy which is obtained from

the proposed approach outperforms a heuristic one called

equiprobable policy.

Apart from the benefit of rate improvements, the pro-

posed algorithm incurs more cost per iteration with the

current application. In other words, the algorithm requires

approximately M+NJ number of gradient queries in each

iteration. The number M + NJ may be much large in

practice. We look for distributed versions of the current

algorithm to reduce the complexity per iteration in our

future works. Another interesting direction is to analyze

the algorithm by considering more practical scenarios in

the wireless network, such as the server nodes’ mobility.

APPENDIX A

PROOF OF THEOREM 1

Before proving the main result, we first derive some

preliminary results.

Lemma 1. The updates in (5) yields

E

[

‖xt+1 − xt‖
2
]

≤ O(α2
t + δ2t ). (13)

for all t ≥ 1.

Proof: From Algorithm 1

xt+1 = proxαtR(.)

{

xt − αt∇g(xt, ξt)∇f(yt)

− δt∇h(xt, ξt)∇p(zt)
}

.

By the definition of proximal operation, we can write

xt+1 = argmin
x

1

2

∥

∥

∥x− xt − αt∇g(xt, ξt)∇f(yt)

− δt∇h(xt, ξt)∇p(zt)
∥

∥

∥

2

+ αtR(x).

The optimality condition suggests,

xt+1 − xt = αt∇g(xt, ξt)∇f(yt)− δt∇h(xt, ξt)∇p(zt)

+ αtst+1,

where st+1 = ∂R(xt+1) norm of which is bounded. Hence,

‖xt+1 − xt‖ ≤ αt ‖∇g(xt, ξt)∇f(yt)‖

+ δt ‖∇h(xt, ξt)∇p(zt)‖+ αt ‖st+1‖

≤ O(αt + δt).

Lemma 2. Given two sequences of positive scalars {st}
∞
t=1,

and {φt}
∞
t=1 satisfying

sk+1 ≤
(

1− φt + C1φ
2
t

)

sk + C2t
−a + C3t

−c,

where C1 ≥ 0, C2 ≥ 0, C3 ≥ 0, and a ≥ 0 c ≥ 0. The

definition φt = C4t
−b, where b ∈ (0, 1], and C4 > 2, then

for any t the sequence is bounded as

sk ≤ Dt−d,

Where D is

max
t≤(C1C2

4
)1/b+1

stt
c +

C2 + C3

C4 − 2
, d = min(a− b, c− b).

Proof: This result can be proved by induction. From

the definitions it is clear that bound holds for any t ≤
(C1C

2
4 )

1/b. Now assume for any t > (C1C
2
4 )

1/b, st ≤
Dt−d. Hence we have to prove st+1 ≤ D(t+ 1)−d.

st+1 ≤
(

1− φt + C1φ
2
t

)

sk + C2t
−a + C3t

−c

≤ Dt−d −DC4t
−b−d +DC1C

2
4 t

−2b−d + C2t
−a

+ C3t
−c.

From the convexity of the function f(t) = t−d, we can

write

(t+ 1)−d − t−d ≥ −dt−d−1.

To prove the result we need to prove following two steps.

∆ = (t+ 1)−d − t−d + C4t
−b−d − C1C

2
4 t

−2b−d > 0,

D ≥
C2t

−a + C3t
−c

∆
.



Hence we follow

∆ ≥ −dt−d−1 + C4t
−b−d − C1C

2
4 t

−2b−d

≥ (C4 − 2)t−b−d > 0.

The second inequality follows from the fact that t >
(C1C

2
4 )

1/b, and b ≤ 1. Finally, we consider

C2t
−a + C3t

−c

∆
≤

C2

C4 − 2
t−a+b+d +

C3

C4 − 2
t−c+b+d

≤
C2 + C3

C4 − 2
≤ D.

The second inequality follows from the condition on d
which is d = min(a− b, c− b).

Lemma 3. If we choose βt = Cbt
−b, where Cb > 2, b ∈

(0, 1], and αt = Cat
−a, δt = Cct

−c, where Ca ≥ 0, Cc ≥
0, and a ≥ c. Under the assumptions, we have

E

[

‖yt − ḡ(xt)‖
2
]

≤ O
(

t−4c+4b + t−b
)

,

E

[

∥

∥zt − h̄(xt)
∥

∥

2
]

≤ O
(

t−4c+4b + t−b
)

.

Proof: We define,

mt+1 =

t
∑

k=0

ζ
(t)
k ‖xt+1 −wk+1‖

2

nt+1 =

∥

∥

∥

∥

∥

t
∑

k=0

ζ
(t)
k (gk+1(wk+1)− ḡ(wk+1))

∥

∥

∥

∥

∥

From [17, Lemma 7], we have

‖yt − ḡ(xt)‖
2
≤ L2

gm
2
t + 2n2

t ,

and

qt+1 ≤ (1− βt)qk +
4

βt
‖xt+1 − xt‖

2

≤ (1− βt)qk +O
(

t−2a+b + t−2c+b
)

From Lemma. 2, we can conclude qk ≤ O(t−2c+2b).
Similarly from the [17, Lemme 7], we have

mt+1 ≤ (1− βt)mt + βtqk +
2

βt
‖xt+1 − xt‖

2

≤ (1− βt)mt +O
(

t−2c+b + t−2a+b + t−2c+b
)

≤ (1− βt)mt +O
(

t−2c+b + t−2a+b
)

.

Hence we have mt ≤ O(t−2c+2b). Again from the Lemma

7 in [17] we have

E
[

n2
t+1

]

≤
(

1− 2βt + β2
t

)

E
[

n2
t

]

+O(1)β2
t .

From the Lemma. 2, we have E
[

n2
t

]

≤ O(t−b). Hence we

conclude

E

[

‖yt − ḡ(xt)‖
2
]

≤ O
(

t−4c+4b + t−b
)

.

Similarly, we can also prove the other result.

We have proved all the preliminary results. Now we

prove the crucial result before discussing the convergence

analysis.

Lemma 4. Under the assumptions, for any scalers ηt, and

γt, the algorithmic updates yield

2αtE [F (xt+1)− F (x⋆)] + 2δtE [P (xt+1)− P (x⋆)]

+ 2αtE [R(xt+1)−R(x⋆)] + E

[

‖xt+1 − x⋆‖
2
]

≤

(

1 +
αt

γt

)

E

[

‖xt − x⋆‖
2
]

+O
(

α3
t + α2

t δt
)

+O (Lfαtγt)E
[

‖yt − ḡ(xt)‖
2
]

+O

(

αtηt +
ηtδ

2
t

αt

)

+O

(

α3
t

ηt

)

+O

(

Lp
γtδ

2
t

αt

)

E

[

∥

∥zt − h̄(xt)
∥

∥

2
]

Proof: Consider ‖xt+1 − x⋆‖
2

= ‖xt+1 − xt + xt − x⋆‖
2

= ‖xt − x⋆‖
2
− ‖xt+1 − xt‖

2

+ 2 〈xt+1 − xt,xt+1 − x⋆〉

= ‖xt − x⋆‖2 − ‖xt+1 − xt‖
2

− 2αt

〈

∇g̃t(xt)∇f̃ (ỹt, αt, δt) + st+1,xt+1 − x⋆
〉

= ‖xt − x⋆‖
2
− ‖xt+1 − xt‖

2
+ 2αt 〈st+1,x

⋆ − xt+1〉

+ 2αt

〈

∇g̃t(xt)∇f̃ (ỹt, αt, δt),x
⋆ − xt+1

〉

≤ ‖xt − x⋆‖
2
+ 2αt (R(x

⋆)−R(xt+1))

+ 2αt

〈

∇g̃t(xt)∇f̃ (ỹt, αt, δt),x
⋆ − xt+1

〉

= ‖xt − x⋆‖2

+ 2αt (T1 + T2) + 2αt (R(x
⋆)−R(xt+1)) ,

where

T1 =
〈

∇F̃ (xt, αt, δt),x
⋆ − xt+1

〉

T2

=
〈

∇g̃t(xt)∇f̃ (ỹt, αt, δt)−∇F̃ (xt, αt, δt),x
⋆ − xt+1

〉

.

The inequality follows from the fact that R(x) is convex.

Now consider

T1 =
〈

∇F̃ (xt, αt, δt),xt − xt+1

〉

+
〈

∇F̃ (xt, αt, δt),x
⋆ − xt

〉

= 〈∇F (xt),xt − xt+1〉+
δt
αt

〈∇P (xt),xt − xt+1〉

+ 〈∇F (xt),x
⋆ − xt〉+

δt
αt

〈∇P (xt),x
⋆ − xt〉

≤ F (xt)− F (xt+1) +
δt
αt

(P (xt)− P (xt+1))

+
1

2

(

LF +
δt
αt
LP

)

‖xt+1 − xt‖
2
+ F (x⋆)− F (xt)

+
δt
αt

(P (x⋆)− P (xt))

≤ F̃ (x⋆, αt, δt)− F̃ (xt+1, αt, δt) +O(α2
t + αtδt).



Next consider T2

=
〈

∇g̃t(xt)∇f̃ (ỹt, αt, δt)−∇F̃ (xt, αt, δt),x
⋆ − xt+1

〉

= T21 + T22 +
ηt
2
T23 +

1

2ηt
‖xt − xt+1‖

2 ,

where

T21 =
〈

∇F̃ (xt, αt, δt)−∇g̃t(xt)∇f̃
(

¯̃g(xt), αt, δt
)

,

xt − x⋆
〉

T22 =
〈

∇g̃t(xt)∇f̃
(

¯̃g(xt), αt, δt
)

−∇g̃t(xt)∇f̃ (ỹt, αt, δt) ,xt − x⋆
〉

T23 =
∥

∥

∥∇F̃ (xt, αt, δt)−∇g̃t(xt)∇f̃ (ỹt, αt, δt)
∥

∥

∥

2

We can eliminate T21, since ET21 = 0. Hence we consider

T22 ≤
γt
2

∥

∥

∥∇g̃t(xt)∇f̃
(

¯̃g(xt), αt, δt
)

−∇g̃t(xt)∇f̃ (ỹt, αt, δt)
∥

∥

∥

2

+
1

2γt
‖xt − x⋆‖

2

≤ γt ‖∇gt(xt)∇f (ḡ(xt))−∇gt(xt)∇f (yt)‖
2

+
γtδ

2
t

α2
t

∥

∥∇ht(xt)∇p
(

h̄(xt)
)

−∇ht(xt)∇p (zt)
∥

∥

2

+
1

2γt
‖xt − x⋆‖

2

≤ O (Lfγt) ‖yt − ḡ(xt)‖
2
+

1

2γt
‖xt − x⋆‖

2

+O

(

Lp
γtδ

2
t

α2
t

)

∥

∥zt − h̄(xt)
∥

∥

2
.

Finally we consider

T23 =
∥

∥

∥∇F̃ (xt, αt, δt)−∇g̃t(xt)∇f̃ (ỹt, αt, δt)
∥

∥

∥

2

=
∥

∥

∥∇F (xt) +
δt
αt

∇P (xt)−∇gt(xt)∇f (yt)

−
δt
αt

∇ht(xt)∇p (zt)
∥

∥

∥

2

≤ O

(

1 +
δ2t
α2
t

)

.

Now By considering all the intermediate results we con-

clude

E

[

‖xt+1 − x⋆‖
2
]

≤

(

1 +
αt

γt

)

E

[

‖xt − x⋆‖
2
]

+ 2αtF̃ (x⋆, αt, δt)− 2αtE

[

F̃ (xt+1, αt, δt)
]

+O

(

α3
t

ηt

)

+O (Lfαtγt)E
[

‖yt − ḡ(xt)‖
2
]

+O

(

αtηt +
ηtδ

2
t

αt

)

+O

(

Lp
γtδ

2
t

αt

)

E

[

∥

∥zt − h̄(xt)
∥

∥

2
]

+O(α3
t + α2

t δt)

+ 2αtE [R(x⋆)−R(xt+1)] .

We get the required result by interchanging the terms.

Now we are ready with all the derived results, we

proceed to prove the theorem. Let us denote

H(x) = F (x) +R(x).

Further we know P (x⋆) = 0. Now by summing over

1, ..., T the expression of Lemma. 4, we get

T
∑

t=T/2

(

2E [H (xt+1)−H (x⋆)] + 2
δt
αt

E [P (xt+1)]

)

≤
1

αT/2
E

[

‖x1 − x⋆‖
2
]

+

T
∑

t=T/2

1

γt
E

[

‖xt − x⋆‖
2
]

+
T
∑

t=T/2

O

(

γtδ
2
t

α2
t

)

E

[

∥

∥zt − h̄(xt)
∥

∥

2
]

+

T
∑

t=T/2

O (γt)E
[

‖yt − ḡ(xt)‖
2
]

+

T
∑

t=T/2

O

(

α2
t + αtδt + ηt +

ηtδ
2
t

α2
t

+
α2
t

ηt

)

≤

T
∑

t=T/2

O

(

γtδ
2
t

α2
t

)

E

[

∥

∥zt − h̄(xt)
∥

∥

2
]

+O

(

1

αT/2

)

+O





T
∑

t=T/2

1

γt



 +

T
∑

t=T/2

O (γt)E
[

‖yt − ḡ(xt)‖
2
]

+

T
∑

t=T/2

O

(

α2
t + αtδt + ηt +

ηtδ
2
t

α2
t

+
α2
t

ηt

)

The second inequality follows from the fact that

‖xt − x⋆‖
2
≤ O(1). From the results in Lemma. 3, we

can write

T
∑

t=T/2

(

2E [H (xt+1)−H (x⋆)] + 2
δt
αt

E [P (xt+1)]

)

≤

T
∑

t=T/2

(

O (γt) +O

(

γtδ
2
t

α2
t

))

O

(

(

δt
βt

)4

+ βt

)

+
T
∑

t=1

O

(

α2
t + αtδt + ηt +

ηtδ
2
t

α2
t

+
α2
t

ηt

)

+O

(

1

αT/2

)

+O





T
∑

t=T/2

1

γt





≤

T
∑

t=T/2

O

(

γtδ
4
t

β4
t

+ βtγt +
γtδ

6
t

α2
tβ

4
t

+
γtδ

2
t βt
α2
t

)

+

T
∑

t=T/2

O

(

α2
t + αtδt + ηt +

ηtδ
2
t

α2
t

+
α2
t

ηt

)

+O

(

1

αT/2

)

+O





T
∑

t=T/2

1

γt



 (14)



Now For the first result since we know P (xt+1) ≥ 0, we

write

T
∑

t=T/2

2E [H (xt+1)−H (x⋆)]

≤

T
∑

t=T/2

O

(

γtδ
4
t

β4
t

+ βtγt +
γtδ

6
t

α2
tβ

4
t

+
γtδ

2
t βt
α2
t

)

+
T
∑

t=T/2

O

(

α2
t + αtδt + ηt +

ηtδ
2
t

α2
t

+
α2
t

ηt

)

+O

(

1

αT/2

)

+O





T
∑

t=T/2

1

γt



 .

After substituting all the constants choices,

T
∑

t=T/2

2E [H (xt+1)−H (x⋆)] ≤ O (T a) +O





T
∑

t=T/2

td





+

T
∑

t=T/2

O
(

t4b−4c−d + t2a+4b−6c−d + t2a−b−2c−d

+ t−b−d + t−2a + t−a−c + t−e + t2a−2c−e + te−2a
)

≅ O
(

T a + T d+1 + T 1+4b−4c−d + T 1−b−d

+ T 1+2a+4b−6c−d + T 1+2a−b−2c−d + T 1−2a + T 1−a−c

+ T 1−e + T 1+2a−2c−e + T 1+e−2a
)

.

Proceeding further

2

T

T
∑

t=T/2

E [H (xt+1)−H (x⋆)] ≤ O
(

T a−1 + T d

+ T 4b−4c−d + T−b−d + T 2a+4b−6c−d + T 2a−b−2c−d

+OT−2a + T−a−c + T−e + T 2a−2c−e + T e−2a
)

.

Hence from the convexity of H , first result of Thm.1 is

proved.

Now for the second results since we know

|E [H (xt+1)−H (x⋆)] | ≥ −O(1). Since αt ≤ δt,
and the function P is convex we have

TδT/2

2αT/2
E [P (x̂)] ≤

δT/2

αT/2

T
∑

t=T/2

E [P (xt+1)]

≤

T
∑

t=T/2

δt
αt

E [P (xt+1)] . (15)

From the definition of function P provided in (11), and

penalty function in (8), we know P (x̂) =
∑

j

(

[Qj(x̂)]+

)2

where [.]+ is the projection on positive orthant. Therefore

the expression in (15) becomes

TδT/2

2JαT/2





J
∑

j=1

[Qj(x̂)]+





2

≤
TδT/2

2αT/2

J
∑

j=1

(

[Qj(x̂)]+

)2

≤
T
∑

t=T/2

δt
αt

E [P (x̂)] . (16)

From the expression in (14), we can write

2
δT/2

αT/2

T
∑

t=T/2

E [P (xt+1)]

≤

T
∑

t=T/2

O

(

γtδ
4
t

β4
t

+ βtγt +
γtδ

6
t

α2
tβ

4
t

+
γtδ

2
t βt
α2
t

)

+

T
∑

t=T/2

O

(

α2
t + αtδt + ηt +

ηtδ
2
t

α2
t

+
α2
t

ηt

)

+O

(

1

αT/2

)

+O





T
∑

t=T/2

1

γt



+O(T )

≅ O
(

T a + T d+1 + T 1+4b−4c−d + T 1+2a+4b−6c−d

+ T 1−b−d + T 1+2a−b−2c−d + T 1−2a + T 1−a−c

+ T 1−e + T 1+2a−2c−e + T 1+e−2a + T
)

.

By taking δT/2/αT/2 to R.H.S and dividing with T , we

can write

2

T

T
∑

t=T/2

E [P (xt+1)]

≤ O
(

T c−1 + T d+c−a + T 4b−3c−d−a + T c−a−b−d

+ T a+4b−5c−d + T a−b−c−d + T−3a+c + T−2a

+ T c−a−e + T a−c−e + T e−3a+c + T c−a
)

From the expression in (16), we conclude the proof by

saying

J
∑

j=1

[Qj(x̂)]+

≤ O
(

T (c−1)/2 + T (d+c−a)/2 + T (4b−3c−d−a)/2

+ T (c−a−b−d)/2 + T (a+4b−5c−d)/2 + T (a−b−c−d)/2

+ T (−3a+c)/2 + T−a + T (c−a−e)/2 + T (a−c−e)/2

+ T (e−3a+c)/2 + T (c−a)/2
)

.
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