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Abstract—Unmanned aerial vehicles (UAVs) are expected to
be an integral part of wireless networks, and determining
collision-free trajectories for multiple UAVs while satisfying
requirements of connectivity with ground base stations (GBSs) is
a challenging task. In this paper, we first reformulate the multi-
UAV trajectory optimization problem with collision avoidance
and wireless connectivity constraints as a sequential decision
making problem in the discrete time domain. We, then, propose
a decentralized deep reinforcement learning approach to solve
the problem. More specifically, a value network is developed
to encode the expected time to destination given the agent’s
joint state (including the agent’s information, the nearby agents’
observable information, and the locations of the nearby GBSs).
A signal-to-interference-plus-noise ratio (SINR)-prediction neural
network is also designed, using accumulated SINR measurements
obtained when interacting with the cellular network, to map the
GBSs’ locations into the SINR levels in order to predict the UAV’s
SINR. Numerical results show that with the value network and
SINR-prediction network, real-time navigation for multi-UAVs
can be efficiently performed in various environments with high
success rate.

Index Terms—Collision avoidance, decentralized algorithms,
deep reinforcement learning, multi-UAV trajectory design, wire-
less connectivity.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), also commonly known
as drones, are aircrafts piloted by remote control or embedded
computer programs without human onboard [1]. Recently,
UAVs have found numerous applications, such as aerial in-
spection, photography, precision agriculture, traffic control,
search and rescue, package delivery, and telecommunications.
Based on the roles of UAVs, the following two scenarios
are considered to integrate the UAVs into cellular networks:
1) UAV-assisted cellular networks, in which UAVs can be
deployed as aerial base stations (BSs) to support wireless
connectivity and improve the performance of cellular networks
[2]; 2) cellular-connected UAV networks, in which the UAVs
are regarded as aerial user equipments (UEs) that need to be
supported by the ground communication infrastructure [3]. As
aerial UEs, the UAVs need efficient trajectories and also should
keep connected with ground base stations (GBSs) during their
flights. Therefore, the trajectory of cellular-connected UAVs
need to be carefully designed to meet their mission specifica-
tions, while at the same time ensuring that the communication
requirements are satisfactorily met.

The authors are with the Department of Electrical Engineering and
Computer Science, Syracuse University, Syracuse, NY, 13244 (e-mail:
xwang173@syr.edu, mcgursoy@syr.edu).

The material in this paper will be presented in part at the IEEE International
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Trajectory optimization for cellular-connected UAVs has
been investigated in the literature, in which a UAV has a
mission of flying between a pair of given initial and final
locations. The authors in [4]–[6] addressed the trajectory opti-
mization problem with the goal to minimize the UAV’s mission
completion time. Particularly, the authors in [4] considered
how to determine the optimal path for the UAV, subject
to a quality of connectivity constraint in the GBS-to-UAV
link specified by a minimum receive signal-to-noise ratio
target. Techniques from graph theory and convex optimization
were used to find the trajectory solution. In [5], the UAV
is required to find a path during which it does not lose
its cellular connection to one of the GBSs in the area by
more than a given time period. Dynamic programming based
approximate solution was proposed in this paper. The authors
in [6] studied the trajectory optimization problem for a UAV
with two different criteria for the connectivity constraint: 1)
the maximum continuous time duration that the UAV is out
of the coverage of the GBSs is limited to a given threshold;
2) the total time periods that the UAV is not covered by the
GBSs is restricted. A double Q-learning method is proposed to
solve the problem. Moreover, authors in [7] formulated a UAV
trajectory optimization problem to minimize the weighted sum
of its mission completion time and expected communication
outage duration. A dueling double deep Q network with
multi-step learning algorithm is proposed. A simultaneous
navigation and radio mapping framework was also proposed to
improve the performance. Additionally, an interference-aware
path planning scheme for a network of cellular-connected
UAVs was proposed in [8]. In particular, each UAV aims to
achieve a tradeoff between maximizing energy efficiency and
minimizing both wireless latency and the interference caused
on the ground network along its path. A deep reinforcement
learning algorithm, based on echo state network cells, was
developed to solve the problem. In addition, trajectory design
for cellular-connected UAVs has also been extensively investi-
gated in [9]–[16]. However, none of the prior works considered
multi-UAV networks, which is common in practice, along with
collision avoidance constraints.

In scenarios involving multiple UAVs or more generally
multiple autonomous systems, a fundamental challenge is to
safely control the interactions with other dynamic agents in the
environment. Specifically, it is important for the autonomous
devices (e.g., robots and drones) to navigate in an environment
with or without obstacles, and stay free of collisions with each
other and the obstacles, based on local observations of the
environment. Finding solutions to this problem is challenging,
since one robot’s action is based on others’ motions (intents)
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and policies which are in general unknown, and, furthermore,
explicit communication of such hidden quantities is often im-
practical due to physical limitations. Earlier works have largely
leveraged well-engineered interaction models to enhance the
social awareness in robot navigation, e.g. [17] and [18], where
the same policy is applied to all agents. The key challenge
for these models is that they heavily rely on hand-crafted
functions and cannot generalize well to various scenarios
for crowd-like cooperation. As an alternative, reinforcement
learning frameworks have been used to train computationally
efficient policies that implicitly encode the interactions and
cooperation among agents. Recent works, e.g., [19]–[22], have
shown the power of deep reinforcement learning techniques to
learn socially cooperative policies.

Different approaches for the collision avoidance of multiple
UAVs have also been developed in the literature. For instance,
a rolling horizon approach using dynamic programming was
used to solve the problem in a multi-agent cooperative system
in [23]. A neuro-dynamic programming algorithm is proposed
in [24] for multi-UAV cooperative path planning. A mixed
integer linear programming method is used in [25]. Partially
observable Markov decision process based methods are ap-
plied in [26]–[28] for UAV collision avoidance. In addition,
authors in [29] used reachable sets to represent the collection
of possible trajectories of the obstacle aircraft. Once a collision
is detected, a sampling-based method is used to generate
a collision avoidance path for the UAV. The UAV in this
paper was able to learn the position, velocity and receive
other data from the obstacle aircraft. In [30], predictive state
space was utilized to present the waypoints of the UAVs, with
which initial collision-free trajectories are generated and then
improved by a rolling optimization algorithm to minimize the
trajectory length. However, considering collision avoidance in
multi-UAV navigation with wireless communication require-
ments and addressing these challenges via deep reinforcement
learning methods have not been adequately explored yet.

Motivated by these facts, we propose a decentralized deep
reinforcement learning algorithm as a solution to the multi-
UAV trajectory optimization problem with collision avoidance
and wireless connectivity constraints. The contributions of the
paper are listed as follows:
‚ We study multi-UAV trajectory optimization under real-

istic constraints, e.g., collision avoidance, wireless con-
nectivity, and kinematic constraints, while also taking
into account antenna patterns and interference levels.
Since it is difficult to address this problem with standard
optimization techniques (especially in a decentralized
setting), we further reformulate it as a sequential decision
making problem in the discrete time domain.

‚ We develop a decentralized deep reinforcement learning
algorithm to learn the action policy for each UAV. More
specifically, we optimize the value function of the Markov
decision process (MDP) transformed from the formulated
problem. Due to the high dimension and the continuity
of the state space and action space, we design a value
neural network to approximate the value function, and to
encode the expected time to destination given the agent’s
joint state (including the agent’s information, the nearby

Fig. 1: An illustration of multi-UAV multi-GBS cellular networks.

agents’ observable information, and the locations of the
nearby GBSs).

‚ Due to the fact that the UAVs do not communicate in
the considered network, uncertainty exists in the UAVs’
unobservable intents, which is critical for multi-UAV
navigation problems. To address this uncertainty, we
employ a velocity-filter approach to estimate the UAVs’
intentions.

‚ We further design a signal-to-interference-plus-noise ratio
(SINR)-prediction neural network to assist the value
network to encode the interaction between the UAVs
and the cellular network. Particularly, using accumulated
SINR measurements obtained when interacting with the
cellular network, the SINR-prediction network maps the
nearby GBSs’ locations into the SINR levels in order to
predict the UAV’s SINR.

‚ We delineate the initialization, refining, and training steps
of the algorithm and describe the real-time navigation
process. We extensively evaluate the proposed decentral-
ized deep reinforcement learning algorithm. We demon-
strate that with the introduction of the SINR-prediction
network, testing environment is not restricted to be the
same as the training environment. Furthermore, we show
that real-time decentralized navigation of multiple UAVs
can be efficiently performed with high success rate in
various environments, e.g., environments with different
antenna patterns, environments with obstacles or no-fly
zones.

The remainder of the paper is organized as follows: System
model is introduced in Section II. Section III describes the
multi-UAV trajectory optimization problem, including the con-
sidered constraints. Section IV focuses on the reinforcement
learning framework for solving the proposed problem, and the
approaches used to tackle the uncertainty in the environment.
The decentralized deep reinforcement learning algorithm is
presented in Section V in detail. In Section VI, numerical and
simulation results are provided to evaluate the performance of
the proposed algorithm. Finally, concluding remarks are given
in Section VII.

II. SYSTEM MODEL

In this section, we introduce the system model of the multi-
UAV and multi-GBS cellular networks in detail. Note that in
this section, unless specified otherwise, we remove the time
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Fig. 2: Illustrations of the antenna patterns of the UAVs and the
GBSs.

index e.g., in the position vector pptq Ñ p, and the index for
UAVs or GBSs, e.g., pi Ñ p.

A. Deployment

We consider multi-UAV multi-GBS cellular networks as
displayed in Fig. 1, in which J UAVs, with potentially
different missions, need to fly from starting locations to
destinations over an area containing K GBSs. Without loss
of generality, we assume that the area of interest is a cubic
volume, which can be specified by C : X ˆ Y ˆ Z and
X fi rxmin, xmaxs, Y fi rymin, ymaxs, and Z fi rzmin, zmaxs.
Let p “ rpx, py, HV s denote the 3D position of the UAV,
where HV is the altitude of the UAVs which is assumed
to be fixed for all UAVs. pS “ rpsx, psy, HV s P R3 and
pD “ rpgx, pgy, HV s P R3 are used to denote the coordinates
of the starting points and destinations.

Each UAV’s state is composed of an observable informa-
tion vector and an unobservable (hidden) information vector,
s “ rso, shs, where the observable state can be observed by
other UAVs, while the unobservable state can not. In the global
frame, observable state includes the UAV’s position, velocity
v “ rvx, vys, and radius r, i.e., so “ rp, v, rs P R6. The
unobservable state consists of the destination pD, maximum
speed vmax, and orientation φ, i.e., sh “ rpD, vmax, φs P R5.
It is worth noting that the UAVs do not communicate with
other UAVs. Hence, we address a more challenging non-
communicating scenario.

In this cellular network, there are K GBSs providing wire-
less coverage simultaneously. The kth GBS has transmit power
PBk , and it is located at position pBk “ rpxBk , pyBk , HBs,
where HB is the height of the GBS and is assumed to be the
same for all GBSs.

B. Antenna Configuration

The GBSs and the UAVs are equipped with directional
antennas with fixed radiation patterns, which are shown in
Fig. 2.

1) GBS: We assume that the antenna elements of the GBSs
are only directional along the vertical dimension but omni-
directional horizontally [1]. Along the vertical dimension, the
signal is usually downtilted toward the ground to cover the

ground users and suppress the intercell interference. Therefore,
the antenna gain can be expressed as [31]

GBpdq “ Gh `Gv (dB)

“ 10
´min

˜

´1.2

˜

arctanp
HB´HV

d
q´θtilt

θ3dB

¸2

,Gm10

¸

(1)

where

Gh “ 0 (dB) (2)

Gvpdq “ ´min

¨

˝12

˜

arctanpHB´HVd q ´ θtilt

θ3dB

¸2

, Gm

˛

‚ (dB).

(3)

Above, Gm is the maximum attenuation of the antennas, d is
the horizontal distance between the UAV and the GBS, θtilt

and θ3dB represent electrical antenna downtilting angle and
the vertical 3dB beamwidth of the antennas at the GBSs.

2) UAV: The UAVs are assumed to be equipped with a
receiver with a horizontally oriented antenna, and a simple
analytical approximation for antenna gain provided by UAVs
can be expressed as [32]

GV pdq “ sinpθq “
HV ´HB

a

d2 ` pHV ´HBq
2

(4)

where θ is elevation angle between the UAV and GBS, HV is
the UAV altitude, and HB is the height of the GBS.

C. Path Loss

We assume that the path loss can be expressed as

Lpdq “
`

d2 ` pHB ´HV q
2
˘α{2

(5)

where α is the path loss exponent.

D. SINR and Connectivity

The UAVs receive signals from all GBSs, among one
of which is the serving BS, and others contribute to the
interference. The received signal from the kth GBS to the
ith UAV can be expressed as PkGBkpdikqGVipdikqL

´1pdikq.
The experienced SINR at the ith UAV if it is associated with
the kth GBS an be expressed as

Sri,k fi
PkGBkpdikqGVipdikqL

´1pdikq

Ns `
ř

k1‰k Pk1GBk1 pdik1qGVipdik1qL
´1pdik1q

(6)

where Ns is the noise power. If the experienced SINR at a
UAV is larger than a threshold Ts, then the UAV is regarded
as connected with the cellular network, and disconnected
otherwise.

E. SINR Measurement

Along the path to destination, UAVs interact with the cel-
lular network, measure the raw signal from GBSs, and obtain
the instantaneous SINR S 1rprp, sBs;hq, where h includes the
random small-scale fading coefficients with all GBSs, and p
and sB “ rpBk ,@ks are the position of the UAV and posi-
tions of all GBSs, respectively. These measurements can be
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obtained by leveraging the existing soft handover mechanisms
with continuous reference signal received power (RSRP) and
reference signal received quality (RSRQ) [7]. At each time
t, over a very short time interval, during which the agents’
locations can be approximately considered to be unchanged,
it is assumed that the UAV performs Nm SINR measurements
(each of which takes milliseconds). Then the empirical SINR
can be obtained as

pSrptq “
1

Nm

Nm
ÿ

n“1

S 1rptqprpptq, sBs;hptq,nq. (7)

To average over the randomness arising from small-scale fad-
ing, we can consider large Nm and have lim

NmÑ8

pSrptq “ Srptq
by applying the law of large numbers. Therefore, as long as
the UAV performs signal measurements sufficiently frequently
so that Nm " 1, Srptq can be evaluated by its empirical value
pSrptq .

III. MULTI-UAV TRAJECTORY OPTIMIZATION

In this section, we first introduce the constraints and then
formulate the multi-UAV trajectory optimization problem.

A. Constraints
1) Collision Avoidance: Collision avoidance is central to

many autonomous systems. During flight, the UAVs should
not collide with others, which means that the distance between
two agents should be larger than their radius all the time, i.e.,

||piptq ´ pjptq||2 ą ri ` rj @j ‰ i,@t (8)

where piptq is the location of the ith UAV at time t, and ri is
its radius. Note that this radius can also include a buffer zone
in which no other UAV should be present.

2) Wireless Connectivity Constraint: To support the com-
mand and control and also data flows, UAVs have to maintain
a reliable communication link to the GBSs. To achieve this
goal, we consider the connectivity constraint for the UAVs,
i.e., the maximum continuous time duration that the UAV
is disconnected should not be longer than Tt time units.
The maximum continuous disconnected time duration can be
mathematically expressed as

Tmax
O “ max

tPr0,T s
t´ TLptq (9)

where T is the total travel time, and TLptq is the last time that
the UAV is connected with the cellular network before time t,
i.e.,

TLptq “ max τ (10)
s.t. τ P r0, ts

Srpτq ě Ts.

Therefore, the connectivity constraint can be written as
ˆ

max
tPr0,T s

t´ TLptq

˙

ď Tt. (11)

3) Initial and Final Locations: Each UAV starts its mission
from a given initial location and completes its flight at a given
destination, i.e., pp0q “ pS and ppT q “ pD.

4) Kinematic Constraint: Kinematic constraints need to be
considered for operating UAVs. We impose the speed and
rotational constraints as follows:

vptq “ rvsptq, φptqs (12)
Speed limit: vsptq ď vmax (13)
Rotation limit: |φptq ´ φpt´∆tq| ď ∆t ¨ Tr (14)

where vptq, vsptq and φptq are the UAV’s velocity, speed and
orientation at time t. vmax is the maximum of speed the UAV,
and Tr is the maximum angle that a UAV can rotate in unit
time period. This constraint limits the direction that a UAV
can travel at a given time.

5) Association Constraint: Each UAV is associated with
one GBS at a time, and the associated GBS is denoted by
aptq P t1, ...,Ku.

B. Problem Formulation in Continuous Time Domain

The goal of this work is to find trajectories for all UAVs
in the network such that the travel/flight time of each UAV
between the initial and final locations is minimized, while
the constraints are satisfied. In the considered decentralized
setting, the trajectory optimization problem for the ith UAV
can be formulated as

pP0q : argmin
tpiptq,aiptq,@tu

Ti

s.t. ||piptq ´ pjptq||2 ą ri ` rj ,@j ‰ i,@t (P0.a)

max
tPr0,T s

t´ TLptq ď Tt (P0.b)

pip0q “ pSi ,pipTiq “ pDi (P0.c)
vsiptq ď vmaxi ,@t (P0.d)
|φiptq ´ φipt´∆tq| ď ∆t ¨ Tr,@t (P0.e)
aiptq P t1, ...,Ku,@t (P0.f)

C. Problem Formulation in Discrete Time Domain

Since the UAV is not permitted to be disconnected contin-
uously for more than Tt time units, it is sufficient to consider
∆t “ Tt{nt as one time step and address the problem every nt
time steps. If, at these specific time instances, the experienced
SINRs at all UAVs are higher than Ts, we can guarantee that
the connectivity constraint is satisfied. Now, the optimization
problem can be represented in discrete time domain as follows:

pP1q : argmin
tpi,t,ai,t,@tu

Ti

s.t. ||pi,t ´ pj,t||2 ą ri ` rj ,@j ‰ i,@t (P1.a)

Sri,t ě Ts, if t | nt (P1.b)

pi,0 “ pSi ,pi,Ti “ pDi ,@i (P1.c)

vsi,t ď vmaxi ,@t (P1.d)
|φi,t ´ φi,t´1| ď ∆t ¨ Tr,@t (P1.e)
ai,t P t1, ...,Ku,@t (P1.f)

where the integer-valued discrete time index t indicates time
increments by ∆t, and t | nt signifies that t is divisible by nt.
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It is obvious that the optimal cell association policy can be
obtained as a˚i,t “ argmaxkPt1,...,Ku Sri,t,k . Then (P1) reduces
to

pP2q : argmin
tpi,t,@tu

Ti (15)

s.t. pP1.aq ´ pP1.eq.

The non-communicating multi-agent navigation task can
be formulated as a sequential decision making problem in a
reinforcement learning framework [19]. The objective then is
to develop policies, tπi : sjni,t ÞÑ vi,t,@iu that select actions
to minimize the expected time to destination while satisfying
all the constraints, where sjni,t and vi,t are the joint state and
the action of the agent, respectively. Now, the optimization
problem can be reformulated as

pP3q : argmin
πi

ErTi|sjni , πj ,@j ‰ is

s.t. pP1.aq ´ pP1.cq

pi,t “ pi,t´1 `∆t ¨ πipsjni,t´1q,@t (P3.d)

where the expectation in the objective function in (P3) is with
respect to other agents’ unobservable states and policies, and
(P3.d) is the agent’s kinematics, which satisfy the kinematic
constraints in (P1.d) and (P1.e). Further, we use the common
assumption that each agent would follow the same policy [18]
[19] [33], i.e., π “ πi.

IV. REINFORCEMENT LEARNING BASED APPROACH

In this section, we first introduce reinforcement learning
(RL) formulation for the multi-UAV navigation problem. Then,
we present the approaches used to tackle the uncertainty in the
UAVs’ unobservable intents, and the interaction between the
UAVs and the cellular network.

A. Reinforcement Learning

RL is a class of machine learning methods for solving
sequential decision making problems with unknown state-
transition dynamics [19] [22]. Typically, a sequential decision
making problem can be formulated as an MDP, which is
described by the tuple xS,A, P,R, γy, where S is the state
space, A is action space, P is the state-transition model, R is
the reward function, and γ is a discount factor.

Since the action space in this work is continuous and the
set of permissible velocity vectors depends on the agent’s
state, we choose to optimize the value function Vπpsjnq as in
[19], instead of optimizing the commonly used action-value
function Qpsjn, vq (where v denotes the action). The state
value function of an MDP is the expected return starting from
time t following policy π, i.e.,

Vπpsjnt q “
T
ÿ

t1“t

γt
1

Rt1psjnt1 , πps
jn
t1 qq. (16)

The optimal policy is to maximize the expected return:

π˚psjnt q

“ argmax
vt

Rpsjnt , vtq ` γ
ż

sjnt`1

P psjnt`1|s
jn
t , vtqV

˚psjnt`1qdsjnt`1,

(17)

where V ˚psjnt q “
řT
t1“t γ

t1Rt1psjnt1 , π
˚psjnt1 qq is the optimal

value function, Rpsjnt , vtq is the reward received at time t,
P psjnt`1|s

jn
t , vtq is the transition probability from time t to time

t` 1.

B. Reinforcement Learning Formulation

To estimate the high-dimensional, continuous value func-
tion, it is common to approximate it with a deep neural
network (DNN) parameterized by weights and biases, ξ. For
notational simplicity, we drop the DNN parameters from the
value function notation, i.e., Vps; ξq “ Vpsq. And s is the joint
state of an agent which is also the input of the DNN, and Vpsq
is the output of the value network given s.

By detailing each of these elements and relating to (P1.a)-
(P1.c) and (P3.d), the following provides an RL formulation
for the multi-UAV navigation problem. Each UAV is an
independent agent, and in the discussions below, we use agent
instead of UAV.

1) State Space: In multi-agent multi-GBS cellular net-
works, the agents are able to observe the following information
from the environment: 1) its own information vector si,t (for
the ith agent at time step t); 2) the observable state of the
nearest Jn ă J agents sjnoi,t “ rsoj,t : j P t1, 2, ..., Jnus; 3)
the location information of the nearest Kn ď K GBSs, which
is assumed to be observed by the agents, and is denoted by
soB “ rpBk : k P t1, ...,Knus. All the information observed
by the agent constitutes its joint state sjni,t “ rsi,t, s

jno
i,t , soBs,@t.

2) Action Space: The action space is a set of permissible
velocity vectors. Ideally, the agent can travel in any direction
at any time. However, in reality the kinematic constraints in
(12)-(14) restrict the agent’s movement and should be taken
into account. Then, based on the agent’s current speed, orien-
tation rvs,i,t, φs,i,ts and the kinematic constraints, permissible
actions v “ rvs, φs are sampled to built the action space Ai,t.

3) Reward Function: Similar to the formulation of the
reward function defined in [34], [19], and [22], we define a
sparse reward function, which awards the agent for reaching
its goal, and penalizes the agent for getting too close or
colliding with other agents, and also penalizes for getting
close to be disconnected or already being disconnected from
the cellular network. The reward function consists of three
parts: the reward, Rc, that encourages the fast arrival to the
destination and penalizes close encounters with other agents;
the reward, Rs, that encourages keeping connectivity with the
cellular network, and a constant movement penalty, Rt, that
encourages the agents to reduce their flight time. For instance,
at time step t, the reward functions for the ith agent can be
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expressed as follows:

Rci,tps
jn
i,t , vi,tq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2, if pi “ pDi ,
´p1´ pdtmin

´ ri ´ rjq{0.2q,

if ri ` rj ă dtmin
ď 0.2` ri ` rj ,

´1, if dtmin
ď ri ` rj ,

0, otherwise,

(18)

and

Rsi,tps
jn
i,t , vi,tq “

$

’

&

’

%

´0.5, if t | nt and Ts ď Sri,t`1 ă Ts ` 0.1

´1, if t | nt and Sri,t`1 ă Ts
0, otherwise,

(19)

where dtmin
is the minimum distance to other agents within the

next time step duration. Therefore, the overall reward function
can be expressed as the sum

Ri,tpsjni,t , vi,tq “ Rci,tps
jn
i,t , vi,tq `Rsi,tps

jn
i,t , vi,tq `Rt. (20)

C. Estimation of the Agents’ Unobservable Intents

The probabilistic state transition model in (17) is determined
by the agents’ kinematics as defined in (P3.d), other agents’
hidden states, and the other agents’ choices of action. Since
the other agents’ hidden intents are unknown, the system’s
state transition model is unknown as well. In addition, it is
difficult to evaluate the integral, because the other agents’
next state has an unknown distribution (that depends on
their unobservable intents). We approximate this integral by
assuming that the other agent would be traveling at a filtered
velocity for a short duration ∆t, which is regarded as a one-
step lookahead procedure [17] [18] [19] [35]. This propagation
step amounts to predicting the other agent’s motion with a
simple linear model, i.e., v̂j,t “ filterpvj,0:tq. For the ith agent,
other agents’ filtered velocities are included in the vector
v̂jnoi,t “ rv̂j,t : j P t1, 2, ..., Jnus. Then, the estimated next
state of the ith agent will be

ŝjni,t`1,v “ rfpsi,t,∆t, vq, fps
jno
i,t ,∆t, v̂

jno
j,t q, s

o
Bs (21)

where fp¨q is the kinematic model. Then the policy becomes

π˚psjni,tq “ argmax
v

Ri,tpsjni,t , vq ` γV
˚pŝjni,t`1,vq. (22)

D. SINR Prediction

Model-free RL requires no prior knowledge about the
environment. This usually leads to slow learning process and
requires a large number of agent-environment interactions,
which is typically costly or even risky to obtain [7]. In
addition, using only a value network to encode the interactions
among the agents and the interactions between the agent and
the cellular network is not easy. Actually, each real experience
obtained from the agent and cellular network interaction
not only can be used to get reward and refine the value
network, but also can be used for model learning in order

to predict the agent’s SINR experienced at certain positions.
More specifically, when flying in the environment, agents
interact with the cellular network and obtain the empirical
SINR pSr. Since there is no need to use the exact SINR for
connectivity measurement, this work uses the quantized SINR
level, Lwp pSrq, to check the agent’s connectivity. With a finite
set of measurements txsjnB , Lwps

jn
B qyu, where sjnB “ rp, soBs, a

DNN can be trained to predict the SINR level LwpsjnB q.
A fully connected DNN with parameters ξw can be

used to predict the agent’s SINR level, i.e., ξw is trained
so that LwpsjnB q « LwpsjnB ; ξwq. The data measurement
xsjnB , Lwps

jn
B qy only arrives incrementally as the agent flies

to new locations and can be saved in a database (e.g., replay
memory), and a minibatch is sampled at random from the
database to update the network parameter ξw. Note that the
prediction of SINR levels might be highly inaccurate initially,
but can be continuously improved as more real experience is
accumulated.

V. DECENTRALIZED DEEP REINFORCEMENT LEARNING
ALGORITHM

In this section, we present the proposed decentralized deep
reinforcement learning algorithm as a solution to multi-UAV
navigation with collision avoidance and wireless connectivity
constraints, including the SINR-prediction neural network.
The proposed algorithm is presented in Algorithm 1, and is
referred to as RLTCW-SP (RL for Trajectory optimization with
Collision avoidance and Wireless connectivity constraint and
with SINR Prediction).

A. Parametrization

Since the optimal policy should be invariant to any coordi-
nate plane, we follow the agent-centric parameterization as in
[34], [19] and [22], where the agent is located at the origin
and the x-axis is pointing toward the agent’s destination. The
states of the ith agent after transformation is

rsi “ rdgi , vmaxi , ṽxi , ṽyi , ri, φ̃is (23)

rsjnoi “ rrp̃xj , p̃yj , HV , ṽxj , ṽyj , rj , djs : j P t1, 2, ..., Jnus
(24)

where dg is the agent’s distance to the goal, dj is the
agent’s distance to the jth agent, and p̃ denotes p in the new
coordinate.

In addition, SINR experienced at an agent depends on the
distance and the relative angular direction from the agent
to the GBSs, while it does not depend on the positions in
global coordinates. To remove this redundant dependence, the
location information vector of all GBSs can be parameterized
as

rpBk “ rdBk , φBk , θBk s (25)
rsBi “ rrpBk : k P t1, ...,Knus (26)

where dBk “ ||pBk´pi|| is the distance from the agent to the
kth BS, φBk and θBk are the horizontal and vertical angles of
the kth BS with respect to the agent.
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Algorithm 1: RLTCW-SP Algorithm
Input: State-value pairs D

1 Initialize state-value pairs D
2 Initialize location-SINR pairs Dw

3 Initialize value network ξ with D
4 Initialize SINR-prediction network ξw
5 for episode = 0: total episode do
6 for n random training cases do
7 Initialize si,0@i
8 while not all reached destinations do
9 for each agent i do

10 if not reached destination then
11 sjni,t Ð observeEnvironmentpq
12 Ai,t Ð sampleActionSpacepq
13 cÐ randomSample(Uniform (0,1))
14 if c ď ε then
15 vi,t Ð randomSamplepAi,tq
16 else
17 v̂jnoi,t Ð filterpvjn0:t´1q

18 ŝjnoi,t`1 Ð propagatepsjnoi,t , v̂
jno
i,t q

19 for every a in Ai,t do
20 ŝi,t`1 Ð propagatepsi,t, aq
21 L̂wi,t`1

“ LwpŝjnBi,t`1
q

22 Ri,t Ð

getRewardpŝjni,t`1, L̂wi,t`1
q

23 Vp “ Ri,t ` γVpŝjni,t`1q

24 vi,t Ð argmaxaPAi,t Vp

25 Ri,t, si,t`1,Sri,t`1
Ð

executeActionpvi,tq

26 for each agent i do
27 Vi,0:Ti Ð updateValuepsjni,0:Ti , Ri,0:Ti , ξq
28 Lwi,0:Ti Ð getSINRlevelpSri,0:Ti q
29 Update state-value pairs D with

xsjni,0:Ti , Vi,0:Tiy
30 Update location-SINR pairs Dw with

xsjnBi,0:Ti , Lwi,0:Ti y

31 Sample random minibatch from D, and update
value network ξ by gradient descent.

32 Sample random minibatch from Dw, and update
SINR-prediction network ξw by gradient descent.

33 return ξ, ξw

Therefore, the joint state of the ith agent after transforma-
tion is

rsjni “ rrsi,rs
jno
i ,rsBis. (27)

And the input of the SINR-prediction network becomes

rsjnBi “ rrdBk , φBk , θBk s : k P t1, ...,Knus. (28)

B. Initialization

The value network ξ can be first initialized with imitation
learning using a set of experiences to accelerate the con-
vergence. More specifically, in this work, we use optimal
reciprocal collision avoidance (ORCA) [18] to generate a
number of trajectories that contain a large set of state-value
pairs txsjn, V yuN1 , where V “ γtg and tg is the time to reach
the destination. The experiences are saved in memory D (line
1 in Algorithm 1). Then, the value network is initialized by
supervised training on D (line 3). The value network is trained
by back-propagation to minimize a quadratic regression error

ξ “ argmin
ξ1

N1
ÿ

k“1

´

Vk ´ Vpsjnk ; ξ1q
¯

. (29)

If a set of location-SINR experiences can be downloaded
from the cloud, we can save the downloaded dataset in
memory Dw (line 2), txsjnB , Lwyu

N2 , where Lw is the
scaled SINR level that the agent experienced. Then, the
SINR-prediction network can be initialized with ξw “

argminξ1
řN2

k“1

´

Lwk ´ LpsjnB ; ξ1q
¯

, which is trained by back-
propagation (line 4). If no dataset is available, Dw is initial-
ized with an empty list, and the SINR-prediction network is
initialized with random network parameters.

C. Refining Process

After initialization, a refining process is performed using
RL. Particularly, a set of random training cases is generated
in each episode (line 6). In each training case, each agent
navigates around others to arrive its destination, while inter-
acting with the cellular network (line 10- line 25). It is worth
noting that the agents navigate simultaneously and with no
communication among each other. At each time step t, each
agent first observes the environment, obtains the observable
states of other nearby agents and the location information of
the GBSs, and then obtains its joint state sjnt (line11). Then,
based on its current velocity and kinematic constraints, each
agent builds an action space At (line 12). Using an ε-greedy
policy, each agent selects a random action with probability
ε from At (line 15), or follows the value network greedily
otherwise (lines 17-24). When following the value network to
choose actions, each agent performs the following: 1) estimate
other nearby agents’ motion by filtering their velocities, and
estimate their observable states ŝjnot`1 following equation (21)
(lines 17-18); 2) predict its next SINR level Lwt`1

using the
SINR-prediction network ξw; 3) choose the best action in At
which has the maximum Vp.

When all agents have arrived their destinations in each train-
ing case, trajectories si,0:T1@i are then processed to generate
a set of state-value pairs xsjni,0:Ti , Vi,0:Tiy, where

Vi,t “

#

Ri,t ` γVpsjni,1:t`1q if t ă Ti,

Ri,t if t “ Ti,

and a set of location-SINR pairs xrpi,0:Ti , s
o
Bs, Lwi,0:Ti y. The

new pairs are used to update D and Dw.
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D. Training

We first use optimal reciprocal collision avoidance (ORCA)
[18] to generate a number of trajectories that contain a large
set of state-value pairs txsjn, V yuN1 , where V “ γtg and
tg is the time to reach the destination. The experiences, as
input of Algorithm 1, are saved in memory D, which will
be refined during training. To train the value network and
SINR-prediction network, a set of training points is randomly
sampled from the experience set, which contains state-value
pairs for ξ or location-SINR pairs for ξw from many different
trajectories. Then, the networks are finally updated by stochas-
tic gradient descent (back-propagation) on the sampled subsets
of experience.

E. Real-Time Navigation

With the trained value network and SINR-prediction net-
work, agent can execute real-time navigation. This process is
provided in Algorithm 2.

Algorithm 2: Real-Time Navigation
Input: ξ, ξw

1 Initialize s0
2 while not reached destination do
3 sjnt Ð observeEnvironmentpq
4 At Ð sampleActionSpacepq
5 v̂jnt Ð filterpvjn0:t´1q

6 ŝjnot`1 Ð propagatepsjnot , v̂jnt q
7 for every a in At do
8 ŝt`1 Ð propagatepst, aq
9 L̂wt`1 “ Lwprp̂t`1, sBsq

10 Rt Ð getRewardpŝt`1, ŝjnot`1, L̂wt`1
q

11 Vp “ Rt ` γVpŝjnt`1q

12 vt Ð argmaxaPAt Vp
13 st`1 Ð executeActionpvtq
14 return v0:T´1, s0:T

VI. NUMERICAL RESULTS

In this section, we present the numerical results to evaluate
the performance of the proposed algorithms. In the illustrations
of environment and trajectories in this section, the GBSs are
marked by blue triangles, and the yellow areas indicate the
communication coverage zones where the agents are able to
connect with the cellular network (i.e., Sr ě Ts). Agents’
trajectories are displayed as a list of dots in different colors,
and the destinations are marked with crosses. In each flight
trajectory, there are four possible outcomes for the agent/UAV:
1) success, if the agent arrives its destination successfully; 2)
collision, if it collides with others; 3) disconnection, if the
continuous disconnected time is larger than the threshold Tt; 4)
stuck, if the agent freezes and stops moving and consequently
does not reach the destination. In addition, we also compute
the additional average time (referred to also as average more
time) needed to reach the destination, when compared with the
lower bound (attained when the UAV goes straight towards the

(a) Value of the value netowrk.

(b) Accuracy of the SINR-prediction network.

Fig. 3: Value of the value network and accuracy of the SINR-
prediction network as functions of the number of episodes.

destination at the maximum speed). Therefore, we use success
rate (SR), collision rate (CR), disconnection rate (DR) and
average more time (AMT) to show the performance of the
algorithms.

A. Environment Setting and the Networks

Since the agents fly at the same altitude, the area of interest
becomes two-dimensional. In the simulations, we consider an
area with 12 GBSs deployed. The GBSs transmit with power
PB “ 1 dBW, have a height of HB “ 32 m, and the antenna
patterns are set with θtilt “ 10˝ and θ3dB “ 15˝. The UAVs
are assumed to fly at a fixed altitude of HV “ 50 m. The noise
power is Ns “ 10´6, and the SINR threshold is Ts “ ´3
dB. Each UAV, as an independent agent, is able to observe
the nearest 8 GBSs’ locations and at most 4 other agents’
observable states.

We construct the value network via a three-layered DNN of
size (64,32,16). The exploration parameter ε linearly decays
from 0.5 to 0.1. The replay memory capacity is 30000 for
the 2-agent scenario and 100000 for scenarios with more than
two agents. The SINR-prediction network is constructed via a
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(a) Episode 0. (b) Episode 100. (c) Episode 200. (d) Episode 300.

(e) Episode 400. (f) Episode 500. (g) Episode 600. (h) Episode 700.

Fig. 4: Trajectory examples at different episodes during training.

three-layered DNN of size (32,16,8). A standardization layer is
utilized after the input layer of both networks. ReLU activation
function is used for the input layer and two hidden layer
for both networks. Both networks use Adam optimizer, and
have learning rate 0.01, batch size 200, and a regularization
parameter 0.0001.

B. Convergence in Training

Fig. 3 shows the value of the value network and accuracy
of the SINR-prediction network as functions of the number of
episodes during training for a 2-agent scenario. Fig. 3(a) shows
that the value converges after around 200 episodes. From Fig.
3(b), we can see that the accuracy converges after around
20 episodes, since in each episode 50 random trajectories
are generated for each agent, during which more than 15000
location-SINR pairs are collected and used to train the SINR-
prediction network.

The trajectory optimization process for two UAVs is dis-
played in Fig. 4. At episode 0, the SINR-prediction network
is initialized with random weights and bias, and is not able to
predict the accurate SINR level. Besides, the policy has not
been refined by RL. As a result, the two agents are easily
getting disconnected or stuck. After 100 episodes of training,
the SINR-prediction network is well-trained and able to predict
the SINR levels with 97% accuracy. Also, the value network
is trained with refined state-value pairs. Thus, the agents can
reach their destinations, but with long trajectories to avoid
collisions and disconnection. As the training proceeds, the
policy improves, leading to shorter expected trajectories. Table
I presents the AMT (for the successful trajectories) in different
episodes, and we clearly observe the declining AMT values.

Separately, we also compute the AMT in two different
scenarios for comparison: 1) the connectivity constraint is not
considered for the two-agent trajectory design (CADRL [19]);
and 2) the collision avoidance constraint is not considered if
there is only one agent. The AMT in these two scenarios are
0.578s, and 0.354s, respectively.

C. Testing of Navigation in Different Environments

In the proposed RLTCW-SP algorithm, an SINR-prediction
network is trained to predict the SINR level. In an ideal
scenario, the antenna pattern information of GBSs may be
available to the agents, and then the agents are able to predict
the SINR with that information. In this subsection, we compare
the performances of the following three algorithms: 1) the
agents are able to get the antenna pattern information of the
GBSs, and then predict the SINR directly (referred to as
RLTCW-AW); 2) the proposed RLTCW-SP algorithm, which
uses the location-SINR memory, and trains an SINR-prediction
network to predict the SINR level; 3) the agents do not predict
the SINR and only use the value network to encode the
interaction with the cellular network (referred to as RLTCW).
The navigation test is done in three types of environments:
1) the same environment as in the training; 2) the same
environment but two BSs are not operational for the UAV
(due to congestion, malfunction, resource allocation to ground
users, or GBS activation schedule), an illustration of which is
presented in Fig. 5(a); 3) different environment with different
GBS deployment, illustrations of which are presented in Figs.
5(b) and 5(c). Fig. 5 also presents examples of trajectories that
the agents perform using the proposed RLTCW-SP algorithm
in a challenging scenario in which the destination of one UAV
is the starting point of the other UAV. Environments displayed
in Figs. 5 (a) (b) and (c) are referred as DE1, DE2 and DE3
(using DE as the abbreviation for different environment).

The performance of the three algorithms in different envi-
ronments are presented in Table II. As expected, the RLTCW-
AW with the perfect knowledge of antenna patterns has the
best performance, and the RLTCW-SP algorithm has slightly
lower performance which is due to the potential inaccuracies
in the SINR prediction, while the performance of RLTCW
is substantially lower compared to the other two, due to very
high DR (disconnection rate). In addition, the SR (success rate)
performance of the proposed RLTCW-SP algorithm decreases
only slightly in different environments, and how large the
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TABLE I: Average more time need to reach destination at different episodes.

Number of Episodes 0 100 200 300 400 500 600 700
Average More Time (s) 2.45 1.723 0.972 0.8707 0.8007 0.772 0.766 0.712

(a) DE1. (b) DE2. (c) DE3.

(d) DE1. (e) DE2. (f) DE3.

Fig. 5: Illustrations of different environments used in navigation testing, and trajectory examples when using proposed RLTCW-SP algorithm.
In (a) and (d), the two BSs in black are not operational for the UAVs.

TABLE II: Performance of different algorithms in different environments in terms of success rate (SR), collision rate (CR),
and disconnection rate (DR) (all rates are in %).

Same Environment DE1 DE2 DE3
SR CR DR SR CR DR SR CR DR SR CR DR

RLTCW-AW 94.8 2.8 0 95 5 0 87.6 6.2 0.6 92.2 6.8 0
RLTCW-SP 94.02 4 0.06 93.4 5.8 0.07 86.1 7.4 0.7 91.8 6.2 0.1

RLTCW 70.4 3.4 23.4 77.95 3.3 18.2 59.3 4.8 28.4 70.6 4.2 22.9

decrease is depends on which environment is used in testing.
When there are large and wide out-of-coverage zones in the
environment (as shown in Fig. 5(b)), the SR performance
decreases more. The reason is that the wide out-of-coverage
zones are more likely to make the agent get stuck at the edge
and not be able to decide which direction to go.

D. Navigation in Different Settings

In this subsection, we present simulation results on the
trajectories when the GBSs have different antenna patterns and
when the UAVs fly at different heights. The SINR threshold
is Ts “ ´4 dB in this subsection. In. Figs. 6 (a) and (d),
we provide two different trajectory examples when we have
HV “ 50 m, θtilt “ 10˝ and θ3dB “ 15˝. In Figs. 6 (b)
and (e), UAV altitudes are increased to HV “ 100 m, and we
notice that due to larger path loss and smaller antenna gains,
coverage zones shrink, which in turn potentially increases the

length of the trajectories. In Figs. 6 (c) and (f), GBSs have
larger downtilting angle and 3dB beamwith of the main lobe.
In this case, the UAVs experience smaller received power
from the main link and potentially larger interference, leading
to substantially smaller SINR levels. Therefore, the coverage
zones in Figs. 6 (c) and (f) are smaller than those in Figs.
6 (a) and (d) and even Figs. 6 (b) and (e). In all cases, we
note that UAVs successfully find different trajectories to meet
the connectivity requirements and adapt to different coverage
zones.

E. Navigation in Environments with Obstacles/No-Fly Zones

The proposed RLTCW-SP algorithm can also be used for
navigation in environment with obstacles that are regarded as
non-moving agents. For instance, the trained networks for the
2-agent scenario can be used for one agent navigation in an
environment with obstacles or no-fly zones. More specifically,
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(a) (b) (c)

(d) (e) (f)

Fig. 6: Trajectory examples in environments with different settings, i.e., in (a) and (d), HV “ 50 m, θtilt “ 10˝ and θ3dB “ 15˝; in (b)
and (e), HV “ 100 m, θtilt “ 10˝ and θ3dB “ 15˝; and in (c) and (f), HV “ 50 m, θtilt “ 15˝ and θ3dB “ 35˝.

the agent can observe the nearest obstacle, and takes the
obstacle’s location in the joint state for choosing actions. Fig.
7 displays two illustrations. In this setting, obstacles can be
considered as actual obstacles (e.g., tall buildings or structures)
or they can model no-fly zones for the UAVs.

F. Navigation with More Than Two UAVs

Fig. 8 and Fig. 9 display the illustrations for 5-agent and 8-
agent navigation scenarios, respectively. The SR, CR, DR and
AMT performances are presented in Table III. We note that
the CR increases when more agents are in the environment.
As mentioned before, the agents can observe a maximum of 4
nearest agents in the environment. Therefore, for the 8-agent
scenario, several agents are non-observable and as a result
the CR can increase when compared with scenarios involving
smaller number of agents. On the other hand, when there are
more agents in the same area, the interactions become more
complex, and harder for the algorithm to handle. However, we
note that the performance regarding the SR is still above 90%.
Table III also shows that the agents need more time to reach
the destination when there are more agents in the environment.

TABLE III: Performance for 2/5/8-agent navigation.

SR(%) CR(%) DR(%) AMT(s)
2-Agent 93.02 4 0.06 0.712
5-Agent 91.12 6.32 0.8 1.001
8-Agent 90.075 7.25 0.25 1.28

VII. CONCLUSION

In this work, we have studied multi-UAV trajectory opti-
mization with collision avoidance and wireless connectivity
constraints. In establishing the wireless connectivity, we have
taken into account the antenna radiation patterns, path loss, and
SINR levels. We have formulated trajectory optimization as a
sequential decision making problem and proposed a decen-
tralized deep reinforcement learning algorithm. In particular,
a value neural network has been developed to encode the
expected time to the destination given the agent’s joint state.
An SINR-prediction neural network has been designed, using
accumulated SINR measurements obtained when interacting
with the cellular network, to map the GBS locations into the
SINR levels in order to predict the UAV’s SINR levels. We
have investigated the performance in terms of success rate,
collision rate, disconnection rate, and average more time. In
the numerical results, we have considered various scenarios
(e.g., with GBS deployments different from the setting in the
training environment, different UAV heights, different antenna
patterns, and obstacles/no-fly zones) and we have shown that
with the value network and SINR-prediction network, real-
time navigation for multi-UAVs can be efficiently performed
in different environments with high success rates.
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