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Abstract—The advantages of millimeter-wave and large an-
tenna arrays technologies for accurate wireless localization re-
ceived extensive attentions recently. However, how to further
improve the accuracy of wireless localization, even in the case
of obstructed line-of-sight, is largely undiscovered. In this paper,
the reconfigurable intelligent surface (RIS) is introduced into the
system to make the positioning more accurate. First, we establish
the three-dimensional RIS-assisted wireless localization channel
model. After that, we derive the Fisher information matrix and
the Cramer-Rao lower bound for evaluating the estimation of ab-
solute mobile station position. Finally, we propose an alternative
optimization method and a gradient decent method to optimize
the reflect beamforming, which aims to minimize the Cramer-
Rao lower bound to obtain a more accurate estimation. Our
results show that the proposed methods significantly improve the
accuracy of positioning, and decimeter-level or even centimeter-
level positioning can be achieved by utilizing the RIS with a large
number of reflecting elements.

Index Terms—Wireless localization, reconfigurable intelligent
surface, millimeter-wave, Cramer-Rao lower bound, reflect beam-
forming design.

I. INTRODUCTION

The fifth generation (5G) wireless technology offers great

opportunities for accurate wireless localization due to the very

high carrier frequency and large antenna arrays. Moreover, the

sixth generation (6G) systems continue to develop towards

even higher frequency ranges, e.g., at the millimeter-wave

(mm-wave) as well as Tera Hertz (THz) ranges. The 6G white

paper on localization and sensing released by University of

Oulu [1] points out that 6G systems will not only provide

ubiquitous communication but also empower high accuracy lo-

calization due to the very fine angular resolutions. Decimeter-

level or even centimeter-level positioning will be achieved by

taking advantages of the new 6G key technology enablers.

The advantages of mm-wave and large antenna arrays for

accurate wireless localization have been extensively studied.

Jeong, et al., propose an active beamforming method to en-

hance the localization accuracy of distributed antenna systems

[2]. Shahmansoori, et al., study the position and orientation

estimation through mm-wave massive multiple-input multiple-

output (MIMO) systems [3]. Wang, Wu, and Shen prove

the asymptotic spatial orthogonality of large-scale MIMO

localization with general non-orthogonal waveforms [4]. They

also derive the Fisher information matrices for the position

and orientation to characterize the performance bounds of

MIMO localization. Zhou, et al., focus on active beamforming

to reduce the localization error, and propose a successive

localization and beamforming scheme [5].

However, how to further improve the accuracy of wireless

localization, even in the case of obstructed line-of-sight, is

largely undiscovered. Thus, in this paper, we introduce the

reconfigurable intelligent surface (RIS), which is an efficient

method to control the wavefront of the impinging signals, into

the system to make the positioning more accurate and energy

efficient. Our prior work shows that an RIS-assisted wireless

communication system can achieve both high spectral and

energy efficiency [6]. Wu and Zhang verify that the RIS is able

to drastically enhance the link quality over the conventional

setup without the RIS [7].

In this paper, we introduce the RIS into the wireless local-

ization system, and focus on the (passive) reflect beamforming

to reduce the localization error. We first build the three-

dimensional RIS-assisted wireless localization system model.

After that, we derive the Fisher information matrix and the

Cramer-Rao lower bound for the estimate of absolute mobile

station (MS) position. For the sake of convenience in reflect

beamforming design, we separate the response of RIS in the

Fisher information matrix. Finally, we propose an alternative

optimization method and a gradient decent method to opti-

mize the reflect beamforming, which aims to minimize the

Cramer-Rao lower bound. Our results show that the proposed

methods significantly improve the accuracy of positioning, and

decimeter-level or even centimeter-level positioning can be

achieved by utilizing the RIS with a large number of reflecting

elements.

II. SYSTEM AND CHANNEL MODEL

Encouraged by the potential of mm-wave signals and large

antenna arrays to improve the accuracy of positioning, many

standardized channel models have started to emerge [3], [5],

[8]. We base the evaluation of our work on these models

while introducing the RIS into the system to make the MS

positioning more accurate. Introducing RIS can provide extra

reflection paths which help in the estimation of MS position.

On the one hand, it makes the positioning become possible

when the line-of-sight is obstructed; On the other hand, it adds

more position information for estimation.

A. System Model

We consider an RIS-assisted wireless localization system as

illustrated in Fig. 1, where the base station (BS) is equipped
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with Nt antennas, the MS is equipped with Nr antennas,

and the RIS is equipped with N reflecting elements. The BS

and MS are placed in the horizontal plane, along the y-axis

direction, and the RIS is placed in the vertical plane. Although

the BS and MS are equipped with a large number of antennas,

they can fit within the compact form because of the small

wavelength of mm-wave. Thus, they can be viewed as two

points, and the positions of them are respectively denoted as

p = [px, py, 0]
T and q = [qx, qy, 0]

T. Compared with the BS

and MS, the RIS has a much larger size, thus each reflecting

element needs to be considered separately. The position of the

ith reflecting element is denoted as s
i = [six, s

i
y, s

i
z]

T. The

values of p and s
i are assumed to be known, while the value

of q is unknown and requires to be estimated.

θnθn

ϑ nϑ n
φnφn

Obstructed Line-of-Sight

x

y

z

n-th element: s 
i
 

RIS

z

x

y

ϕnϕn2π -  ϕn2π -  

 pBS: pBS:

 qMS: qMS:

Fig. 1. The RIS-assisted wireless localization system with an Nt-antenna BS,
an Nr-antenna MS, and an RIS comprising N reflecting elements. This paper
considers the case that the line-of-sight is obstructed by some blockages.

In this paper, we focus on the case that the line-of-sight is

obstructed, thus there exist N reflection paths through RIS.

The elevation and azimuth angle-of-departure (AoD) of the

ith path are denoted as θi and φi. The elevation and azimuth

angle-of-arrival (AoA) of the ith path are denoted as ϑi and

ϕi. Due to that the positions of BS and RIS are fixed and

known, we can obtain the values of θi and φi by means of

the geometrical relationship between them. The values of ϑi

and ϕi are unknown and requires to be estimated. In addition,

position estimate is equivalent with the azimuth and elevation

AoA estimate due to the geometrical relationship.

B. Channel Model

We ignore the bounce reflections from the ground or other

scatterers, since such paths get attenuated much more signifi-

cantly than the paths through RIS. Based on the system model

given above, the Nr ×Nt channel matrix can be expressed as

H̃ = Λr(HΦ)ΛH
t . (1)

where the matrices Λt and Λr are the array response matrices

at BS and MS, the diagonal matrix H is the propagation gain

matrix of N paths, and the diagonal matrix Φ represents the

operations at the RIS. The array response matrices Λt and Λr

depend on the angular parameters, given by

Λt = [at (θ1, φ1) , · · · , at (θN , φN )] ∈ C
Nt×N , (2)

Λr = [ar (ϑ1, ϕ1) , · · · , ar (ϑN , ϕN )] ∈ C
Nr×N , (3)

where the ith column vectors at (θi, φi) and ar (ϑi, ϕi) are

at (θi, φi) = [ej(1−1)k sin θi sinφi , · · · , ej(Nt−1)k sin θi sin φi ]T ,

(4)

ar (ϑi, ϕi) = [ej(1−1)k sinϑi sinϕi , · · · , ej(Nr−1)k sinϑi sinϕi ]T.

(5)

The parameter k = 2πd/λ where d is the separation between

transmit/receive antennas at BS/MS, and λ is the wavelength

of transmitted signal. The diagonal matrix Φ = diag[ej̺]
where ej̺ is an element-wise power operation, and the N × 1
vector ̺ = [̺1, · · · , ̺N ]T represents the phase shifts of N
reflecting elements at RIS. The diagonal matrix H = diag[h]
where the N × 1 vector h = [h1, · · · , hN ]T represents the

propagation gains of N reflection paths, and the entries in it

are independent and identically distributed.

C. Received Signal Model

The signal transmitted by the BS is denoted as X ∈ CNt×L

where L represents the number of consumed time slots, and

the column vector x(i) in it represents the signal transmitted

at the ith time slot. Applying the vectorization operation, the

received signal y ∈ CLNr×1 at the MS can be expressed as

y =








y(1)
y(2)

...

y(L)







=








H̃x(1)

H̃x(2)
...

H̃x(L)







+








n

n

...

n








, (6)

where the vector n ∈ CNr×1 is an additive white Gaussian

noise with the elements independently drawn from CN (0, σ2),
and the transmit power at the lth slot is pBS = E{xH(l)x(l)}.

III. CRAMER-RAO BOUND ON POSITION ESTIMATION

Based on the channel model, the unknown parameters to be

estimated can be denoted as a 3N dimensional vector η,

η = [ϑ1, · · · , ϑN , ϕ1, · · · , ϕN , h1, · · · , hN ]T . (7)

We denote the unbiased estimator of η as η̂, and based on

the Cramer-Rao theorem [9], [10], the mean-square error is

bounded as

E
[
(η̂ − η)(η̂ − η)H

]
≥ J

−1
η

, (8)

where Jη is the 3N × 3N Fisher information matrix, and

[J−1
η

]m,m is the Cramer-Rao lower bound for the mth param-

eter estimate. The (m,n)th entry of Jη is defined as

[Jη ]m,n
, E

[

−∂2 ln p(y;η)

∂ηm∂ηn

]

≡ E

[
∂ ln p(y;η)

∂ηm

∂ ln p(y;η)

∂ηn

]

,

(9)



where p(y;η) is the likelihood function of the random vector

y conditioned on η, and ηm is the mth entry of η. The proof

of the identity in Eq. (9) is given in [10]. Based on the received

signal model, p(y;η) can be written as

p(y;η) = (2π)−
LNr

2

(
detσ2

I
)− 1

2 e
− 1

2

[

µ
H(σ2

I)−1
µ

]

, (10)

where the vector µ is the mean vector of the random vector

y conditioned on η.

To further obtain the Fisher information matrix Jη, we first

present the following Lemma from Eq. (6) in [11]:

Lemma. For an N dimensional random vector y which obeys

the symmetric complex Gaussian distribution CN (µ,Σ), the

(m,n)th entry of the Fisher information matrix is given by

[J]m,n = 2Re

{
∂µH

∂ηm
Σ

−1 ∂µ

∂ηn

}

+Tr

{

Σ
−1 ∂Σ

∂ηm
Σ

−1 ∂Σ

∂ηn

}

.

(11)

By using the above Lemma, the (m,n)th entry of Jη in Eq.

(9) can be rewritten as

[Jη]m,n
=

L∑

l=1

2

σ2
Re

{
∂µH(l)

∂ηm

∂µ(l)

∂ηn

}

=

L∑

l=1

[Jη(l)]m,n
,

(12)

where the mean vector µ(l) = H̃x(l). Eq. (12) demonstrates

that the Fisher information matrix Jη is the sum of the Fisher

information matrix Jη(l) at each time slot. The rest in this

section gives the solving process of Jη(l).

We rewrite the Fisher information matrix Jη(l) as a parti-

tioned matrix in Eq. (13) which is for later use.

Jη(l) =
2

σ2









A B

C D














2N

}

N

︸ ︷︷ ︸

2N

︸︷︷︸

N

(13)

where the entries in submatrix A contain the partial derivatives

with respect to the azimuth/elevation AoA, while the entries

in submatrices B, C and D contain the partial derivatives with

respect to the propagation gains.

Next, we give the partial derivatives of µ(l) with respect to

the azimuth/elevation AoA. Before giving it, we first give the

partial derivatives of the matrix Λr(HΦ)ΛH
t . The (m,n)th

entry of the matrix Λr(HΦ)ΛH
t is given by

[
Λr(HΦ)ΛH

t

]

m,n
=

N∑

i=1

hie
j[̺i+(m−1)ξi+(1−n)ζi] , (14)

where ξi = k sinϑi sinϕi and ζi = k sin θi sinφi. To separate

the response of RIS, the partial derivatives of the matrix

Λr(HΦ)ΛH
t with respect to the azimuth/elevation AoA are

given by

∂
[
Λr(HΦ)ΛH

t

]

∂ϑi

= ej̺i Ξ̇i ∈ C
Nr×Nt , (15)

∂
[
Λr(HΦ)ΛH

t

]

∂ϕi

= ej̺iΞ̈i ∈ C
Nr×Nt , (16)

where

[Ξ̇i]m,n = hij(m− 1)k sinϕi cosϑie
j[(m−1)ξi+(1−n)ζi] ,

(17)

[Ξ̈i]m,n = hij(m− 1)k sinϑi cosϕie
j[(m−1)ξi+(1−n)ζi] .

(18)

Then, we obtain the partial derivatives of µ(l) with respect

to the azimuth/elevation AoA as follows:

∂µ(l)

∂ϑi

= ej̺i ˙̟ i(l) ∈ C
Nr×1 , (19)

∂µ(l)

∂ϕi

= ej̺i ¨̟ i(l) ∈ C
Nr×1 , (20)

where ˙̟ i(l) = Ξ̇ix(l) and ¨̟ i(l) = Ξ̈ix(l).

Compared with the azimuth/elevation AoA, what we are

more interested in is the absolute MS position q1:2 = [qx, qy]
T.

The Fisher information matrix of it can be obtained by means

of the 2× 3N transformation matrix T, which is expressed as

Jq(l) = TJη(l)T
T , (21)

where the transformation matrix T is defined as

T ,
∂ηT

∂q1:2

. (22)

The entries of the transformation matrix T can be obtained

by the geometrical relationship between the azimuth/elevation

AoA and the MS position which is shown as follows:

ϑi = arctan

[∥
∥q1:2 − s

i
1:2

∥
∥
2

siz

]

, (23)

ϕi = arccos

[

−
∣
∣qx − six

∣
∣

∥
∥q1:2 − s

i
1:2

∥
∥
2

]

. (24)

Then, by computing the partial derivatives of the azimuth

and elevation AoA with respect to the MS position, we obtain

the transformation matrix T as follows:

T =
[

E F G
]

︸ ︷︷ ︸

N

︸ ︷︷ ︸

N

︸ ︷︷ ︸

N

(25)

where the ith column vector of the submatrices E , F and G

respectively are

[E]i =
∂ϑi

∂q1:2

=
siz

∥
∥q1:2 − s

i
1:2

∥
∥
2

2
+ (siz)

2
[− cosϕi, sinϕi]

T ,

(26)

[F ]i =
∂ϕi

∂q1:2

=
1

∥
∥q1:2 − s

i
1:2

∥
∥
2

[sinϕi, cosϕi]
T ,

(27)

[G]i =
∂hi

∂q1:2

= [0, 0]T .

(28)

The Eqs. (26) - (28) are derived in subsection A of Appendix.

Because the 2 ×N submatrix G is a zero matrix, then based

on the multiplication principle of partitioned matrix, Eq. (21)



can be simplified as

Jq(l) =
2

σ2
T̃AT̃

T , (29)

where the matrix T̃ consists of the submatrices E and F , and

the matrix A is the 2N × 2N submatrix in Eq. (13).

We rewrite the matrix A as a partitioned matrix as follows:

A =











H I

J K
















N






N

︸ ︷︷ ︸

N

︸ ︷︷ ︸

N

(30)

Based on the definition of the (m,n)th entry of Jη(l) in Eq.

(12) and the partial derivatives of µ(l) with respect to the

azimuth/elevation AoA in Eqs. (19) and (20), we find that the

response of RIS in the (m,n)th entry of the submatrix H is

same with those in the submatrices I , J and K, which is

ej(̺n−̺m). Then, the entries in the 2 × 2 Fisher information

matrix Jq(l) can be given as

[Jq(l)]1,1 =
2

σ2

N∑

m=1

N∑

n=1

Re

[

ej(̺n−̺m)κ1,1
m,n(l)

]

, (31)

[Jq(l)]1,2 =
2

σ2

N∑

m=1

N∑

n=1

Re

[

ej(̺n−̺m)κ1,2
m,n(l)

]

, (32)

[Jq(l)]2,1 =
2

σ2

N∑

m=1

N∑

n=1

Re

[

ej(̺n−̺m)κ2,1
m,n(l)

]

, (33)

[Jq(l)]2,2 =
2

σ2

N∑

m=1

N∑

n=1

Re

[

ej(̺n−̺m)κ2,2
m,n(l)

]

, (34)

where the scalars κ1,1
m,n(l), κ

1,2
m,n(l), κ

2,1
m,n(l) and κ2,2

m,n(l) are

κ1,1
m,n(l) = αx

mαx
n ˙̟

H
m(l) ˙̟ n(l) + βx

mαx
n ¨̟

H
m(l) ˙̟ n(l)

+ αx
mβx

n ˙̟
H
m(l) ¨̟ n(l) + βx

mβx
n ¨̟

H
m(l) ¨̟ n(l) ,

(35)

κ1,2
m,n(l) = αx

mαy
n ˙̟

H
m(l) ˙̟ n(l) + βx

mαy
n ¨̟

H
m(l) ˙̟ n(l)

+ αx
mβy

n ˙̟
H
m(l) ¨̟ n(l) + βx

mβy
n ¨̟

H
m(l) ¨̟ n(l) ,

(36)

κ2,1
m,n(l) = αy

mαx
n ˙̟

H
m(l) ˙̟ n(l) + βy

mαx
n ¨̟

H
m(l) ˙̟ n(l)

+ αy
mβx

n ˙̟
H
m(l) ¨̟ n(l) + βy

mβx
n ¨̟

H
m(l) ¨̟ n(l) ,

(37)

κ2,2
m,n(l) = αy

mαy
n ˙̟

H
m(l) ˙̟ n(l) + βy

mαy
n ¨̟

H
m(l) ˙̟ n(l)

+ αy
mβy

n ˙̟
H
m(l) ¨̟ n(l) + βy

mβy
n ¨̟

H
m(l) ¨̟ n(l) ,

(38)

and the parameters αx
m, αy

m, βx
m and βy

m respectively are the

first and second entries of [E ]m and [F ]m. Then, by using Eq.

(12), we obtain the entries of the Fisher information matrix Jq

as follows:

[Jq]a,b =

L∑

l=1

[Jq(l)]a,b , a = 1, 2; b = 1, 2 . (39)

Finally, we obtain the Cramer-Rao lower bound for the MS

position estimate which is the trace of the inverse matrix of

the Fisher information matrix Jq . The above result can be

summarized as a theorem:

Theorem. For an RIS-assisted wireless localization system

modeled as Section II, the Cramer-Rao lower bound for the

estimate of absolute MS position can be expressed as

CRLB = Tr
(
J
−1
q

)
=

[Jq]1,1 + [Jq]2,2
[Jq]1,1 [Jq]2,2 − [Jq]1,2 [Jq]2,1

. (40)

IV. REFLECT BEAMFORMING DESIGN AT RIS

In this paper, we aim to minimize the Cramer-Rao lower

bound for the MS position estimate by optimizing the reflect

beamforming at the RIS. Accordingly, the optimization prob-

lem can be formulated as

min
̺

f(̺) =
[Jq]1,1 + [Jq]2,2

[Jq]1,1 [Jq]2,2 − [Jq]1,2 [Jq]2,1

s. t. 0 ≤ ̺n ≤ 2π, ∀n = 1, · · · , N.

(41)

Because the objective function in Eq. (41) is a non-convex

fractional function, it is difficult to obtain the global optimal

solution. To further analyze this problem, we utilize the gra-

dient decent method (GDM) to make the reflect beamforming

design. In the gradient flow direction which is defined as the

direction of the negative gradient −∇̺f(̺), the function f(̺)
decreases at the maximum descent rate. And each component

of the gradient vector gives the rate of change of the scalar

function in the component direction [12].

The function f(̺) is a scalar function with respect to an

N × 1 vector-variable. Thus, the gradient of it is expressed as

∇̺f(̺) =

[
∂f(̺)

∂̺1
,
∂f(̺)

∂̺2
, · · · , ∂f(̺)

∂̺N

]T

, (42)

where the partial derivative of f(̺) with respect to ̺i is given

in Eq. (43) at the top of the next page. The parameters Nu

and De in it represent the numerator and denominator of f(̺),
respectively, and the partial derivatives of the entries in the

Fisher information matrix Jq with respect to ̺i is given as

follows:

∂ [Jq]1,1
∂̺i

=
4

σ2

L∑

l=1

N∑

n6=i

Re

[

jej(̺i−̺n)κ1,1
n,i(l)

]

, (44)

∂ [Jq]1,2
∂̺i

=
4

σ2

L∑

l=1

N∑

n6=i

Re

[

jej(̺i−̺n)κ1,2
n,i(l)

]

, (45)

∂ [Jq]2,1
∂̺i

=
4

σ2

L∑

l=1

N∑

n6=i

Re

[

jej(̺i−̺n)κ2,1
n,i(l)

]

, (46)

∂ [Jq]2,2
∂̺i

=
4

σ2

L∑

l=1

N∑

n6=i

Re

[

jej(̺i−̺n)κ2,2
n,i(l)

]

. (47)

The Eqs. (44) - (47) are derived in subsection B of Appendix.



∂f(̺)

∂̺i
=

(
∂[Jq ]1,1

∂̺i
+

∂[Jq ]2,2
∂̺i

)

De−Nu

(
∂[Jq]1,1

∂̺i
[Jq]2,2 + [Jq]1,1

∂[Jq]2,2
∂̺i

− ∂[Jq]1,2
∂̺i

[Jq]2,1 − [Jq]1,2
∂[Jq]2,1

∂̺i

)

De
2 (43)

It should be noted that the objective function f(̺), i.e.,

the Cramer-Rao lower bound for the MS position estimate

is depend on the unknown parameter η, and we cannot

directly utilize the GDM to optimize the objective function.

To address this challenge, we adopt alternative optimization,

as illustrated in Algorithm 1. More specifically, we start at an

initial phase shift vector, and alternately update the estimator

of η and optimize the phase shift vector ̺, until they converge.

The estimation method used in Algorithm 1 is provided in

the journal version, and will not be discussed here due to

space limitation, and the detailed step of GDM-based reflect

beamforming design is illustrated in Algorithm 2.

Algorithm 1 The Proposed Alternative Optimization Method

1: Cramer-Rao lower bound: f(̺).

2: Initialize the phase shift vector ̺[0].

3: while η̂ and ̺ not converge do

4: ith iteration:

5: Estimate the parameter vector η and denote as η̂[i].

6: Based on the current iteration estimator η̂[i], the phase

shift vector is optimized by using the GDM and denote

as ̺[i]. The GDM used is illustrated in Algorithm 2.

7: end while

8: Output: The estimator η̂ and the reflect beamforming ̺.

Algorithm 2 The Proposed GDM-Based Reflect Beamforming

1: Objective Function: f(̺) = Tr
(
J
−1
q

)
.

2: Input: The estimator η̂[i].

3: Set the number of iterations j = 0.

4: Set the stop criterion for the loop: tolerance ǫ > 0.

5: Take the phase shift vector result of the previous iteration

as the initialized phase shift vector ̺[i] = ̺[i− 1].

6: Compute the objective function value under current ̺[i].

7: while stop criterion ∆f(̺[i]) > ǫ is not satisfied do

8: Update the number of iterations j = j + 1.

9: Choose −∇̺f(̺[i]) as the search direction.

10: Choose the step size t via backtracking line search.

11: Update the variable ̺[i] := ̺[i]− t∇̺f(̺[i]).

12: Compute the objective function difference ∆f(̺[i]).

13: end while

14: Output: j, sub-optimal reflect beamforming ̺[i].

V. NUMERICAL RESULTS

This paper focuses on the impact of reflect beamforming

on the Cramer-Rao lower bound for the MS position estimate,

and aims to minimize it 1. The estimation method is provided

in the journal version, and will not be discussed here due to

space limitation. Thus, we set up the system parameters to be

known or have been estimated: the wavelength of mm-wave

signal is set up as 0.006, p = [0, 0, 0]T, q = [50, 100, 0]T,

and the RIS is a uniform planar array in the vertical plane

where s
1 = [−20, 50, 20]T and the separation between each

reflecting element is 0.1, all in meters. The propagation gains

hi (i = 1, · · · , N) of N reflection paths are set up as random

complex numbers which obey the distribution of CN (0, 1).

A. GDM-Based Reflect Beamforming

We first show the convergence behaviour of the proposed

GDM-based algorithm in Fig. 2. In this simulation, we only

consider 1 time slot consumed to transmit the pilot signal. The

transmit and receive antenna numbers are both set up as 10,

and the separation equals to half-wavelength 0.003. The RIS

is set up as a 5 × 5 uniform planar array, i.e., there exist 25
reflection paths. The SNR which is defined as pBS/(Nrσ

2) are

set up as 30 dB and 40 dB. (The impact of time slot number,

reflecting element number, and SNR on the Cramer-Rao lower

bound will be discussed in the next subsection.) The initial

phase shift vector is generated randomly with the elements

independently drawn from the uniform distribution on [0, 2π].
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Fig. 2. The convergence behaviour of the proposed GDM-based algorithm.

The different dotted and solid curves in Fig. 2 are the

gradient descent curves with different realizations of propa-

gation gains. It is observed that by searching in the gradient

flow direction, the Cramer-Rao lower bound values decrease

quickly with the number of iterations. Compared with the

1 Some prior works, like [3], [13], only provide the values of the Cramer-
Rao lower bound for the estimate of AoA/AoD. But a small deviation in
angle can result in a large deviation in absolute position, and the positioning
accuracy can not be reflected directly. Thus, in this section, we present the
values of the Cramer-Rao lower bound for the estimate of absolute MS
position.



case without optimizing the reflect beamforming, there is a

significant improvement on Cramer-Rao lower bound when

using the proposed algorithm. In addition, the convergence

results show that by optimizing the reflect beamforming, the

Cramer-Rao lower bound for the estimate of absolute MS

position can attain about 0.1 and 0.01, i.e., decimeter-level or

even centimeter-level positioning can be achieved by utilizing

and optimizing the RIS, which satisfies the requirements of

6G wireless network technology.

B. Impact of Time Slot, Reflecting Element Number, and SNR

Next, we show the impact of time slot number, reflecting

element number, and SNR in Fig. 3. In this experiment, we

consider the consumed time slot number in the interval of

[1, 10], the reflecting element number in the set of {16, 25, 36},

and the SNR in the set of {20, 30, 40} [dB]. It is observed

that the Cramer-Rao lower bound decreases with the time slot

number, the reflecting element number, and the SNR. The

decimeter-level or even centimeter-level positioning can be

achieved by utilizing the RIS with a large number of reflecting

elements. But, it should be noted that the use of a large number

of reflecting elements will result in the difficulty of estimating

which is also the problem to be solved in the future.
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Fig. 3. Cramer-Rao lower bound for the MS position estimate versus time
slot with different reflecting element numbers and SNRs.

C. Impact of MS Position

Finally, we show the impact of different MS position on the

Cramer-Rao lower bound in Fig. 4. We consider two cases:

one is that the x-coordinate of MS position is in the interval

of [0, 100]; Another is that the y-coordinate of MS position

is in the interval of [50, 150]. From the figure, we observe

that the Cramer-Rao lower bound increases as the MS moves

away from the RIS. More accurate localization can be achieved

when the MS is closer to the RIS and more reflecting elements

are utilized.

VI. CONCLUSION

In this paper, we utilize the advantages of mm-wave signals

and large antenna arrays technologies, and introduce the RIS

into the system to make the MS positioning more accurate.

Our first contribution is to build the three-dimensional RIS-

assisted wireless localization system model. After that, we
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Fig. 4. Cramer-Rao lower bound for the MS position estimate versus x and
y-coordinates of MS position with different numbers of reflecting elements.

derive the Fisher information matrix and the Cramer-Rao lower

bound for the estimate of absolute MS position. Finally, we

propose an alternative optimization method and a GDM-based

algorithm to make the reflect beamforming design which aims

to minimize the Cramer-Rao lower bound. The simulation

results show that introducing RIS can make the positioning

become possible when the line-of-sight is obstructed, and the

proposed algorithm can make the estimation of MS position

more accurate. The decimeter-level or even centimeter-level

positioning can be achieved by utilizing the RIS with a large

number of reflecting elements.

APPENDIX

A. Proof of Eqs. (26), (27) and (28)

By utilizing the geometrical relationship between the az-

imuth/elevation AoA and the MS position in Eqs. (24) and

(23), and the derivatives of the inverse functions in Eq. (48),

(arccosx)′ = − 1√
1− x2

, (arctanx)′ =
1

1 + x2
, (48)

we give the derivatives of ϑi and ϕi with respect to qx as

follows:

∂ϕi

∂qx
=

∂ arccos

[

six−qx

‖q1:2
−s

i
1:2‖2

]

∂qx

=
‖q1:2 − s

i
1:2‖2 +

(
six − qx

)
1
2

1

‖q1:2
−s

i
1:2‖2

2
(
qx − six

)

√

1− (six−qx)
2

‖q
1:2

−s
i
1:2

‖2

2
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i
1:2‖22
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i
1:2‖2

(

1− (six−qx)
2

‖q
1:2

−s
i
1:2

‖2

2

)

√

1− (six−qx)
2

‖q
1:2

−s
i
1:2

‖2

2
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1:2‖22
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√

1− (six−qx)
2
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1:2
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2

‖q1:2 − s
i
1:2‖2
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sinϕi

‖q1:2 − s
i
1:2‖2

,

(49)



∂ϑi

∂qx
=

∂ arctan

[
‖q1:2

−s
i
1:2‖

2

siz

]

∂qx

=
1
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(50)

Similarly, we obtain the derivatives of ϑi and ϕi with respect

to qy as follows:

∂ϕi

∂qy
=

cosϕi

‖q1:2 − s
i
1:2‖2

,
∂ϑi

∂qy
=

siz sinϕi
∥
∥q1:2 − s

i
1:2

∥
∥
2

2
+ (siz)

2
.

(51)

In addition, the absolute MS position q is independent of

the propagation gain hi, thus we have

∂hi

∂q1:2

= [0, 0]T . (52)

From the above, we complete the derivations of Eqs. (26),

(27) and (28) in Section III.

B. Proof of Eqs. (44), (45), (46) and (47)

Take the partial derivative of the (1, 1)th entry of the Fisher

information matrix Jq with respect to ̺i as an example.

First, we give the partial derivative of [Jq(l)]1,1 as follows:

∂ [Jq(l)]1,1
∂̺i

=
∂
{

2
σ2

∑N
m=1

∑N
n=1 Re

[
ej(̺n−̺m)κ1,1
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]}
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n=1

[
ej(̺m−̺n)(κ1,1

m,n(l))
∗
]}

∂̺i

=
1

σ2

N∑

m 6=i

[

jej(̺i−̺m)κ1,1
m,i(l)

]

+
1

σ2
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n6=i

[

−jej(̺n−̺i)κ1,1
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]

+
1

σ2
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n6=i

[
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∗
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1
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4
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Re

[
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n,i(l)

]

.

(53)

Then, by using Eq. (39), we obtain that

∂ [Jq]1,1
∂̺i

=
4

σ2

L∑

l=1

N∑

n6=i

Re

[

jej(̺i−̺n)κ1,1
n,i(l)

]

. (54)

The derivations of Eqs. (45) - (47) follow the similar proce-

dures and here we omit them due to space limitation.

From the above, we complete the derivations of Eqs. (44) -

(47) in Section IV.
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