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Abstract—Wireless signal recognition is becoming increasingly
more significant for spectrum monitoring, spectrum management,
and secure communications. Consequently, it will become a key
enabler with the emerging fifth-generation (5G) and beyond 5G
communications, Internet of Things networks, among others.
State-of-the-art studies in wireless signal recognition have only
focused on a single task which in many cases is insufficient
information for a system to act on. In this work, for the first time
in the wireless communication domain, we exploit the potential
of deep neural networks in conjunction with multi-task learning
(MTL) framework to simultaneously learn modulation and signal
classification tasks. The proposed MTL architecture benefits from
the mutual relation between the two tasks in improving the
classification accuracy as well as the learning efficiency with
a lightweight neural network model. Additionally, we consider
the problem of heterogeneous wireless signals such as radar
and communication signals in the electromagnetic spectrum.
Accordingly, we have shown how the proposed MTL model
outperforms several state-of-the-art single-task learning classi-
fiers while maintaining a lighter architecture and performing
two signal characterization tasks simultaneously. Finally, we
also release the only known open heterogeneous wireless signals
dataset that comprises of radar and communication signals with
multiple labels.

Index Terms—machine learning, multi-task learning, signal
classification, modulation classification

I. INTRODUCTION

Wireless signal recognition plays a vital role in the modern
era of wireless communication where heterogeneous wireless
entities belonging to civilian, commercial, government, and
military applications share the electromagnetic spectrum. Re-
cent years have witnessed an explosive growth of Internet of
Things (IoT) devices in critical applications such as smart
healthcare, smart industry, smart cities, smart homes, smart
vehicles, among others [1]. The diverse and large scale IoT de-
ployment leads to critical security vulnerabilities in addition to
spectrum scarcity. Wireless signal recognition is an emerging
technique to identify and mitigate the security weaknesses as
well as enable cooperative spectrum sharing to maximize spec-
trum utility. Signal recognition can be defined as the process
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of extracting the signal descriptors (modulation, signal type,
hardware intrinsic features, etc.,) to characterize the radio fre-
quency (RF) waveform. Spectrum sharing to improve spectrum
utilization serves as a key enabler for fifth-generation (5G)
and beyond 5G (B5G) communications whereby the various
emitters in the vicinity are sensed and identified to allocate and
utilize spectrum in a cooperative manner. Realizing the need
for improved spectrum sharing to sustain communications,
the Federal Communications Commission (FCC) has allocated
Citizens Broadband Radio Service (CBRS) in the 3.5 GHz
radio band. The CBRS band will be cooperatively shared
between commercial and government agencies such that only
150 MHz is utilized at a time. This is facilitated by sensing and
distinguishing between naval radar and commercial cellular
communication systems such that the incumbent naval radar
and satellite emissions are not hindered. Additionally, in the
tactical front, the wireless signal identification will enhance the
spectrum situational awareness allowing soldiers to distinguish
between friendly and hostile forces in the battlefield.

Signal recognition is a widely studied topic, however, it has
been segmented into subtasks such as modulation recognition
[2]–[8], signal type (wireless technology) classification [9],
etc., and studied independently. Furthermore, most of the re-
cent works in this realm focuses either on common communi-
cation waveforms [2]–[4], [6] or radar signals [10]. In a tactical
setting as well as in the current scenario of spectrum sharing
between government and commercial entities, radar as well as
communication waveforms are required to coexist. Therefore,
it is essential to consider both categories of waveforms in
the signal recognition problem. Additionally, it is important to
design a framework that can perform multiple tasks simulta-
neously to provide more comprehensive information regarding
the signal. Consequently, in this work, we propose to jointly
model the wireless signal recognition problem in a novel
parallel multi-task setting for radar as well as communication
waveforms.

II. RELATED WORKS

Machine learning is becoming a key enabler for several
aspects of wireless communication and radio frequency (RF)
signal analysis. One of the most common tasks of wire-
less signal recognition is automatic modulation classification
whereby the modulation type of the RF waveform is predicted
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by the receiver. The modulation classification performance of
convolutional neural networks (CNNs) on eight modulation
types was studied in [2]. The authors adopted GoogLeNet
and AlexNet CNN architectures utilizing constellation images
as input. However, the employed architectures demonstrated
increased reliance on the image preprocessing factors such
as image resolution, cropping size, selected area, etc., and
achieved an accuracy below 80% at 0 dB signal-to-noise ratio
(SNR). In [3], a feature-based modulation classification with
feed-forward neural networks was proposed and demonstrated
on USRP software-defined radios with 98% accuracy for seven
modulation classes. Radar waveform recognition on seven
classes with a CNN architecture was investigated in [10]. The
radar recognition involved feeding time-frequency images to
the network in contrast to raw inphase-quadrature (IQ) sam-
ples. Single-task modulation classification with CNN on seven
classes was studied in [6]. The model utilizes cyclic spectrum
images as input and was shown to achieve a modulation clas-
sification accuracy of 95% above 2 dB. These approaches use
transformed representation or handcrafted features which limit
the generalization capability of neural networks in extracting
hidden representations from raw IQ signal samples.

The work by [11] used IQ samples as input to study the per-
formance of a CNN architecture with four convolutional, two
pooling, and two dense layers in classifying 11 modulations
while achieving an accuracy of 83.4% at 18 dB. A modified
ResNet architecture is adopted in [4] to perform single-
task modulation classification on 24 modulation formats. The
network achieves a classification accuracy of 95.6% at 10
dB. A multi-task learning (MTL) framework for modulation
recognition is proposed in [12] for communication waveforms.
They segment a single modulation classification task into
subtasks. Hence, their proposed model do not perform multiple
tasks simultaneously. These approaches perform a single-task
modulation classification on communication waveforms alone.
However, our proposed MTL model performs both modulation
and signal classification on communication as well as radar
waveforms to represent heterogeneous environment. In addi-
tion, our proposed MTL architecture achieves a modulation
classification accuracy of over 99% above 4 dB on the noise
impaired waveforms.

Another subtask of wireless signal recognition is signal clas-
sification whereby the wireless technology/standards adopted
to generate the RF waveform is accurately identified. Wireless
interference detection with a CNN architecture were stud-
ied by [13]. Three wireless standards namely; IEEE 802.11
b/g, IEEE 802.15.4, and IEEE 802.15.1 occupying different
frequency channels were classified into 15 different classes
with the highest accuracy attained for IEEE 802.15.1. Wireless
technology identification with a CNN architecture to mitigate
spectrum crunch in the industrial, scientific, and medical (ISM)
band was proposed in [14]. Wireless standards such as Zigbee,
WiFi, Bluetooth, and their cross-interference representing het-
erogeneous operation comprising a total of seven classes were
classified but required operation in high SNR regime to portray
93% accuracy. Here again, these works considered single-task

signal classification on communication waveforms. In contrast,
our work considers both modulation and signal classification
tasks on communication and radar waveforms impaired with
more dynamic and realistic effects.

Deep learning has made significant strides in the field of
computer vision [15], [16], natural language processing [17],
speech recognition [18], autonomous control [19], [20] etc.
The comparatively slower pace of applied deep learning in
wireless communication in contrast to other domains can be
in part attributed to the lack of available large scale datasets for
the diverse wireless communication problems. In this work, we
consider a novel MTL model to simultaneously perform two
tasks for signal recognition. To mitigate the lack of available
datasets in the wireless domain and to encourage advances
in this area, we release the radar and communication signal
dataset developed in this work for open use.

Contributions To the best of our knowledge, our work is the
first in the deep learning for wireless communication domain
that introduces MTL to solve challenging multiple waveform
characterization tasks simultaneously. Unlike the prior works
in wireless signal recognition, we propose to jointly model
modulation and signal classification as parallel subtasks in an
MTL setting. Further, MTL architecture inherently generalizes
better with more number of tasks since the model learns
shared representation that captures all tasks. Hence, in the
future, additional signal classification or regression tasks can
be included in the architecture. The novel MTL architecture
performs both modulation and signal classifications with over
99% accuracy above 4 dB on the noise impaired waveforms.
We present an elaborate study on the various hyperparameter
settings and their effects on the training and classification
performances to arrive at a lighter MTL architecture. The
proposed MTL architecture is contrasted with several of its
single-task learning (STL) counterparts in the literature to
depict the MTL advantage in learning parallel tasks with the
lighter model. Finally, to motivate future research in this do-
main, we release the first-of-its-kind radar and communication
waveforms dataset with multiple labels for public use [21].

III. WIRELESS MULTI-TASK LEARNING

Wireless RF signals can take multiple modulation formats.
For example: IEEE802.11a OFDM waveform can possess
binary phase-shift keying (BPSK), quadrature phase-shift key-
ing (QPSK), and quadrature amplitude modulation (QAM)
modulations. Similarly, satellite communication signals can
have M-ary phase-shift keying (PSK) modulations. Several
radar signals namely; Airborne-detection, Airborne-range, Air-
Ground-MTI, and Ground mapping adopt pulsed continuous
wave (PCW) modulation but differ in the transmission pa-
rameters such as pulse repetition rate, pulse width, and carrier
frequency. Finally, AM radio signals can carry either amplitude
modulated double side-band (AM-DSB) or amplitude mod-
ulated single side-band (AM-SSB) waveforms. Hence, it is
essential to not merely identify the modulation format but also
the signal type to accurately recognize the waveform.



Multi-task learning (MTL) is a neural network paradigm for
inductive knowledge transfer which improves generalization
by learning shared representation between related tasks. MTL
improves learning efficiency and prediction accuracy on each
task in contrast to training an STL model for each task
[22]. MTL has been applied to natural language processing
(NLP) and computer vision extensively. Unlike NLP and
computer vision, MTL has never been applied in the wireless
communication realm to the best of our knowledge. In this
work, however, we propose to take advantage of the mu-
tual relation between tasks in learning them with an MTL
architecture. We adopt a hard parameter shared MTL model
[23] where the hidden layers among all tasks are shared
while preserving certain task-specific layers. Hard parameter
sharing significantly reduces the risk of overfitting by the
order of the number of tasks as shown by [24]. As the
model learns more tasks, it extracts shared representation that
captures all of the tasks thereby improving the generalization
capability of the model. Including additional tasks to the model
will, therefore, improve the learning efficiency of the model.
Modulation and signal classification are related tasks that can
benefit from each other with the hard parameter MTL model.
Further, such an architecture has the added advantage to benefit
from additional tasks motivating the possibility to include
future signal characterization tasks. Given an input signal, the
proposed MTL model will classify the signal as belonging
to a specific modulation and signal class. The modulation and
signal classification tasks are optimized with categorical cross-
entropy losses denoted by Lm and Ls respectively. The overall
multi-task loss (Lmtl) function is represented as a weighted
sum of losses over the two tasks as in equation (1).

Lmtl(θsh, θm, θs) = wmLm(θsh, θm) + wsLs(θsh, θs) (1)

Here, the joint multi-task loss is parameterized by the shared
(θsh) as well as task-specific (θm, θs) parameters. The weights
over the task-specific losses are denoted by wm and ws. The
MTL training is denoted as the optimization in equation (2).

θ∗ = argmin
θsh,θm,θs

Lmtl(θsh, θm, θs) (2)

The MTL optimization aims to tune the network parameters
such as to minimize the overall task loss.

MTL Network Architecture: The hard parameter shared
MTL architecture for wireless signal recognition is shown in
Fig. 1. The shared hidden layers are composed of convolu-
tional and max-pooling layers. Each task-specific branch com-
prises of convolutional, fully-connected, and output softmax
classification layers. The convolutional and fully-connected
layers in the network adopt ReLU activation function.

The hyperparameters such as number of neurons per layer,
number of layers, task loss weights, etc., and their effects on
the training performance and classification accuracies were
studied in-depth as elaborated in the upcoming sections. We
train the network with Adam gradient descent solver for 30
epochs with a patience of 5. The learning rate is set to 0.001.
The architecture adopts batch normalization prior to ReLU

Softmax

Softmax

Signal Classification Task

Modulation Classification Task
Shared Layers

Fig. 1: MTL architecture for wireless signal recognition

activation. The dropout rate of the shared layer is set to 0.25
and that of the task-specific branches are set to 0.25 and 0.5
in the convolutional and fully-connected layers respectively.
Unless otherwise stated all the kernel sizes in the convolutional
layers are 3× 3 and the max-pooling size is 2× 2. The signal
and modulation classification task branches perform softmax
classification on 11 signal and 9 modulation classes for the
noise impaired waveforms (RadComAWGN). We implement
our models in Keras with Tensorflow backend on an Ubuntu
18.04 VM running on an Intel Core i5-3230M CPU.

IV. PROPOSED MODEL DESIGN AND ANALYSIS

Dataset and Evaluation Setting: As ours is the first work
in this realm that proposes an MTL architecture for wireless
signal recognition, there are no preexisting datasets that could
be leveraged with labels for multiple tasks. Hence, we generate
our datasets of radar and communication signals in GNU
Radio companion for varying SNRs. We generate 2 datasets
with modeled propagation effects - RadComAWGN and Rad-
ComDynamic at sample rate of 10 MS/s. RadComAWGN
comprises a total of 9 modulation and 11 signal classes. The
modulation classes are PCW, frequency modulated continuous
wave (FMCW), BPSK, AM-DSB, AM-SSB, amplitude shift
keying (ASK), Gaussian frequency-shift keying (GFSK), direct
sequence spread spectrum complementary code keying (DSSS-
CCK), and direct sequence spread spectrum Offset Quadrature
Phase-Shift Keying (DSSS-OQPSK). The signal classes are
Airborne-detection, Airborne-range, Air-Ground-MTI, Ground
mapping, Radar-Altimeter, Satcom, AM Radio, Short-Range,
Bluetooth, IEEE802.11bg, and IEEE802.15.4. Of which the
first 5 are radar waveforms and the remaining are communica-
tion waveforms. The last 3 signal classes are extracted from the
interference dataset [25]. Except the last 3, all the waveforms
are generated in GNU Radio with additive white Gaussian
noise (AWGN) under varying SNR levels (-20 dB to 18 dB
in steps of 2 dB). The RadComDynamic dataset contains all
waveforms in RadComAWGN except the 3 waveforms from
the interference dataset. The waveforms in the RadComDy-
namic dataset are subject to propagation effects and hardware
uncertainties such as multipath, fading, scattering, doppler



TABLE I: RadComDynamic: Dynamic settings

Dynamic Parameters Value
Carrier frequency offset std. dev/sample 0.05 Hz
Maximum carrier frequency offset 250 Hz
Sample rate offset std. dev/sample 0.05 Hz
Maximum sample rate offset 60 Hz
Num. of sinusoids in freq. selective fading 5
Maximum doppler frequency 2 Hz
Rician K-factor 3
Fractional sample delays comprising power delay profile
(PDP)

[0.2, 0.3, 0.1]

Number of multipath taps 5
List of magnitudes corresponding to each delay in PDP [1, 0.5, 0.5]

effects, oscillator drift, and sampling clock offset as shown
in Table I. The propagation channel is chosen to be Rician
with K-factor 3. The dataset is partitioned into 70% training,
20% validation, and 10% testing sets. The hyper-parameter
evaluations were performed with the RadComAWGN dataset.
To benefit future research in MTL on RF signal analysis, we
make the dataset publicly available [21].

A. Wireless Signal Representation

Let us denote the generated signal vector as xid where the
superscript id represents the signal key used to extract the
signal from the database. The generated signals are complex
(IQ) samples of length 128 samples each. The signals are
normalized to unit energy prior to storing them in the dataset to
remove any residual artifacts from the simulated propagation
effects. Data normalization allows a neural network to learn the
optimal parameters quickly thereby improving the convergence
properties. The normalized data containing both I and Q
samples can be denoted as x̂id = x̂idI + jx̂idQ . Since neural
networks can only deal with real numbers, we will vectorize
the complex number as below x̂id

f{x̂id} =
[
x̂idI
x̂idQ

]
∈ R256×1 (3)

Mathematically, this can be shown with the relation

f : C128×1 −→ R256×1 (4)

The 256-sample input signal is reshaped to a 2D tensor
of size 16 × 16 prior to feeding into the network.
The waveforms are stored as key-value pairs in the
HDF5 database such that the value can be extracted
using the key. The waveform key is denoted by id =
modulation format, signal class, SNR, sample number
which matches it to the corresponding waveform in the
database.

B. Effect of Task Weights

In this subsection, we will study the effect of task-specific
loss weights on the classification accuracy of both tasks.
Specifically, the classifier accuracy on both tasks when the
signal strength is very low (SNR= −2 dB) will be analyzed.
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Fig. 2: Effect of task loss weight distribution on modulation
and signal classification tasks at very low SNR (−2 dB)

Detection of even the weakest power signal corresponds to
improved detection sensitivity.

Figure 2 shows the classification accuracy of MTL on both
tasks at a very low SNR of −2 dB for varying weights. The
number of kernels in the shared and task-specific convolutional
layers are 8 and 4 respectively and the number of neurons in
the fully-connected layers of the task-specific branches is 256.
The weight distribution for both tasks are varied from 0 to 1 in
steps of 0.1 such that sum of weights is unity. The boundaries
of the plot denote classification accuracies when the model
was trained on individual tasks, i.e., when weights of either
task losses were set to zero. It can be seen that the model
performs almost stable across the weighting (0.1 to 0.9 on
either task). Although for some optimal weighting of ws = 0.8
and wm = 0.2, both tasks are performing slightly better than
at other task weights. We therefore fix the loss weights for
both tasks at ws = 0.8 and wm = 0.2 for the proposed MTL
architecture.

C. Effect of Network Density

How dense should the network be ? This is the question
we are trying to answer in this section. Resource constrained
radio platforms require lightweight neural network models
for implementation on field programmable gate arrays and
application-specific integrated circuits. For such realistic im-
plementations, dense neural network models for signal charac-
terization such as the resource-heavy AlexNet and GoogLeNet
adopted by [2] would seem impractical. Hence, rather than
adopting dense computer vision models, we handcraft the
MTL architecture to arrive at a lighter model. The network
density has a direct effect on the learning efficiency and
classification accuracy of the model. We will vary the number
of neurons in the MTL model introduced in Fig. 1 and analyze
the effect of introducing additional layers in the shared as well
as task-specific branches.

The legends in the figures (Figure 3 - Figure 6) represent
the varying number of neurons as well as layers in the
network. The notation (Csh, Cm, Fm, Cs, Fs) implies neuron
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Fig. 3: MTL training performance on modulation classification
task for varying network density
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Fig. 4: MTL training performance on signal classification task
for varying network density

distribution with Csh, Cm, Cs representing the number of
filters in the convolutional layer of shared, modulation, and
signal branches and Fm, Fs denote the number of neurons
in the fully-connected layers in the modulation and signal
branches. The additional layer inclusion notations are C2−sh
and C2−sh− tasks. The notation C2−sh denotes the MTL
architecture with two convolutional layers each followed by
a max-pooling layer in the shared module. The number of
filters in the convolutional layers of the shared module is
8. Finally, C2 − sh − tasks denote the MTL model with
shared module architecture the same as C2− sh but with two
sequential convolutional layers in the task-specific branches.
The number of filters in the convolutional layers of both task-
specific branches is 4. The number of neurons in the fully-
connected layers of task-specific branches is 256 for both
C2− sh and C2− sh− tasks.

Figure 3 and Figure 4 show the training performance of
the MTL model with respect to the two tasks. The training
plots demonstrate that increasing the network density slows
the training speed of the model. This is intuitive as the net-
work parameters increase training time increases. The fastest
network training time is achieved with the model configuration
of (8, 4, 256, 4, 256) which is the lightest of all configurations.
Figure 5 and Figure 6 demonstrate the classification accuracies
on both tasks for varying network density under increasing
SNR levels (decreasing noise power). It can be seen that the
additional layers in the shared (C2−sh) and shared as well as
task-specific branches (C2−sh−tasks) does not improve the
classification accuracies but rather results in significantly poor
modulation and signal classification accuracies. Further, the
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Fig. 5: MTL classification performance under varying noise
levels on modulation task for varying network density
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MTL model does not seem to benefit from the remaining dense
configurations. Hence, the MTL model will use the lighter
configuration of (8, 4, 256, 4, 256) that yields better learning
efficiency and prediction accuracies.

V. FINE-TUNED MODEL PERFORMANCE EVALUATION

In this section, we demonstrate the performance of the fine-
tuned MTL model on RadComAWGN and RadComDynamic
datasets for varying noise levels. With these tests, we are
aiming to assess the MTL performance on waveforms impaired
by just AWGN as well as waveforms affected by realis-
tic propagation and radio hardware impairments (previously
discussed in Table I). We adopted transfer learning on the
RadComDynamic experiments by initializing the weights of
the network to the tuned weights of MTL with RadCo-
mAWGN while the weights were randomly initialized for
RadComAWGN tests. The MTL exhibits a 98.58% modulation
classification accuracy on RadComAWGN and 97.07% on
RadComDynamic dataset at 2 dB. The signal classification
accuracy of MTL at 2 dB yielded 97.87% and 90.86% on
RadComAWGN and RadComDynamic datasets respectively.
We show that the proposed MTL model yields above 90%
accuracy at SNRs above 2 dB for both tasks with noise
impaired (RadComAWGN) as well as propagation and hard-
ware impaired (RadComDynamic) waveforms. The confusion
matrices of the signal and modulation classes at 10 dB on
RadComAWGN and RadComDynamic datasets along with
their classification accuracy at varying noise levels are shown
in Fig. 7. These experiments demonstrate the classification
capability of the proposed lightweight MTL model on severely
impaired waveforms under varying signal powers.



TABLE II: Comparison of proposed MTL with other STL models

Model Modulation Classification
Accuracy

Signal Classification
Accuracy

Number of Classes Waveform Type

Modulation and Signal classification (this work) - Multi-task

Proposed MTL Model 97.87% at 0 dB,
99.53% at 10 dB

92.3% at 0 dB,
99.53% at 10 dB

9 modulation,
11 signal classes

Radar and
Communication

Modulation classification only methods - Single Task

Peng et al. 2019 [2] below 80% at 0 dB - 8 Communication

Jagannath et al. 2018 [3] 98% above 25 dB - 7 Communication

O’Shea et al. 2018 [4] 95.6% at 10 dB - 24 Communication

Mossad et al. 2019 [12] 86.97% at 18 dB - 10 Communication

Hermawan et al. 2020 [11] ∼80% at 0 dB,
83.4% at 18 dB

- 11 Communication

Wang et al. 2017 [10] 100% at 0 dB - 7 Radar

Li et al. 2018 [6] 95% above 2 dB - 7 Communication

Signal classification only methods - Single Task

Bitar et al. 2017 [14] - 91% at 15-25 dB,
93% at 30 dB

7 Communication

Schmidt et al. 2017 [13] - 95% at -5 dB 15 Communication

PCW

FMCW
BPSK

AMDSB

AMSSB
ASK

GFSK

DSSS-C
CK

DSSS-O
QPSK

PCW

FMCW

BPSK

AMDSB

AMSSB

ASK

GFSK

DSSS-CCK

DSSS-OQPSK
0

0.2

0.4

0.6

0.8

1

(a) RadComAWGN: Mod. classification

PCW

FMCW
BPSK

AMDSB

AMSSB
ASK

PCW

FMCW

BPSK

AMDSB

AMSSB

ASK
0

0.2

0.4

0.6

0.8

1

(b) RadComDynamic: Mod. classification
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(c) RadComDynamic: Signal classification
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(d) RadComAWGN: Signal classification
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In Table II, we compare the proposed MTL model with other
state-of-the-art methods in both the tasks. The classification
accuracies of the proposed MTL model are with the RadCo-
mAWGN noise impaired waveforms. Our framework is the
first method that accomplishes both tasks with a single model.
It is to be noted that in the current literature, to best of our
knowledge, there does not exist an MTL model or a multi-task
labelled dataset for modulation and signal recognition. We
would require either of these to perform a one-to-one compar-
ison. Nonetheless, we provide a tabular comparison to show
the proposed MTL model achieves the same or better accuracy
as compared to state-of-the-art STL models. This proves the
utility and effectiveness of using a single MTL model in the
RF domain. The single-task modulation classifier proposed in
[10] which achieves a 100% accuracy at 0 dB is with fewer
classes and utilizes handcrafted input features which limits
the generalization capability. In contrast, our model adopts a
significantly lighter CNN model to achieve two simultaneous
tasks on more number of classes. Additionally, raw IQ samples
in our model allow capturing hidden representations improving
generalization capability. Overall, the proposed lightweight
model has provided reliable performance over several varying
scenarios outperforming most state-of-the-art STL models.

VI. CONCLUSION AND FUTURE WORK

We proposed a multi-task learning framework to solve two
challenging and fundamental wireless signal recognition tasks
- modulation and signal classification. We leveraged the rela-
tion between the two tasks in allowing the MTL to learn the
shared representation. The classification accuracy and learning
efficiency of the two tasks were experimentally demonstrated
with the novel lightweight MTL architecture motivating its
adoption in resource-constrained embedded radio platforms.
The performance of the model was depicted for noise impaired
as well as propagation and hardware impaired waveforms.
To benefit future research utilizing MTL for wireless com-
munication, we publicly release our dataset. The success of
the proposed MTL architecture further opens the door to
include more signal characterization tasks such as bandwidth
regression, sampling rate regression, pulse width regression,
emitter classification, etc., to the model. The inclusion of
additional signal characterization tasks will be part of our
future research along with generating more waveforms to be
included to the dataset for training multi-task frameworks.
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