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Abstract—The reconfigurable intelligent surface (RIS) is one
of the promising technology contributing to the next genera-
tion smart radio environment. The application scenarios include
massive connectivity support, signal enhancement, and security
protection. One crucial difficulty of analyzing the RIS-assisted
networks is that the channel performance is sensitive to the
change of user receiving direction. This paper tackles the problem
by categorizing the RIS illuminated space into four categories:
perfect alignment, coherent alignment, random alignment, and
destructive alignment. These four categories cover all the possible
phase alignment conditions that a user could experience within
the overall 2 pi solid angle of RIS-illuminated space. We perform
analysis for each of these categories, deriving analytical expres-
sions for the outage probability and diversity order. Simulation
results are presented to confirm the effectiveness of the proposed
analytical results.

Index Terms—Channel model, diversity order, non-orthogonal
multiple access, phase errors, reconfigurable intelligent surface.

I. INTRODUCTION

In the RIS-assisted wireless communication system, the RIS

can perform signal enhancing (at a target angle), signal broad-

casting, and signal cancelling [1]. These different working

conditions are the results of different alignments of the phase

shifters, and they are subject to a specific RIS-user pair. With

sufficient channel information of the receivers, the RIS can

assist in achieving massive connectivity, security protection,

and more emerging application demands for future generation

wireless networks.

Existing research contributions focused on the study of the

RIS-assisted channel for the optimized user. The effect of RIS

quantization levels on the channel distribution and diversity

gain has been analyzed. In [2], Xu et al. claimed that full

diversity order can be achieved by RIS with a quantization

level of L = 3. In [3], Wang et al. showed the diversity order

of the one-bit discrete phase shift RIS system is (M + 3)/2,

where M is the number of elements of the RIS. In recent

performance analysis works, it was pointed out that using the

central limit theorem (CLT) causes a systematic error. In [4],

Wang et al. avoided the CLT by using Chernoff inequality and

saddle-point approximation. In [5], Ding et al. presented upper

bounds of the outage probability for RIS with continuous phase

shift.

The main novelty that distinguishes this performance anal-

ysis work from other related research is that we study the

RIS-assisted channel in all possible user directions. According

to the law of energy conservation, the RIS redistributes the

radiation power within different angles in the 2-pi illuminated

space. At positions other than that of the targeted user, the

channels produce weaker averaged received powers. In fading

environments, these channels also exhibit different distributions

compared with the channel in the target direction.

This paper aims to analyze the channel outage probability

for the four proposed phase alignment categories: perfect align-

ment, coherent alignment, random alignment, and destructive

alignment. Table I summaries the expected magnitude, vari-

ance, and diversity order (assuming Rayleigh or Rician faded

diversity branches) of the RIS-assisted channel in different

categories. It is one of the main takeaways of the paper. The

structure of the paper is as follows: Firstly, we proposed the

four categories and their mathematical descriptions. Then, we

derive analytical expressions for the outage probability of the

proposed phase alignment categories, considering both contin-

uous phase shift RIS and discrete phase shift RIS scenarios.

We utilize the Laplace transform and its convolution theorem

to assist our analysis and demonstrate the achievable diversity

order for each category. Finally, we perform Monte Carlo-

based simulations to verify the effectiveness of the proposed

analytical results.

II. MATHEMATICAL DESCRIPTIONS OF THE FOUR PHASE

ALIGNMENT CATEGORIES IN FADING ENVIRONMENT

In the problems arising in the smart (programmable) wireless

communication environment, the resultant field is formed by a

superposition of a number of elementary waves:

H̃ = |H |ejφH =

M
∑

m=1

|hm|ejθm , (1)

where |hm| and θm are the amplitude and the phase of the m-th

diversity branch. In the context of analyzing RIS performance,

it is natural to associate index m in (1) to each element on the

RIS. Consider the presence of small-scale fading, both |hm|
and θm may be random. In most practical cases, determine

the exact distribution of |H | is difficult. However, assuming

specific distribution for |hm| and θm, we are able to draw

useful insights into the characteristics of the distribution of H ,

such as its mean value, variance, and asymptotic behaviour.

In the following analysis, we investigate the distribution of

H by choosing |hm| to follow Rayleigh fading or Rican fading.
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Working conditions Enhancing Broadcasting Cancelling

Phase alignment (a) Perfect (b) Coherent (c) Random (d) Destructive

E[|H|] Mh̄
√

π/2βL1/2(−α2/(2β2))
√

Mπh̄2/2 0

V ar[|H|] M(h̄2 − (h̄)2) α2 + 2β2 − (E[H])2 Mh̄2(4− π)/4 M(h̄2 − (h̄)2)
Diversity order M Less or close to M 1 0

TABLE I: Comparing different phase alignment categories,
where h̄ = E[hm], h̄2 = E[h2

m], all hm are independent and identically distributed, α = Mh̄sinc(π/(2L)), β2 = Mh̄2[1− sinc(π/L)]/2, and L1/2(x)
denoting the Laguerre polynomial.

Proof. See Appendix A for the proof of expectation values and variances. Derivations for the diversity orders are presented in Section III.

Different phase distribution of θm can be classified into four

categories, as in Fig. 1.

1) Perfect phase alignment: For perfect phase alignment,

we have θm = θ0, ∀m ∈ [1,M ]. It indicates that θm is a

fixed value without any distribution. Thus, the magnitude of H ,

which is the length of segment AB in Fig. 1, can be simplified

as |H | =
∑M

m=1 |hm|.
2) Coherent phase alignment: For coherent phase align-

ment, we have θm = θ0 + ∆θm. Various reasons are causing

the phase error ∆θm, such as discrete phase shifts of the RIS,

or imperfect CSI at the RIS so that the RIS is unable to

perform perfect phase alignment. In different scenarios, ∆θm
distributes differently. However, the case where ∆θm is uni-

formly distributed within (−π/L,+π/L) is of special interest.

The quantity of L is often referred to as the quantization level

in the literature.

3) Random and destructive phase alignment:: For random

phase alignment, θm has a uniform distribution within (−π, π).
For destructive phase alignment, the distribution of θm ensures

that the magnitude of H is zero.

III. PERFORMANCE ANALYSIS FOR THE RIS-ASSISTED

NETWORKS

A. Uniform 1-D Phase Scanning

In the application scenarios where a targeted user is served

by the RIS under line-of-sight links, the optimal phase con-

figuration is the uniform 1-D phase scanning pattern. This

configuration is suitable for serving users at a distinct direction

(θ0) and it is achieved by configure the reflection coefficient

of the m-th element as:

rm = exp(2πju0
dx
λ
m), (2)

where u0 = sin θ0 is the target direction. This phase RIS

configuration dose not require amplitude control, since from

(2), we have |rm| = 1, ∀m ∈ [1,M ]. The radiation pattern,

normalized to its peak value, can be expressed as [6]:

F (u) =
sin[Mπdx(u− u0)/λ]

M sin[πdx(u− u0)/λ]
. (3)

Fig. 2 illustrates four phase alignment categories in the ra-

diation pattern of a 16-element 1-D phase scanning RIS.

For the continuous phase shift RIS, perfect phase alignment

can be achieved at the target direction, which corresponds

to u = 0 in the figure. However, for discrete phase shift

RIS or RIS with imperfect channel state information (CSI),

perfect phase alignment cannot be achieved. Table II presents

the corresponding phase alignment categories for different CSI

conditions and RIS settings.

RIS phase shift CSI Phase alignment at target direction

Continuous Perfect Perfect alignment

Continuous Partial Coherent alignment

Continuous None Random alignment

Discrete Perfect Coherent alignment

Discrete Partial Coherent alignment

Discrete None Random alignment

TABLE II: Phase alignment categories of different RIS phase

shift and CSI conditions, for 1-D phase scanning RIS config-

uration.

B. Definition of Outage Probability and Diversity Order

For the application scenarios in fading environment, the

signal-to-noise ratio (SNR) of the combined received signal

is a real-valued random variable. The outage probability is the

CDF of the combined SNR:

Pout(γ0) =

∫ γ0

x=0

PγΣ
(x)dx, (4)

where γ0 is the targeted SNR threshold and PγΣ
(x) is the

PDF of the combined received SNR (γΣ). In our analysis, it

is more convenient to rewrite the outage probability in terms

of the PDF of the overall channel amplitude:

Pout(γ0) =

∫ x∗

0

P|H|(x)dx, (5)

where x∗ =
√

γ0/γt, γt is average the SNR per branch, and

P|H| is the PDF of the overall channel amplitude (H).

The diversity order of the system can be defined through

outage probability as:

d = − lim
γt→∞

logPout(γ0)

log γt
. (6)

C. Methodology

In the analysis of the RIS-assisted wireless channel, the

overall channel amplitude is often expressed as a sum of

multiple diversity branches. Thus, it is hard to obtain the

closed-form expression of the PDF of H .

Here, we seek for an asymptotically accurate approximation.

According to (5) and (6) the asymptotic behaviour of the outage

probability depends on P|H|(x) near the origin (when x → 0).



Fig. 1: Phasor diagram of the four phase alignment categories.

Perfect alignment

Destructive alignment

Random alignment

Coherent alignment

Fig. 2: Illustration of phase alignment categories in the radia-

tion pattern of 1-D phase scanning RIS.

Suppose if the diversity order of the overall channel is d, then

the PDF of H should have a Maclaurin series of:

PH(x) = c′
x2d−1

γd
t

+ o(
x2d−1

γd
t

). (7)

If we take a Laplace transform of this PDF with transform

variable t, we define:

LH = L{P|H|(x)}(t) =
∫ ∞

x=0

e−txP|H|(x)dx

=
c′Γ(2d)

γd
t t

2d
+ o(

1

γd
t t

2d
).

(8)

This result shows that if we expand the Laplace transform of

P|H|(x) at t → ∞, the diversity order d can be read off from

the first term in the Taylor series.

D. Perfect phase alignment, Rayleigh links

With perfect CSI at the RIS and continuous phase shifts, the

RIS can be configured to perfectly alignment the phase of the

signal from each diversity branch. The resultant magnitude of

the effective channel is:

|H | =
M
∑

m=1

|hm|. (9)

The next theorem gives a closed-form asymptotic expression

for the outage probability.

Theorem 1. The asymptotic behaviour of the outage proba-

bility for perfect phase alignment category can be expressed

as:

Pout(γ0) =
b−MγM

0

(2M)!
γ−M
t , (10)

where b is a constant related to the scale factor of the Rayleigh

distributed links.

Proof. See Appendix B.

According to (6) and (10), we can obtain the diversity order

as:

d = M. (11)

Additionally, (10) can be rewritten as:

logPout = −M log γt + p0, (12)

where p0 = M(log γ0 − log b) − log((2M)!). This indicate

that in high SNR region, the outage probability, plotted on a

logarithmic scale, tends to a straight line with a slope of −M .

E. Perfect phase alignment, Rician links

With perfect CSI (at the RIS) and continuous phase shifts,

(9) still holds in this scenario. Suppose all |hm| are i.i.d.

random variables with Rician distributions:

P|h|(x) =
x

b
e−

x2+s2

2b I0(
xs

b
), (13)

where s2 is the scattered power, 2b is the specular power, and

I0(x) is the modified Bessel function of the first kind. The

well known shape factor is the ratio of the two: K = s2/2b.
The Taylor expansion for this PDF near the origin reads:

P|h|(x) =
e−s2/(2b)

b
x+ o(x3). (14)



We can obtain the Taylor series of LH at t → ∞:

LH(t) =
e−

Ms2

2b

(2b)M
t−2M + o(t−2M ). (15)

Using the result in (8), we obtain the diversity order in this

scenario is also M .

F. Random phase alignment

Consider the scenario where CSI is not known at the RIS

and random phase shifts are employed. As a result θm is

uniformly distribution ed within [0, 2π]. According to (1), we

define Tc =
∑M

m=1 |hm| cos θm, Ts =
∑M

m=1 |hm| sin θm and

investigate their distributions. When the number of diversity

branches (M ) is sufficiently large, according to the central limit

theorem, the distributions of Tc and Ts can be approximated

by Gaussian distributions with zero means. Moreover, because

of the randomness of θm, there is no correlation between Tc

and Ts. As a result, the magnitude of H follow a Rayleigh

distribution with a scale factor of Ωp = M :

PH(x) =
2x

Ωp
e
− x2

Ωp . (16)

Substituting (16) into (5), we have in this case:

Pout(γ0) =

∫

√
γ0/γt

0

2x

Ωp
e
− x2

Ωp dx

= 1− e
−

γ0
Ωpγt .

(17)

Then according to (6), we have:

d = 1. (18)

Indicating a diversity order of 1 for the random phase align-

ment scenario.

Remark 1. Although the increasing number of elements (di-

versity branches) does not improve the diversity order of the

combined channel, the average received power does increase

with M . This fact is reflected in the increase of the scale factor

of the Rayleigh distributed overall channel.

G. Coherent phase alignment

According to Table II, various scenarios fall into the same

category as the coherent phase alignment. Here, we focus on

two typical scenarios: coherent phase alignment due to discrete

phase shift RIS and due to the receiver located at positions

other than the target direction. The closed-form expression of

outage probability in these two scenarios is hard to obtain.

Instead of spending the effort to approximate the distribution of

the outage probability, we take on another strategy by studying

the achievable diversity order of the coherent phase alignment

category. As defined in Section II, the phase of hm in coherent

phase alignment can be expressed as θm = θ0 +∆θm.

Theorem 2. In the coherent phase alignment category, if the

following condition applies:

|∆θm −∆θn| ≤ π/2, ∀m,n ∈ [1,M ]. (19)

Then, the outage probability can be upper bounded as:

Pout(γ0) = Pr{|H | <
√

γ0
γt

} < (Pr{|hm| <
√

γ0
γt

})M .

(20)

Indicating a full diversity order of M is achieved.

Proof. The quantity |∆θm − ∆θn| denote the angle between

two different branches h̃m and h̃n on the complex plane. When

condition given in (19) holds, this angle could not exceed π/2.

As a result, we have |H | > |hm| for ∀m = 1, 2, · · · ,M . Con-

sider the M -dimensional probability space formed by random

variables h1, h2, · · ·hM , the volume of
∑M

m=1 |hm| < τ is

smaller than that of (|h1| < τ)∩(|h2 | < τ)∩· · ·∩(|hM | < τ).
Thus, we proved that (20) holds.

With the help of this theorem, we are able to arrive at

important results for the following two corollaries.

Corollary 1. For the discrete phase shift RIS, the achievable

diversity order increases with the quantization level L. When

quantization level L ≥ 4, full diversity order is achieved.

Proof. When L ≥ 4, the angle between two different branches

h̃m and h̃n could not exceed 2 · π/L = π/2. According to

Theorem 2, for Rayleigh or Rician distributed |hm|, the upper

bound in (20) has a diversity order of d = M . This means full

diversity order can be achieved.

Remark 2. In conclusion, the discrete phase shift RIS has

a degraded performance compared with the continuous phase

shift RIS, this degradation quickly vanishes as the quantization

level increases.

Corollary 2. For RIS operating under the 1-D phase scanning

configuration, The full-diversity beamwidth (in radians) of the

1-D phase scanning RIS with M elements is approximately

0.25λc/(Mdx), where λc is the carrier frequency of the signal

and dx is the width of each element.

Proof. For the 1-D phase scanning, the RIS phase shift is

configured according to (2). Suppose the beamwidth is θd,

according to Theorem 2, the maximum phase difference

between the diversity branches should satisfy:

∆θ = M · 2π sin θd
dx
λc

≤ π

2
. (21)

For large M , this angle is approximately θd = 0.25λc/(Mdx)

IV. NUMERICAL RESULTS

In this section, numerical results are presented to facilitate

the performance evaluations of the RIS-assisted wireless net-

work. We aim to confirm the effectiveness of the proposed

analytical results by comparing them with Mount Carlo simu-

lations.



A. Outage Probability for Perfect Phase Alignment Category

Fig. 3 plots the outage probability for perfect phase align-

ment versus the transmit SNR (per branch, in dB). The solid

lines represents the asymptotic expression for M= 1, 2 and 4,

as derived in (12). It can be confirmed that the Mount Carlo

simulated points agree with the asymptotic limit in the high

SNR region. Moreover, Fig. 3 also confirmed the achievable

diversity order, which is the negative slope of in the figure, is

close to M , as derived in (11).

1 2 3 4 5 6 7 8 9
10-4

10-3

10-2

10-1

100

M=1
M=2
M=4
asymptotic

Fig. 3: Simulated outage probability and upper bound for

Rayleigh branches (from top to bottom: M= 1, 2 and 4)

B. Outage Probability for Random Phase Alignment Category

Fig. 4 plots the outage probability for random phase align-

ment versus the transmit SNR (per branch, in dB). The solid

lines represent the analytical expression for M= 1, 4, and 16, as

derived in (17). It can be observed that the analytical results

fit well with the Mount Carlo simulated points. Fig. 4 also

confirmed that the achievable diversity order for the random

phase alignment case is fixed to one, as derived in (18).

Another observation is that power saving can be achieved from

the diversity gain by increasing the number of elements of

the RIS. However, the increasing speed of this gain starts to

diminish as the number of elements becomes larger. According

to Fig. 4, going from M = 1 to M = 4, at 1% outage

probability there is an approximate 1 dB reduction in the

required SNR. However, if starting from M = 4, achieving

the same 1 dB SNR reduction requires increasing the number

of elements to M = 16.

C. Outage probability for users located at different angular

directions

Fig. 5 plot the outage probability for users located at

different angular directions w.r.t. the RIS configured base on 1-

D phase scanning. The solid lines represent the asymptotic ex-

pression of the corresponding perfect phase alignment category

for M = 4 and 8, as derived in (12). It can be observed that as

1 2 3 4 5 6 7 8 9
10-4

10-3

10-2

10-1

100

M=1
M=4
M=16
analytical

Fig. 4: Simulated outage probability for random phase align-

ment (from top to bottom: M= 1, 4 and 16)

the direction of the user moves away from the target direction,

the outage probability increases. Moreover, this increment is

more observable for RIS with a large number of elements

(M ). This is observation is in accordance with Corollary 2

since the full-diversity order enabling beamwidth decrease with

the number of elements as ∆θ ∼ M−1. For example, when

M = 8, this beamwidth is approximately 3.6◦. The Monte

Carlo simulated points for θ = 15◦ and θ = 30◦ exceed the

asymptotic bound as full diversity order can not be achieved

outside the beamwidth.

1 2 3 4 5 6 7 8 9 10

10-4

10-3

10-2

10-1

100

M=8

M=4

Fig. 5: Simulated outage probability for users located at

different angular directions.

V. CONCLUSIONS

A novel performance analysis was presented from the

perspective of phase alignment condition between channels



through different RIS elements. Specifically, we proposed

four phase alignment categories: perfect alignment, coherent

alignment, random alignment, and destructive alignment. With

the help of these categories, the performance which users

experienced in different directions with respect to RIS can be

better analyzed and compared. Under the proposed categorizing

approach, performance analysis for the RIS-assisted networks

with multiple access schemes remains an open question.

APPENDIX A

PROOF OF EXPECTATION VALUES AND VARIANCES FOR

COHERENT PHASE ALIGNMENT CATEGORY

For coherent phase alignment, we consider the scenario

where θm ∈ (−π/L, π/L). The magnitude of the overall

channel (H) can be well approximated as Ricianly distributed

[7]:

P|H|(x) =
x

β2
e
− x2+α2

2β2 I0(
xα

β
), (A.1)

where the shape factors are related to the quantification level

(L) of the IRS, the number of elements (M ) as:

α = Mh̄sinc(
π

2L
), (A.2)

β2 =
M

2
h̄2[1− sinc(

π

L
)]. (A.3)

The mean and variance of the distribution can be calculated

as:

E[H ] =

√

π

2
βL1/2(−

α2

2β2
), (A.4)

V ar[H ] = α2 + 2β2 − π

2
β2[L1/2(−

α2

2β2
)]2. (A.5)

The proof for other phase alignment categories are straightfor-

ward, and are omitted.

APPENDIX B

PROOF OF THEOREM 1

The critical step is to analysis the behaviour of
∑M

m=1 |hm|,
which is the sum of M i.i.d. Rayleigh distributed random

variables. Here, with the help of Laplace transform and its

convolution theorem, the PDF of the Laplace transform of

H =
∑M |hm| can be derived. First, we denote the Laplace

transform of PDFs as follows:

L{P|h|(x)}(t) = Lh =

∫ ∞

x=0

e−txP|h|(x)dx, (B.1)

L{P|H|(x)}(t) = LH =

∫ ∞

x=0

e−txP|H|(x)dx. (B.2)

It is known that the Laplace transform of a convolution is the

multiplication of the Laplace transform for each function in

the convolution:

L{f1 ∗ f2 ∗ ... ∗ fM} = F1(t)F2(t) · · ·FM (t). (B.3)

As a result, we have:

LH(t) = (Lh(t))
M . (B.4)

Since |h| follows the Rayleigh distribution:

P|h|(x) =
x

b
e−

x2

2b , (B.5)

where b is a constant related to the scale factor of the

distribution. We can explicitly calculate Lh:

Lh = 1−
√

πb/2 · tebt2/2erfc(t
√

b/2). (B.6)

Base on (B.4), we need to preform the inverse Laplace trans-

form to obtain the PDF of |H |. Although the PDF for sum

of i.i.d. Rayleigh variables does not exist in closed-form, it is

sufficient to know only the first few terms in Maclaurin series

of P|H|(x) for computations involving small numerical values

of x. In the light of this, we consider the Taylor expansion of

LH at infinity:

LH(t) =

∞
∑

n=1

cnt
−n, (B.7)

where the index starts at n = 1. This is the result of LH

being the Laplace transform of PH(x), thus LH → 0 when

Re[t] → +∞. P|H|(x) can thus be obtained by performing

the inverse transform term by term in the series:

P|H|(x) = L−1{LH} =

∞
∑

n=0

cn+1

n!
xn. (B.8)

Using the closed-form expression of Lh in (B.6) and the

relation in (B.4), we can obtain the first few term in the Taylor

series of LH(t) as:

LH(t) = c2M · t−2M + c4M · t−4M + · · · , (B.9)

where c2M = b−M and c4M = −3b−2M . Thus, according to

(B.8), the first term in Maclaurin series of P|H|(x) is:

P|H|(x) =
c2M

(2M − 1)!
x2M−1 +O(x4M−1). (B.10)

By substituting (B.10) into (5), we have:

Pout(γ0) =

∫

√
γ0/γt

0

c2M
(2M − 1)!

x2M−1dx+ · · · . (B.11)

Integrating (B.11) gives us the asymptotic behaviour of the

outage probability can be derived.
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