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Abstract—Ultra-Reliable Low-Latency Communications have
stringent delay constraints, and hence use codes with small
block length (short codewords). In these cases, classical models
that provide good approximations to systems with infinitely long
codewords become imprecise. To remedy this, in this paper,
an average coding rate expression is derived for a large-scale
network with short codewords using stochastic geometry and
the theory of coding in the finite blocklength regime. The
average coding rate and upper and lower bounds on the outage
probability of the large-scale network are derived, and a tight
approximation of the outage probability is presented. Then, sim-
ulations are presented to study the effect of network parameters
on the average coding rate and the outage probability of the
network, which demonstrate that results in the literature derived
for the infinite blocklength regime overestimate the network
performance, whereas the results in this paper provide a more
realistic performance evaluation.

Index Terms—Stochastic Geometry; Large-Scale Network; Ca-
pacity; Outage Probability; Finite Blocklength; URLLC.

I. INTRODUCTION

The density of cellular networks has increased significantly
from 2G up to 5G, and continues to increase in order to
serve a larger number of users/devices, and provide wider
coverage and higher data speeds. Additionally, current and
future networks are expected to support a multitude of con-
nectivity requirements, including the Internet-of-Things (IoT)
and Machine-Type communications (MTC). Many such appli-
cations have stringent delay requirements, which necessitate
using different approaches in studying performance [1]. Re-
cent works on Ultra-Reliable Low-Latency Communications
(URLLC) focused on this topic, investigating low-latency
communications from different perspectives [2]–[6].

Large-scale networks can be studied using stochastic ge-
ometry (SG) tools [7]. SG is the study of random spatial
patterns. It is a strong tool used for interference modeling
in large-scale networks, and has been used to study several
network performance metrics in the literature [8]–[11]. In [8],
the wireless network is modelled using SG as the Poisson
point process (PPP). This led to results on the connectivity,
the capacity, the outage probability, and other fundamental
limits of wireless networks. In [9], the coverage probability
of cellular networks in urban areas modelled as a PPP is
provided. The results are compared to the hexagonal grid
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model to find that the SG model provides a more accurate
upper bound on the coverage probabilities than when using the
hexagonal grid model. In [10], [11], large-scale networks using
non-orthogonal multiple-access have been analyzed using SG.
Note that works in this area commonly use Shannon’s channel
capacity expression [12] to study performance which is not
suitable for delay-limited applications.

Aggregate interference modeling and performance charac-
terization were active research topics for decades. Due to the
difficulty in modeling aggregate interference, many papers pro-
vided approximations to be able to reach a tight approximation
to the capacity, symbol error probability, outage probability,
etc. A common method is to approximate the aggregate
interference as a Gaussian random variable as in [7], [13], [14].
In [13], the aggregate interference was approximated as a sum
of Gaussian random variables with random scaling. In [7], the
authors modified the work in [13] to approximate the aggregate
interference as a single Gaussian random variable with random
scaling giving the same results as in [13]. Moreover in [14],
the authors provide the kurtosis of the interference distribution
for different values of exclusion regions which shows that
the interference tends to be Gaussian for large exclusion
regions. As a conclusion from different papers, the Gaussian
approximation is a valid approximation for dense networks or
large exclusion regions.

Since that delay-constrained applications require the use of
short codes. Studying the achievable information rate in such
applications using Shannon’s capacity expression becomes
imprecise, as this expression is derived for infinitely long
codes and vanishing error probability. Instead, the coding
rate under a codelength limitations has to be used for such
studies. In [15], Polyanskiy et al. proposed tight bounds on
the maximal channel coding rate achievable for a given block-
length regime (short codewords) for different types of channels
such as the binary symmetric channel (BSC), binary errasure
channel (BEC), and additive white gaussian noise (AWGN)
channel. Moreover, in [16], Polyankiy et al. extended [15] to
include the maximal achievable coding rate over block-fading
channels in a finite blocklength regime. These works were
extended to studying the coding rate in the finite blocklength
regime of other scenarios, including relaying [17], MTC [18],
and multiaccess communication in [19]. However, to the best
of our knowledge, there are no works apart from [5] in the
literature which derives the decoding error for large-scale
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networks in the finite blocklength regime. In this paper, we
derive the average coding rate of large-scale networks in
the finite blocklength regime. We also formulate the outage
probability of the network in the finite blocklength regime,
and derive bounds and a fairly tight approximation on this
outage probability. Then, we investigate the effect of network
parameters on performance, and demonstrate clearly how the
Shannon’s capacity expression for the infinite blocklength
regime overestimates performance. These results are applica-
ble for studying IoT networks, MTC, etc.

The rest of the paper is organized as follows. In Sec. II, the
system model is presented. In Sec. III, the average capacity
of a large-scale network in the finite blocklength regime is
derived, and the outage probability is formulated. Finally, the
effect of network parameters on the capacity is investigated in
Sec. IV, and the paper is concluded in Sec. V.

II. SYSTEM MODEL

We consider a downlink scenario where a serving base
station (BS) transmits to a user located within its coverage
area, interfered by other non-serving BSs as shown in Fig. 1.
The channel is modeled as a block-fading Rayleigh channel.
The received signal is given by

y = h0
√
Pr
−η/2
0 s0 + Igg + w, (1)

where the channel gain (h0) is circularly symmetric complex
Gaussian (CN (0, 1)), P is the transmit power, r0 is the
distance between the BS and the user, η is the path loss
exponent, s0 is a codeword symbol with unit power, Igg is the
interference from other BSs, and w is CN (0, N0). The channel
is considered to be a block fading channel model where the
channel coefficient (h0) remains constant for a block of L
consecutive symbols and changes to an independent realization
in the next block. The interference term Igg is the sum of
interference signals received from all non-serving BSs and is
given by

Igg =

∞∑
i=1

√
Phir

−η/2
i si, (2)

where P is the transmit power (assumed equal across BSs), hi
is the block-fading channel gain from non-serving BSi to the
user, ri is the distance between non-serving BSi and the user,
and si is the codeword symbol transmitted by non-serving
BSi.

It is worth noting that r0 is random in general, but for
simplicity it is assumed to be fixed in this work to study
the performance for different system parameters. We assume
that there is no interfering (non-serving) BS within a circle of
radius r0 about the user, which is known as the interference
exclusion region [7]. To study the average performance of
such a network over different geometries, the BS locations
are often modeled by a repulsive point process (PP) [7]. For
tractability, a PPP is commonly considered as an accurate
approximation for several types of intractable repulsive PP,
and the reader is referred to [7] for more details. Hence, in
this work, we assume that the BSs locations follow a PPP with

r0

r1
r2

r3r4r5

r6

r7
r8 r9

Interference
exclusion
region

Fig. 1: A realization of a cellular network with exclusion
region of r0 between the user of interest and the serving BS,
where BSs are randomly distributed with distances ri > r0 to
the user.

an interference exclusion region of radius r0 and intensity λ
BS/km2.

Studying the network performance (Capacity, BER, etc.)
under this model is rather difficult. To remedy this, an approx-
imation is commonly considered in the literature, wherein the
interference is modeled as conditionally Gaussian, conditioned
on geometry (r0 and ri) [7]. Thus, the simplified interference
representation is a randomly scaled Gaussian given by:

Ieq =
√
BG, (3)

where G is CN (0, 1), and B > 0 is the power of interference,
and it is a random variable independent of G but is dependent
on the network geometry, and has the following Laplace
transform (LT)

LB(z) = exp

{ ∞∑
k=1

akz
k

}
, (4)

where the coefficients ak are given by

ak = (−1)k2πλr20

(
P

rη0

)k E
{
|s0|2k

}
(ηk − 2)k!

. (5)

For η = 4, the LT expression provided in (4) can be simplified
to

LB(z) = exp

(
−πλ
√
zP arctan

(√
zP

r20

))
. (6)

Using the approximation in (3), the simplified model becomes

y = h0
√
Pr
−η/2
0 s0 + Ieq + w. (7)

We assume that the serving BS sends information to the user
using codewords of length n symbols, and that the codewords
have to be decoded correctly with probability (1 − ε) where
ε is the frame error probability. The goal of this work is to
study the average coding rate (in bits per transmission) and
outage probability of this network under these considerations.
The average coding rate is discussed in the next section.



III. AVERAGE CODING RATE IN THE FINITE
BLOCKLENGTH REGIME

In this section, the average coding rate in the finite block-
length regime is derived. We denote the average coding rate
of the network given blocklength n and frame error rate ε by
R̄n,ε. Assuming channel knowledge is available at the BSs,
the signal to interference and noise ratio (γ) is defined as

γ =
Pr−η0 |h0|2

N0 + B
=

|h0|2
N0

Pr−η0

+ B
Pr−η0

=
|h0|2

γo + ζ
(8)

where γo =
Pr−η0

N0
and ζ = B

Pr−η0

. The average capacity of the
large-scale network in the infinite blocklength regime is given
by [7]

C̄∞,0(γo) = Eh0,ζ ,
{

log2(1 +
|h0|2

γo + ζ
)
}
,

To derive the average coding rate in the finite blocklength
regime, i.e., where n < ∞ and ε > 0, we rely on a result
in [16] concerning the maximum coding rate of a block fading
channel in the finite blocklength regime, which is introduced
in the following lemma.

Lemma 1. ( [15]) For a block fading channel with a signal-
to-noise ratio α = P

N0
, blocklength n, a target frame error

rate ε satisfying 0 < ε < 0.5, and channel gain coefficient H
, the maximum coding rate is approximated as

Rn,ε(H,α) ≈ C∞,0(H,α)−
√
V (H,α)Q−1(ε)√

n
+ o(1/

√
n),

(9)
where C∞,0(H,α) = log2(1 + |H|2α) is the AWGN capacity
in the infinite blocklength regime, V (H,α) is the channel
dispersion given by

V (H,α) =
|H|2α

2

|H|2α+ 2

(|H|2α+ 1)2
log2

2(e), (10)

and Q(·) is the Q-function.

In what follows, we treat this approximation as the true
maximum coding rate, since this approximation is accurate
enough for practical values of n as demonstrated in [16]. To
extend this to the average coding rate expression of the large-
scale network in the finite blocklength regime, |H|2α should
be replaced by γ defined in (8), followed by averaging with
respect to γ, to obtain the average capacity of the large-scale
network in the infinite blocklength regime (C̄∞,0(γo)) and the
average channel dispersion (V̄ (γo)) which are discussed in the
next subsections. This extension is valid since the Gaussian
approximation is considered for the aggregate interference.
A. Average Capacity in the Infinite blocklength Regime for

large-scale network
The average capacity of the large-scale network in the

infinite blocklength regime with channel state information
available at the BSs is given by the following lemma [7].

Lemma 2. For a large-scale network topology with an aver-
age power constraint block-fading Rayleigh channel, signal to
noise ratio γo and interference power ζ, the average capacity
is given by:

C̄∞,0(γo) =

∫ ∞
0

exp
(
− 2c − 1

γo

)
Lζ
{

(2c − 1)
}
dc (11)

This result was derived in [7] to which the reader is referred
for the proof. Next, we derive the average channel dispersion.

B. Average Channel Dispersion for a Large-Scale Network

The average channel dispersion for the large-scale network
is given by

V̄ (γo) = E {V (γ)} = E

{
γ

2

γ + 2

(γ + 1)2
log2

2(e)

}
= E

{
log2

2(e)

2

(
1− 1

(γ + 1)2

)}
=

∫ ∞
0

(1− FV (v))dv (12)

where FV (v) is the cumulative density function (CDF) of
the channel dispersion V (γ), and the last step follows as an
application of Fubini’s theorem [20]. The following lemma
expresses V̄ (γo).

Lemma 3. The average channel dispersion E{V (γ)} is given
by

V̄ (γo) =

∫ 1
2 log2

2(e)

0

exp

(
− 1

γo

(√
1

1− 2v
log2

2(e)

− 1

))

×Lζ

{√
1

1− 2v
log2

2(e)

− 1

}
dv,

(13)

where Lζ{·} is given in (4) and ζ = B
Pr−η0

.

Proof. We start by expressing the CDF of V (γ) for a given ζ
as follows:

FV (v|ζ) = P(V (γ) < v|ζ)

= P

(
log2

2(e)

2

(
1− 1

(γ + 1)2

)
< v

)
= P

(
γ <

√
1

1− 2v
log2

2(e)

− 1

)

= P

(
|h0|2
1
γo

+ ζ
<

√
1

1− 2v
log2

2(e)

− 1

)

= P

(
|h0|2 <

(
1

γo
+ ζ

)(√
1

1− 2v
log2

2(e)

− 1

))

= 1− exp

(
−
(

1

γo
+ ζ

)(√
1

1− 2v
log2

2(e)

− 1

))
, (14)

where the last step follows from the Rayleigh distribution of



h0. Averaging with respect to the interference term ζ yields

Eζ{FV (v)}

= Eζ

{
1− exp

(
−
(

1

γo
+ ζ

)(√
1

1− 2v
log2

2(e)

− 1

))}

= 1− exp

(
− 1

γo

(√
1

1− 2v
log2

2(e)

− 1

))

× Lζ

{√
1

1− 2v
log2

2(e)

− 1

}
. (15)

By substituting (15) in (12), we obtain

V̄ (γo) =

∫ ∞
0

(1− FV (v))dv

=

∫ 1
2 log2

2(e)

0

exp

(
− 1

γo

(√
1

1− 2v
log2

2(e)

− 1

))

× Lζ

{√
1

1− 2v
log2

2(e)

− 1

}
dv. (16)

This proves the statement of the lemma.

Using Lemma 1,2,3, we obtain the following theorem which
expresses the average coding rate of the large-scale network
in the finite blocklength regime.

Theorem 1. The average coding rate of the large-scale
network modeled by (1) with blocklength n, target frame error
rate ε, and signal-to-noise ratio γ0 =

r−η0 P
N0

is given by

R̄n,ε(γo) = C̄∞,0(γo)−
√
V̄ (γo)Q

−1(ε)√
n

+ o(1/
√
n), (17)

where C̄∞,0(γo) and V̄ (γo) are as defined in (11) and (13),
respectively.

Proof: The result follows by averaging (9) with respect
to h0 and B, and using (11) and (13).

To achieve this rate, the transmitter uses a code of length
n, and adapts the rate for each transmission block depending
on the channel state h0, which is assumed to be known at
the transmitter. Note that this reproduces the result in the
infinite blocklength regime when n → ∞ since terms vanish
as n → ∞. Next, we discuss the outage probability in the
finite blocklength regime.

IV. OUTAGE PROBABILITY

Outage is defined as the event where the channel capacity is
lower than a rate threshold corresponding to the target coding
rate. In the infinite blocklength regime, this rate threshold can
be converted to an SINR threshold. The outage probability
of a large-scale network in the infinite blocklength regime is
given in [7] as

O(r0, T ) = 1− exp

(
−TN0r

4
0

P

)
Lζ(T ) (18)

where T is the SINR threshold on γ, i.e., an outage occurs
when γ is less than T . The reader is referred to [7] for
complete proof.

In the infinite blocklength regime, when outage occurs, the
channel is not guaranteed to support reliable communication
at the target rate, where reliability is defined in the sense of a
vanishingly small error probability. To extend this to the finite
blocklength regime, we define outage in the finite blocklength
regime as follows. We say that the channel is in outage when
it is not guaranteed to support transmission at the target rate at
the desired frame error rate ε and blocklength n. This occurs
when the average coding rate in a finite blocklength regime
drops below the rate threshold.

For a large-scale network in the finite blocklength regime,
the outage probability can be calculated using (17) as follows.
Let R = log2(1 + T ) be the target rate. Then the outage
probability is given by

O(r0, T, n, ε)

= P(Cn,ε(γ) < R)

= P

(
C∞,0(γo)−

√
V (γ)

n
Q−1(ε) + o

(
1√
n

)
< R

)
.

(19)

Let

a =

√
log2

2(e)

2n
Q−1(ε) and b = o

(
1√
n

)
. (20)

Then, we can write

O(r0, T, n, ε)

= P

(
log2(1 + γ)− a

√(
1− 1

(1 + γ)2

)
+ b < R

)
. (21)

Noting that
√(

1− 1
(1+γ)2

)
is in [0, 1], we conclude that

Ol(r0, T, n, ε) ≤ O(r0, T, n, ε) ≤ Ou(r0, T, n, ε), (22)

where the lower bound is given by

Ol(r0, T, n, ε) = P (log2(1 + γ) + b < R)

= 1− exp

(
− (2R−b − 1)

γo

)
Lζ(2R−b − 1),

(23)

and the upper bound is given by

Ou(r0, T, n, ε) = P (log2(1 + γ)− a+ b < R)

= 1− exp

(
− (2R+a−b − 1)

γo

)
Lζ(2R+a−b− 1).

(24)

Neglecting b = o
(

1√
n

)
in (23) which is small for practical

values of n (n > 100 e.g.), we can see that the outage
probability lower bound coincides with the outage probability
in the infinite blocklength regime (18), confirming that the



outage probability in the finite blocklength regime is larger
than that in the infinite blocklength regime. On the other

hand, by observing the term
√(

1− 1
(1+γ)2

)
, we can see

that this term quickly approaches one as γ grows. This
indicates that the upper bound Ou(r0, T, n, ε) provides a good
approximation for the outage probability when γ is reasonably
large, as stated next.

Theorem 2. The outage probability of the large-scale network
modeled by (1) with blocklength n, target frame error rate ε,
and signal-to-noise ratio γ0 =

r−η0 P
N0

can be approximated as

O(r0, T, n, ε) ≈ Ou(r0, T, n, ε). (25)

Proof: This follows by approximating
√(

1− 1
(1+γ)2

)
by 1 which is a good approximation for moderate/large values
of γ.

Next, the average coding rate and the outage probability
expressions are evaluated for different system parameters.

V. NUMERICAL RESULTS

Four main parameters affect the average coding rate of
the large-scale network: The distance between the user and
the serving BS (r0) which also determines the interference
exclusion region, the density of BSs per square kilometer λ,
the blocklength n, and the target frame error probability ε. The
effect of these parameters on the average coding rate and the
outage probability is discussed next.

The blocklength n depends on the application scenario.
Recent IoT applications use short packets in the range of
512 bits up to 4096 bits according to [21]. Moreover, the
URLLC systems require low frame error probabilities (ε). The
average coding rate of the network is investigated for a range
of n and ε in Fig. 2, where n takes values from the set
{128, 2048} and ε takes values from the set {10−2, 10−8}.
As shown in Fig. 2, at a specific target frame error probability,
the average coding rate increases as the n increases moving
towards the average capacity in the infinite blocklength regime.
However, the average coding rate decreases as the target
frame error probability decreases. Moreover, the impact of n
becomes more significant if the target frame error probability
is small, which is the requirement of URLLC which makes
the expression more practical.

Fig. 3 shows the outage probability verses r0 at (a) n = 128
and (b) n = 2048 and λ = 1 and 9 BS/km2, with
ε = 10−2 and 10−8. The figure shows the Monte Carlo
simulated outage probability, the approximation in (25), and
the outage probability in the infinite blocklength regime (18).
It shows that the approximate outage probability expression in
(25) is fairly accurate, providing a convenient approximation
for broad range of n, λ, ε. The figure shows that the outage
probability increases as the target frame error probability
decreases because the term

√
V
nQ
−1(ε) increases as the ε

decreases. Hence, the average coding rate decreases and outage
probability increases. However, at a specific ε, as the block-

Fig. 2: The average coding rate of the large-scale network
vs. γo for blocklengths n where n = 128, 2048 at frame
error probabilities ε = 10−2, 10−8 with λ = 1 BS/Km2 and
r0 = 250 m.

length increases, the outage probability decreases towards the
outage of the infinite blocklength regime.

Both figures 2 and 3 show how the results based on
the capacity expression for the infinite blocklength regime
overestimate performance, whereas the average coding rate
and outage probability results in this paper provide an accurate
estimate.

The effect of λ and r0 on average coding rate is shown in
Fig. 4, which shows the average coding rate at different BSs
densities λ = 1, 3, 9 BS/km2 at n = 128 and ε = 10−5. The
average coding rate decreases as λ increases since increasing
λ increases interference. Moreover, at a specific value of λ,
the average coding rate also decreases as r0 increases since
the strength of the desired signal decreases.

VI. CONCLUSION

We have studied the average coding rate in the finite
blocklength regime for a large-scale network using stochastic
geometry, and provided a valid approximation for the outage
probability of the system. Moreover, we evaluated the per-
formance metrics as a function of the network parameters.
The results show that existing results that use the capacity
expression in the infinite blocklength regime for studying
performance overestimate performance, especially when the
blocklength is small or the desired frame error rate is small,
which are important requirements of URLLC, IoT, and MTC.
The provided expressions can be used to study large-scale
networks in the presence of stringent delay or reliability
constraints, such as IoT networks, MTC, etc. This work will
further be extended to specific communication technologies
like OMA, NOMA,..., etc.
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