
Multi-Agent Reinforcement Learning Based Coded
Computation for Mobile Ad Hoc Computing
Baoqian Wang1 Junfei Xie2 Kejie Lu3 Yan Wan4 Shengli Fu5

Abstract—Mobile ad hoc computing (MAHC), which allows
mobile devices to directly share their computing resources,
is a promising solution to address the growing demands for
computing resources required by mobile devices. However,
offloading a computation task from a mobile device to other
mobile devices is a challenging task due to frequent topology
changes and link failures because of node mobility, unstable and
unknown communication environments, and the heterogeneous
nature of these devices. To address these challenges, in this
paper, we introduce a novel coded computation scheme based on
multi-agent reinforcement learning (MARL), which has many
promising features such as adaptability to network changes,
high efficiency and robustness to uncertain system disturbances,
consideration of node heterogeneity, and decentralized load allo-
cation. Comprehensive simulation studies demonstrate that the
proposed approach can outperform state-of-the-art distributed
computing schemes.

I. INTRODUCTION

In recent years, we have witnessed the significant growth
of mobile applications that are based on advanced artifi-
cial intelligence and deep-learning models, such as face
recognition, object detection and natural language process-
ing. These applications stimulate the demands for greater
computing resources, which may be difficult to support in
one device. To address this need, one promising solution is
to offload computation-intensive tasks from resource-limited
mobile devices to remote clouds or nearby edge computing
facilities [1]. Nevertheless, this solution can suffer from high
transmission delays and becomes infeasible when there are
no communication infrastructures nearby, e.g., in rural areas
or emergencies. Local computing is thus essential for delay-
sensitive applications, or when there is no or weak wireless
Internet connection to remote clouds and when nearby edge
computing devices are not available.

Mobile ad hoc computing (MAHC) [2], [3] is coined
recently to provide local computing services, by enabling re-
source sharing among mobile devices. However, the research
on MAHC is still in its infancy. Existing studies have mainly
considered smartphones [4] or ground vehicles [5] as the main
resources. A few recent studies attempted to move computing

Baoqian Wang is with the Department of Electrical and Computer Engi-
neering, University of California, San Diego, and San Diego State University,
San Diego, CA, 92182 (e-mail: bawang@ucsd.edu).

Junfei Xie is with the Department of Electrical and Computer En-
gineering, San Diego State University, San Diego, CA, 92182 (e-mail:
jxie4@sdsu.edu). Corresponding author.

Kejie Lu is with the Department of Computer Science and Engineering,
University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico, 00681, e-
mail: (kejie.lu@upr.edu).

Yan Wan is with the Department of Electrical Engineering,
University of Texas at Arlington, Arlington, Texas, 76019 (e-mail:
yan.wan@uta.edu).

Shengli Fu is with the Department of Electrical Engineering, University of
North Texas, Denton, Texas, 76201 (e-mail: Shengli.Fu@unt.edu).

resources up to the unmanned aerial vehicles (UAVs) and
create a networked airborne computing system [6], [7] that
allows UAVs to share resources between each other through
direct flight-to-flight communications. This can be considered
as one type of MAHC, but studies along this direction are still
very limited.

Offloading a computation task from a mobile device to
other mobile devices nearby is challenging, due to the mobil-
ity and heterogeneity of these devices. Particularly, devices’
movement can cause frequent topology changes and com-
munication instability/failures. Furthermore, mobile devices
may not have an explicit knowledge of its communication
environment and the computing powers of other devices. In
this paper, we aim to address these challenges, by exploring
coded computation [8] and multi-agent reinforcement learning
(MARL) [9].

Coded computation is a promising technique for improving
the resilience of distributed computing systems to uncertain
system disturbances, such as communication bottlenecks,
node/link failures, slow-downs of computing nodes, etc.
Different coded computation tasks have been explored for
systems with homogeneous computing nodes, such as matrix-
vector multiplication [10], gradient descent [11], multivariate
polynomials [12], etc. Coded computation for heterogeneous
systems has also been recently investigated. For example,
[13] introduced a Heterogeneous Coded Matrix Multiplication
(HCMM) scheme that maximizes the expected computing
results received by the master node. Our research group de-
veloped a batch processing based coded computation (BPCC)
scheme [14], [15], which allows partial results to be returned
and is highly efficient and robust to uncertain system dis-
turbances. However, all these works assume static networks
and adopt simplified communication and computing models.
Recently, a coded cooperative computation protocol (C3P)
[16] was proposed that considers mobile computing systems,
and allocates tasks in a dynamic and adaptive manner based
on the time lag between two consecutive tasks. However, this
method requires explicit knowledge of the delay model.

MARL has been widely used for applications that in-
volve interactions among multiple agents, such as multi-robot
control, multiplayer games, Internet of Things, to name a
few. Although multiple studies apply RL/MARL to solve
computation offloading or resource allocation problems, e.g.,
[17], [18], the use of MARL for MAHC, especially with
coded computation, has not been investigated.

In this paper, we consider distributed computing over a
MAHC system that consists of multiple mobile and het-
erogeneous computing devices, with unknown computing
power and communication environment. As a preliminary

ar
X

iv
:2

10
4.

07
53

9v
1

 [
cs

.L
G

]
 1

5
A

pr
 2

02
1

investigation, we focus on a classical distributed computing
task, the matrix-vector multiplication problem, which is a
building block of many computation tasks and machine
learning algorithms. Based on this task, our main contribution
is an innovative MARL-based coded computation framework
with the following key features: 1) adaptability to time-
varying communication changes caused by node mobility;
2) capability to address node heterogeneity; 3) applicabil-
ity for any MAHC or mobile edge/fog computing (MEC)
systems without having to know their communication or
computing characteristics; 4) high computational efficiency
by applying the multi-agent deep deterministic policy gradient
(MADDPG) [19], the state-of-the-art MARL algorithm, and
adopting the batch processing procedure proposed in our pre-
vious studies [14], [15]; and 5) decentralized load allocation
that relieves the computation burden at the master node. To
demonstrate these promising features, we conduct simulation
studies on a networked airborne computing system.

In the rest of this paper, Sec. II describes the computing
system, distributed computing schemes, and the optimization
problem. Sec. III transforms the original problem into a
MARL problem and then presents a MADDPG- and batch
processing based solution. Simulation results are presented in
Sec. IV, followed by the conclusion in Sec. V.

II. PROBLEM DESCRIPTION

In this section, we first describe the computing system
and the computation tasks considered in this study, and
then present the uncoded and coded distributed computing
schemes. Finally, we formulate the optimization problem.

A. Computing System

Consider a MAHC system that consists of multiple mo-
bile devices with different computing powers. These devices
can talk to each other through wireless communication.
Suppose one of the devices receives/has a sequence of K
matrix-vector multiplication tasks to complete, denoted as
{Ax1,Ax2, . . . ,AxK}, where A ∈ Rp×m is a pre-stored
matrix and xj ∈ Rm×1, j ∈ [K] := {1, 2, . . . ,K} are input
vectors. Due to limited computing power, this device, often
called the master node, offloads the computation tasks to its N
neighbors, known as the worker nodes, in a sequential order,
with task j being offloaded only after the previous task j− 1
has been completed.

Offloading a computation task j is achieved by first par-
titioning the task into N subtasks. Each worker node then
executes one subtask and returns the result to the master node
after completion. The master recovers and outputs the value
of task j, i.e., Axj , after receiving sufficient results and then
moves on to the next task. In the following subsection, we
describe how the traditional uncoded and coded computation
schemes partition and allocate a task.

B. Distributed Computing Schemes

1) Uncoded Scheme: The traditional uncoded scheme par-
titions a matrix-vector multiplication task Axj by decompos-
ing matrix A row-wise into N non-overlapping submatrices
{A1,j ,A2,j , . . . ,AN,j}, where Ai,j ∈ R`i,j×m. Each worker
node i computes subtask Ai,jxj , i ∈ [N]. The master

node is able to recover Axj after receiving results from all
the worker nodes, by simply concatenating the results, i.e.,
Axj = [A1,jxj ;A2,jxj ; . . . ;AN,jxj].

One major drawback of this scheme is that the master
node cannot recover Axj until all results from the worker
nodes have been received. Because of this, the efficiency of
the uncoded scheme is bounded by the slowest worker node,
making it inefficient when uncertain system disturbances are
prominent, e.g., in a MAHC system.

2) Coded Scheme: The coded scheme overcomes the
drawback of the uncoded scheme by introducing redundant
computations using the coding theory. In particular, for each
task j, the coded scheme first encodes A into a larger matrix
Âj ∈ Rqj×m with additional rows, i.e., qj > p, by applying
the equation below

Âj = GjA. (1)

where Gj ∈ Rqj×p is an encoding matrix with the property
that any matrix formed by any p rows of Gj has full rank.
With Âj , the coded scheme then follows a similar procedure
to partition and allocate the task. Particularly, worker node i
executes subtask Âi,jxj , where Âi,j ∈ R`i,j×m, i ∈ N is a
submatrix of Âj , and

∑N
i=1 `i,j = qj .

To recover the final result Axj , the master node waits until
sufficient, but not all, results are received. Specifically, let ŷj
be the results received by the master node by a certain time,
which satisfies ŷj = ĜjAxj , where Ĝj is a submatrix of
Gj . Axj can then be recovered when |ŷj | ≥ p via:

Axj = (Ĝ>j Ĝj)
−1Ĝ>j ŷj , (2)

C. Optimization Problem

In distributed computing schemes, the load numbers `i,j
determine the amount of workloads assigned to each worker
node. As worker nodes have different computing powers and
the time required by each node to transmit the result is also
different and time-varying, it is crucial to choose a proper
load number `i,j for each worker node i ∈ [N] and each task
j ∈ [K]. To determine the optimal load numbers `∗i,j , we
formulate an optimization problem to minimize the expected
task completion time.

Denote the time required by worker node i to complete the
j-th task, i.e., Âi,jxj with Âi,j ∈ R`i,j×m, as Ti,j . Then Ti,j
can be captured by the following equation:

Ti,j ≈ Ti,comm(xj) + Ti,comp(Âi,j ,xj) + Ti,comm(Âi,jxj)
(3)

where Ti,comm(xj) is the time spent to send xj from the
master node to the worker node i, Ti,comp(Âi,j ,xj) is the
time spent to compute subtask Âi,jxj , and Ti,comm(Âi,jxj)
is the time spent to send the computation result back to the
master node. Note that Ti,j is a random variable reflective
of various environmental and system uncertainties. Explicit
communication and computation models are not available to
the nodes.

With Ti,j , we can then describe the task completion time
for each task j ∈ [K] as follows:

Tj = min
t
{t | Rj(t) ≥ p} (4)

where Rj(t) =
∑N
i=1 `i,j1Ti,j≤t is the total number of rows

of inner product results for task j that the master node has
received by time t. 1 is the indicator function [20]. Finally, the
optimization problem to solve can be formulated as follows,

minimize
`i,j ,∀i∈[N],∀j∈[K]

E

 K∑
j=1

Tj

 (5)

subject to `i,j ∈ Z+,∀i ∈ [N],∀j ∈ [K]
N∑
i=1

`i,j ≥ p,∀i ∈ [N],∀j ∈ [K] (6)

III. MAIN RESULTS

In this section, we solve the optimization problem in (5),
by first transforming it into a MARL problem and then
developing a MADDPG- and batch processing based solution.

A. MARL-based Formulation

To solve the optimization problem in (5), we provide
a MARL-based formulation. In particular, the N worker
nodes are regarded as the agents that learn to achieve the
optimization goal in (5) by interacting with the environment.
The state of each agent i at time t is denoted as si(t) =
[di(t),d−i(t),vi(t),v−i(t),vm(t)]> ∈ Si, where di(t) and
d−i(t) represent the distance of agent i to the master node and
the distances of all agents except agent i to the master node
at time t, respectively. vi(t), v−i(t), and vm(t) represent the
velocity of agent i, velocities of all agents except agent i, and
velocity of the master node at time t, respectively. Si is the
corresponding state space.

Upon start of a new task j, each agent i decides the compu-
tation load it will execute for this task. This differs from the
traditional load allocation mechanisms where the master node
decides the computation load for each worker node (agent).
Now denote the time when the master node sends task j to the
agents as tj , we then define the action of each agent i taken at
time tj as ai(tj) = `i,j ∈ Ai, where Ai is the corresponding
action space. It is reasonable to set Ai = [0, p], as the total
computation load required for completing task j is p. Note
that, during the execution of task j, agent i does not take
any actions, and the next action is taken when the next task
j + 1 starts. The transition of the agent’s state from si(tj)
to si(tj+1) is determined by the mobility model of the agent
described by si(tj+1) = fi(si(tj)), and tj+1 = tj+Tj , where
Tj is the time spent to complete task j. Here we assume the
velocities of all agents and the master node do not change
during the execution each task j.

After each transition, agent i receives a reward
ri(s(tj),a(tj)) : S × A 7→ R, where s(t) =
(s1(t), s2(t), . . . , sN (t)) ∈ S :=

∏
i∈[N] Si and a(t) =

(a1(t), a2(t), . . . , aN (t)) ∈ A :=
∏
i∈[N]Ai are the joint

state and action for all agents, respectively, and S, A are the
corresponding joint state and action spaces. Here the reward
function is defined as ri(s(tj),a(tj)) = −Tj − c1∑N

i `i,j≤p,
which takes the constraint (6) into consideration and c is the
weight for the penalty term. Given state si, each agent then
aims to choose a deterministic policy, specified by function

πi(si) : Si 7→ Ai, such that the expected cumulative discount
reward given by

V π
i (s) := E s(tj)∼f

a(tj)∼π

[K∑
j=1

γj−1ri(s(tj),a(tj))|s(t1) = s

]
is maximized. In the above equation, γ is a discount factor,
π = (π1, π2, . . . , πN) is the concatenated policy of all agents,
and f = (f1, f2, . . . , fN) is the concatenated mobility models
of all agents. V π

i (s) is also known as the value function.
Alternatively, an optimal policy π∗i for agent i can be obtained
by maximizing the action-value function:

Qπ
i (s,a) :=E s(tj)∼f

a(tj)∼π

[K∑
j=1

γj−1ri(s(tj),a(tj))|

s(t1) = s,a(t1) = a

]
(7)

and setting π∗i (ai|si) ∈ argmaxai maxa−i Q
∗
i (s,a), where

Q∗i (s,a) := maxπ Q
π
i (s,a) and a−i denotes the actions of

all agents except i.

B. MADDPG- and Batch-Processing based Solution

To solve the above MARL problem, we apply an advanced
MARL algorithm proposed recently, called multi-agent deep
deterministic policy gradient (MADDPG) [19]. The MAD-
DPG is an off-policy algorithm that extends the deep deter-
ministic policy gradient (DDPG) method to multiple agents.
For each agent i, it uses four neural networks to approximate
its policy πi(si; θπi), action-value function Qπ

i (s,a; θQi),
target policy π′i(si; θ

′
πi), and target action-value function

Qπ′

i (s,a; θ′Qi), respectively, where π′ = (π′1, π
′
2, . . . , π

′
N) is

the concatenated target policy of all agents. A replay memory
denoted by D is used to store the transitions {(s,a, r, s′)},
where r = [r1(s,a), r2(s,a), . . . , rN (s,a)] and s′ = f(s).
In each training iteration, a mini-batch Bi is sampled from
the replay memory D and used to learn the parameters for
agent i. In particular, the parameters θQi for the action-value
function are updated by minimizing the temporal-difference
error given as follows:

J(θQi)

=
1

|Bi|
∑

(s,a,s′,r)∈Bi

(
Lπ′

i (s′, ri)−Qπ
i (s,a; θQi)

)2
(8)

where Lπ′

i (s′, ri) = ri(s,a) + γQπ′

i (s′,π′(s′)). The policy
parameters θπi are updated using gradient ascent based on
the policy gradient theorem, with the gradient provided as
follows [21]:

∇θπiJ(θπi)

≈ 1

|Bi|
∑

(s,a,s′,r)∈Bi

∇θπiπi(si; θπi)∇aiQ
π
i (s,a) . (9)

The parameters for the target policy and the target action-
value function are updated via Polyak averaging using the
following equations:

θ′πi ← τθ′πi + (1− τ)θπi
θ′Qi ← τθ′Qi + (1− τ)θQi ,

(10)

where τ ∈ (0, 1) is a hyperparameter. The procedure of
MADDPG is summarized in Algorithm 1.

Algorithm 1: MADDPG Algorithm

// Initialize parameters
1 Initialize θπi , θQi , θ

′
πi , θ

′
Qi
,∀i ∈ [N]

2 for iteration = 1 : max iteration do
// Collect transitions

3 for k = 1 : max episode number do
4 for j = 1 : K do
5 For each agent i, select

ai(tj)=πi(si(tj); θπi).
6 Execute joint action a(tj) and receive new

state s′(tj+1) and reward r(tj+1).
7 Store (s(tj),a(tj), r(s(tj),a(tj)), s′(tj+1))

in replay bufferD.

8 Sample a random mini-batch Bi for each agent
i,∀i ∈ [N].
// Update parameters

9 for i = 1 : N do
10 Update θQi by minimizing the

temporal-difference error in (8).
11 Update θπi using gradient ascent, with the

gradient provided in (9).
12 Update θ′πi and θ′Qi using (10).

To further improve the computational efficiency, we ap-
ply the batch processing procedure developed in our pre-
vious studies [14], [15]. In particular, we let each worker
node i further divide matrix Âi,j into a set of submatrices
{Âi,j,k}

wi,j
k=1 row-wise, namely batches, where each submatrix

Âi,j,k has bi,j number of rows and wi,j = d `i,jbi,j
e is the

total number of batches. Note that the last batch has a size
of `i,j − (wi,j − 1)bi,j . The worker node then multiples
the input vector xj with each batch one by one and sends
the partial result back to the master once available. In [14],
[15], we have shown nice properties of this batch processing
procedure in improving system’s efficiency and the resilience
to uncertain system disturbances through both theoretical and
experimental studies. Algorithm 2 summarizes the procedures
followed by the master and worker nodes during the execution
of computation tasks.

IV. SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate
the performance of the proposed MADDPG- and batch-
processing based algorithm. As an illustration, we consider
a MAHC system formed by multiple UAVs. All experiments
are run on an Alienware Desktop with 32GB memory, 16-
cores CPU with 3.6GHz. In the rest of the section, we first
describe the simulation settings and then show the results.

A. Simulation Settings

1) Environment Description: We consider a MAHC sys-
tem that consists of multiple UAVs flying at the same altitude
[22]. Each UAV is equipped with a micro-computer with
different computing powers. The communication between two

Algorithm 2: Batch Processing Based Coded Scheme
Input: x1,x2, . . . ,xK
Output: Ax1,Ax2, . . . ,AxK
// Master node:

1 for j = 1 : K do
2 ŷj ← []
3 Broadcast xj to all worker nodes.
4 do
5 Listen to the channel and collect results

Âi,j,kxj from the worker nodes.
6 ŷj ← [ŷj ; Âi,j,kxj]
7 while |ŷj | < p
8 Send acknowledgements to all worker nodes.
9 Axj ← (Ĝ>j Ĝj)

−1Ĝ>j ŷj
10 return Axj

// Worker node i:
11 for j = 1 : K do
12 Determine `i,j by applying the policy trained

using Algorithm 1.
13 Upon receiving xj :
14 Select `i,j rows from Â to construct Âi,j .
15 Divide Âi,j into batches Âi,j,k, k ∈ [wi,j]
16 for k = 1 : wi,j do
17 if Acknowledgement received then
18 break

19 Compute Âi,j,kxj .
20 Send Âi,j,kxj back to the master node.

UAVs is achieved through directional antennas for extended
communication range and higher bandwidth. Assume the
directional antennas are always aligned during the movement,
which can be achieved by the control algorithms developed
in [22]. We can then describe the time to transmit a matrix
X ∈ Rm1×n1 between two UAVs as Tcomm(X) = m1×n1×u

C ,
where u (bits) is the average size of the elements in matrix X.
C = Wlog2(1 +

S
Noise) (bits/sec) is the data rate, according

to the Shannon’s theory, where W (Hz) is the communication
bandwidth between the two UAVs, Noise (Watts) is the noise
power, which is assumed to be constant. S (Watts) is the
signal power that can be modeled by S = 10

(Sd−30)

10 , with
Sd = Pt+20 log10(λ)−20 log10(4π)−20 log10(d)+Gl|dBi+
ω. Here, Pt (dBm) is the transmitting power, λ is the wave
length, Gl|dBi is the sum of the transmitting and receiving
gains, ω is Gaussian noise with zero mean and variance σ,
and d is the distance between the two UAVs [22].

To capture the computation time, we adopt the modeling
technique used in many recent studies [13], [23]. Particularly,
we assume the time Tcomp(A,x) to compute a matrix-vector
multiplication task Ax with A ∈ R

`×m and x ∈ R
m×1

follows an exponential distribution defined by:

P [Tcomp(A,x) ≤ t] = 1− e−
β
` (t−α`) (11)

where t ≥ α`. β and α are straggling and shift parameters,
respectively, and both β and α are positive constants.

To describe the mobility of the UAVs, we here adopt
a simple model: p(t′) = p(t) + v(t)(t′ − t), where p(t)
represents the position of a UAV at time t, and t′ > t. In
simulations, we assume the velocity v(t) of each UAV is
constant, i.e., v(t) = v.

2) Distributed Computing Schemes: For comparison, we
consider the following three distributed computing schemes
as the benchmarks:

• Uniform Uncoded: This is an uncoded computation
scheme which divides the computation loads equally, i.e.,
`i =

p
N , ∀i ∈ [N].

• Load-Balanced Uncoded [24]: This is an uncoded com-
putation scheme which divides the computation loads
according to the computing capabilities of the worker
nodes. In particular, the computation load assigned to
each worker node i is inversely proportional to the
expected time for this node to compute an inner product,
i.e., `i ∝ (βi

αiβi+1) and
∑N
i=1 `i = p.

• HCMM [24]: This is a state-of-the-art coded scheme
that computes the load number by `i = p

hλi
, where

λi is the positive solution to eβiλi = eαiβi(βiλi + 1),
h =

∑N
i=1

βi
1+βiλi

, and βi, αi are the straggling and shift
parameters for worker node i, respectively.

Note that both load-balanced uncoded and HCMM schemes
require explicit knowledge of the nodes’ computing capabil-
ities, which is not required by our method.

3) Computation Scenarios: We consider three computation
scenarios described as follows:

• Scenario 1: N = 3, p = 6000.
• Scenario 2: N = 4, p = 8000.
• Scenario 3: N = 5, p = 10000.

In all scenarios, the total number of tasks is set to K = 30,
and the size of each task xj is m = 10000. The initial
position of each UAV is sampled uniformly from the range
[−100, 100]2, and its velocity is randomly selected from the
range [−10m/s, 10m/s]2 at each episode. The computing
parameter βi of each worker node i is randomly sampled
from the range [104, 105] and αi is set to αi = 1

βi
. The

communication model is configured by setting W = 104,
Noise = 1.1× 10−12, Sd = 6− 20log10(d), and σ = 1.

In our MADDPG- and batch processing based algorithm,
the learning rates are set to α = 0.01 and γ = 0.95. To
approximate the policies and action-value functions, we use
neural networks with four fully connected layers. Each hidden
layer has 64 ReLU units. At the output layer, Sigmoid units
are used by the policy networks, and linear units are used by
the action-value networks. The weight for the penalty term in
each reward function is set to c = 200.

B. Experimental Results

In this subsection, we first show the effectiveness of our
algorithm and then investigate the impact of an important
parameter, batch size bi,j , on the computing performance.
Comparison results with the benchmark schemes are pre-
sented at the end.

1) Effect of Training: Fig. 1 shows the training reward of
our algorithm in the three scenarios. Each value is obtained
by averaging the total rewards of all agents for every 250
iterations over 1000 episodes. We can see that in all scenarios,
the average total reward increases and finally converges with
the increasing numbers of training iterations.

Figure 1. Training reward of our algorithm in different scenarios.

2) Impact of Batch Size: We investigate the impact of batch
size bi,j on the performance of our algorithm, by varying bi,j .
For each value of bi,j , we run Algorithm 2 to measure the
task completion times, with load numbers `i,j determined by
the policies trained using Algorithm 1. To also understand the
resilience of our algorithm to uncertain system disturbances,
we further consider the scenario with one uncertain straggler
and the scenario without any stragglers. The straggler is
introduced by randomly selecting a worker node at each
iteration to sleep for 10 times of the computation time of
that node using the time.sleep() function.

Fig. 2 shows the total completion time of all K tasks
averaged over 20 episodes in different scenarios. As we can
see, with the increase of batch size, the performance degrades,
which is consistent with our findings [14]. In the following
comparative studies, we set the batch size to bi,j = 1,
∀i ∈ [N] and j ∈ [K].

(a) (b)
Figure 2. The average total task completion time for different batch sizes
when there is (a) no straggler and (b) one uncertain straggler in different
scenarios.

3) Comparative Studies: We compare our MADDPG- and
batch processing based algorithm with the three benchmark
schemes in different scenarios. For the load-balanced uncoded
and HCMM schemes, computing parameters βi and αi are
assumed to be known.

The average total task completion time of each scheme
in different scenarios is shown in Fig. 3. As we can see,
our algorithm achieves the best performance in all scenarios
regardless of whether there are any uncertain stragglers.
This verifies the effectiveness of our algorithm in addressing
node mobility, and also demonstrates its high computational

efficiency and resilience to uncertain system disturbances. Of
interest, when no stragglers are present (see Fig. 3(a)), the
two uncoded schemes outperform HCMM. This is because
HCMM introduces redundant computations, causing addi-
tional computation overhead. However, when stragglers are
present (see Fig. 3(b)), HCMM achieves better performance
than the two uncoded schemes, due to the use of the coding
technique. Additionally, the uniform uncoded scheme shows
the worst performance in most scenarios as it ignores the
heterogeneity nature of the computing nodes.

(a) (b)
Figure 3. The average task completion time of each scheme when there is
(a) no straggler and (b) one uncertain straggler in different scenarios.

V. CONCLUSION

In this paper, we present a MARL-based coded compu-
tation framework for the MAHC system that consists of
multiple mobile computing devices sharing resources among
themselves. This framework addresses both node mobility
and the heterogeneity nature of mobile devices, and can
be applied to any MAHC systems without having to know
their communication or computing characteristics. Moreover,
our framework, which applies the MADDPG, a state-of-
the-art MARL algorithm, enables the load allocation to be
determined in a decentralized manner, thus helping to relieve
the computing burden for the master node. It also adopts
a batch processing procedure developed in our previous
studies to further improve the performance in the aspects
of both efficiency and resilience to uncertain system distur-
bances. The comprehensive simulation studies show that our
MADDPG- and batch processing based algorithm achieves
the best performance compared with existing uncoded and
coded schemes, including the uniform uncoded, load balanced
uncoded, and HCMM. In the future work, we will extend this
study to consider more general scenarios, such as varying
node velocities and task sizes.

ACKNOWLEDGEMENT

We would like to thank the National Science Foundation
(NSF) under Grants CI-1953048/1730675/1730570/1730325,
ECCS-1953049/1839804, CAREER-2048266 and CAREER-
1714519 for the support of this work.

REFERENCES

[1] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
survey on mobile edge networks: Convergence of computing, caching
and communications,” Ieee Access, vol. 5, pp. 6757–6779, 2017.

[2] X. Cao, L. Liu, Y. Cheng, and X. Shen, “Towards energy-efficient wire-
less networking in the big data era: A survey,” IEEE Communications
Surveys & Tutorials, vol. 20, no. 1, pp. 303–332, 2017.

[3] I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, M. Imran, and S. Guizani,
“Mobile ad hoc cloud: A survey,” Wireless Communications and Mobile
Computing, vol. 16, no. 16, pp. 2572–2589, 2016.

[4] B. Li, Y. Pei, H. Wu, and B. Shen, “Heuristics to allocate high-
performance cloudlets for computation offloading in mobile ad hoc
clouds,” The Journal of Supercomputing, vol. 71, no. 8, pp. 3009–3036,
2015.

[5] L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular
edge computing and networking: A survey,” Mobile Networks and
Applications, pp. 1–24, 2020.

[6] B. Wang, J. Xie, S. Li, Y. Wan, Y. Gu, S. Fu, and K. Lu, “Computing in
the air: An open airborne computing platform,” IET Communications,
vol. 14, no. 15, pp. 2410–2419, 2020.

[7] B. Wang, J. Xie, S. Li, Y. Wan, S. Fu, and K. Lu, “Enabling high-
performance onboard computing with virtualization for unmanned
aerial systems,” in 2018 International Conference on Unmanned Air-
craft Systems (ICUAS). IEEE, 2018, pp. 202–211.

[8] K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Coded
computation for multicore setups,” in Proc. of IEEE ISIT 2017, 2017,
pp. 2413–2417.

[9] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learn-
ing: A selective overview of theories and algorithms,” arXiv preprint
arXiv:1911.10635, 2019.

[10] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding Up Distributed Machine Learning Using Codes,” IEEE
Transactions on Information Theory, vol. 64, no. 3, pp. 1514–1529,
mar 2018.

[11] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient
Coding: Avoiding Stragglers in Distributed Learning,” in Proc. of the
34th International Conference on Machine Learning. PMLR, 2017,
pp. 3368–3376.

[12] M. Rudow, K. Rashmi, and V. Guruswami, “A locality-based approach
for coded computation,” arXiv preprint arXiv:2002.02440, 2020.

[13] A. Reisizadeh, S. Prakash, R. Pedarsani, and S. Avestimehr, “Coded
computation over heterogeneous clusters,” in Proc. of IEEE ISIT 2017,
2017.

[14] B. Wang, J. Xie, K. Lu, Y. Wan, and S. Fu, “On batch-processing based
coded computing for heterogeneous distributed computing systems,”
arXiv preprint arXiv:1912.12559, 2019.

[15] ——, “Coding for heterogeneous uav-based networked airborne com-
puting,” in 2019 IEEE Globecom Workshops (GC Wkshps). IEEE,
2019, pp. 1–6.

[16] Y. Keshtkarjahromi, Y. Xing, and H. Seferoglu, “Dynamic
heterogeneity-aware coded cooperative computation at the edge,”
in Proc. of ICNP 2018. IEEE, sep 2018, pp. 23–33.

[17] H. Lu, C. Gu, F. Luo, W. Ding, and X. Liu, “Optimization of lightweight
task offloading strategy for mobile edge computing based on deep
reinforcement learning,” Future Generation Computer Systems, vol.
102, pp. 847–861, 2020.

[18] J. Chen, Z. Wei, S. Li, and B. Cao, “Artificial intelligence aided joint bit
rate selection and radio resource allocation for adaptive video streaming
over f-rans,” IEEE Wireless Communications, vol. 27, no. 2, pp. 36–43,
2020.

[19] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in neural information processing systems, 2017,
pp. 6379–6390.

[20] Q. Y. Kenny et al., “Indicator function and its application in two-level
factorial designs,” The Annals of Statistics, vol. 31, no. 3, pp. 984–994,
2003.

[21] R. S. Sutton and A. G. Barto, “An introduction to reinforcement
learning, chapter 3,” 2018.

[22] M. Liu, Y. Wan, S. Li, F. L. Lewis, and S. Fu, “Learning and
uncertainty-exploited directional antenna control for robust long-
distance and broad-band aerial communication,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 1, pp. 593–606, 2019.

[23] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” in Proc. of
IEEE ISIT 2016. IEEE, aug 2016, pp. 1143–1147.

[24] A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Transactions on Infor-
mation Theory, vol. 65, no. 7, pp. 4227–4242, 2019.

