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Abstract—In this paper, we propose a non-orthogonal multiple
access (NOMA)-based communication framework that allows
machine type devices (MTDs) to access the network while avoid-
ing congestion. The proposed technique is a 2-step mechanism
that first employs fast uplink grant to schedule the devices
without sending a request to the base station (BS). Secondly,
NOMA pairing is employed in a distributed manner to reduce
signaling overhead. Due to the limited capability of information
gathering at the BS in massive scenarios, learning techniques are
best fit for such problems. Therefore, multi-arm bandit learning
is adopted to schedule the fast grant MTDs. Then, constrained
random NOMA pairing is proposed that assists in decoupling the
two main challenges of fast uplink grant schemes namely, active
set prediction and optimal scheduling. Using NOMA, we were
able to significantly reduce the resource wastage due to prediction
errors. Additionally, the results show that the proposed scheme
can easily attain the impractical optimal OMA performance, in
terms of the achievable rewards, at an affordable complexity.

Index Terms—IoT, MTC, congestion control, NOMA.

I. INTRODUCTION

Massive machine type communications (mMTC) and ultra-

reliable low-latency communications (URLLC) are two main

categories of machine-to-machine (M2M) networks that target

massive and mission critical Internet of things (IoT) applica-

tions, respectively [1]. Mainly, M2M networks are character-

ized by small data packets, mostly in the uplink direction with

heterogeneous quality of service (QoS) requirements. Unlike

human-type communications that focuses on achieving high

data rates, MTC have different requirements on connectivity,

latency, and reliability. Congestion is a major challenge of

MTC access that leads to severe access delays and even service

interruption [2]. The legacy coordinated access technique for

cellular networks was shown to be inefficient for MTC due to

the large signaling overhead and high latency [3]. On the other

hand, fully uncoordinated access, known as grant-free where

the devices transmit directly on a random uplink resource

without sending scheduling requests, reduces the signaling cost

at the expense of collisions [4]. Having much larger number of

devices than the available resources is the likely case of MTC

which reflects that collisions will degrade the performance. In

[5], the 3GPP proposed fast uplink grant technique for latency

reduction. In fast uplink grant, the base station (BS) allocates

the uplink grants directly to the MTC devices (MTDs) without

receiving any scheduling requests. Hence, both large signaling

overhead and collisions are avoided. However, if an inactive

MTD received an uplink grant, the resource is wasted.

Fast uplink grant has two main challenges [4]. First, the BS

has to predict the set of active MTDs at each cycle. Second, the

granted resources should go to the optimal MTDs according to

each network requirements. This should be done with limited

or no information of the devices QoS requirements or channel

state information (CSI) which are very difficult to acquire for

massive number of MTDs. Learning techniques are known to

be very promising in solving problems in such environments.

In particular, the authors in [6] proposed a technique based on

multi-armed bandit (MAB) theory which is essentially a class

of reinforcement learning problems. Although this technique

gives promising results, it has a major problem that is its

performance is so dependent on the accuracy of the traffic

prediction scheme. Hence, there is a need to decouple the two

challenges of fast grant schemes or even reduce the effect of

the predictor efficiency on the scheduler performance.

Recently, NOMA has received great attention as a promising

enabling technique for beyond 5G wireless networks [7], [8].

It allows multiple users to non-orthogonally share the same

resource by multiplexing them either in power or code domain.

From the information theoretic perspective, orthogonal multi-

ple access (OMA) is strictly suboptimal in multi-user systems

[9]. Thus, using NOMA with MTC can boost the spectral ef-

ficiency while handling the massive connectivity and reducing

latency. These promising gains come at the expense of a more

complex receiver that is able to decode the superposed signals.

For uplink NOMA, successive interference cancellation (SIC)

decoder exists at the BS which is fortunately acceptable for

low-budget MTDs with mostly-uplink traffic.

In literature, variants of NOMA with MTC can be found. In

[10], a random access (RA)-based NOMA scheme for MTC

was proposed. NOMA was also adopted with grant-free to

avoid the large overhead of the RA process [3]. Moreover, a

semi-grant free proposal was introduced to get advantages of

both grant-based and grant free [11]. With fast uplink grant,

there is a risk of wasting the scarce resources if an inactive

MTD was scheduled. Although the literature has variants of

NOMA with MTC, there is no work that combined NOMA

with fast uplink grant. To the best of our knowledge this is the

first work to study fast uplink grant for MTC with NOMA.

In this paper, we propose NOMA-based fast uplink grant

for MTC to enhance the overall system performance and

approach the decoupling of the predictor and scheduler per-

formances. By allowing multiple MTDs to share the same
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resource, the resource wastage due to prediction errors can

decrease. Obviously, this comes with the cost of extra signaling

and complexity. However, starting with the simple 2-user

NOMA can efficiently handle the tradeoff between system

performance and complexity. For proper SIC decoding, certain

level of distinctness between the received signals at the BS

should be maintained [12]. In literature, centralized pairing is

commonly done by the BS to sort the users’ channels and

pair distinctive ones. However, for massive MTC, sending all

devices CSI to the BS would result in expensive signaling. The

goal of this proposal is to pair NOMA users in a distributed

manner while enabling successful SIC decoding at the BS.

The rest of the paper is organized as follows. In Section II,

the system model is presented. The problem formulation is

in Section III. Section IV explains the proposed scheme. In

Section V, optimal NOMA is discussed. Simulation results

are given in Section VI. SectionVII draws some conclusions.

II. SYSTEM MODEL

Consider a single cell network with N MTDs are served by

a single BS. Assume that the available bandwidth is divided

into M resource blocks (RBs), each of size B. At each time

slot (i.e. cycle) the BS allocates the RBs to the available

“active” MTDs using fast grant. The term “active” refers to an

MTD with a packet ready for transmission within a predefined

maximum tolerable delay. If a packet waits for access more

than its maximum tolerable delay, it will be dropped out. A

packet’s access delay is the number of cycles elapsed from the

moment it is ready for transmission until it is granted access.

Due to the heterogeneity of IoT applications, the packets have

different QoS requirements that are unknown to the BS.

To model congestion, at the beginning, we consider a

Beta-distributed activation of the MTDs as suggested by the

3GPP for overload situations [13]. Particularly, the N MTDs

are activated within a bounded activation time TA that is

assumed to be divided into IA time slots. Considering a Beta

distribution with parameters (α = 3, β = 4), each MTD is

activated at time t with probability A(t) as follows:

A(t) =
tα−1(TA − t)β−1

Tα+β−1
A B(α, β)

, (1)

where B(α, β) is the Beta function. This more realistic model

is only adopted during the first activation of the devices instead

of the uniform activation model adopted in [6]. Then, at each

cycle, a random set of inactive MTDs is selected for activation

to have a dynamic activation process that is needed to build a

history of each MTD for the learning algorithm.

For uplink NOMA, multiple MTDs transmit non-

orthogonally to the same receiver (i.e. BS). At the BS, the

signals are decoded using SIC. Hence, certain level of distinc-

tion has to be maintained. All channel gains are modeled as

Rayleigh fading and assumed to be independent and identically

distributed (i.i.d) across users and time. Moreover, both path

loss and log-normal shadowing are considered. For 2-user

NOMA, the received signal at the BS on the mth RB is:

ym =
√

Pshsmxsm +
√

Pwhwmxwm + zm, (2)

where Ps, hsm, Pw, hwm are the transmission power and chan-

nel gain for the strong and weak MTDs of the mth NOMA

pair, corresponding to their signals xsm,xwm, respectively. z

is an additive white Gaussian noise with zero mean and power

spectral density N0. We also assume that each MTD has a

maximum power budget Pt.

The BS decodes the strong user’s signal first, then cancels

it and decodes the weak user’s signal. Hence, only the strong

user will suffer from interference. Based on that, the achiev-

able rates of the NOMA pair can be expressed as:

rs = B log2

(

1 + Psγs

Pwγw+1

)

, (3)

rw = B log2 (1 + Pwγw) , (4)

where γ = |h|2

N0B
is the normalized channel gain. The subscripts

(.)s, (.)w denote the strong and weak users, respectively.

III. PROBLEM FORMULATION

The heterogeneity of the QoS requirements of huge number

of MTDs complicates the resource allocation process. In such

environment, the optimal OMA scheduler aims to schedule M
MTDs at each time instant t such that the utility is maximized

under QoS constraints. This can be formulated as:

S(t) = argmax
{i1,...,iM}∈K(t)

∑iM
i=i1

Ui(t) (5)

s.t. ri(t) ≥ Rimin
, i = i1, . . . , iM

di(t) ≤ Di, i = i1, . . . , iM

where K,S are the sets of active and scheduled MTDs, respec-

tively. Ui(t) is the utility of the scheduled MTD i. Rimin
, Di

are the minimum rate and maximum delay constraints of MTD

i, whereas ri(t), di(t) are the achieved rate and access delay

for MTD i at t. For massive MTC, delay requirements are

commonly the most important. However, other QoS metrics

can be imposed. Hence, the utility function U is defined as a

combination of different normalized QoS metrics as [6]:

Ui(t) = δ1vi(t) + δ2r
n
i (t) + δ3f(Di(t)), (6)

where δ1, δ2, δ3 are weights for the importance of each metric

such that their summation is 1. vi(t) is the value of infor-

mation of the generated packet at time t by MTD i which

assesses the importance of this packet in certain context. The

normalized value represents a percentage of importance, hence

vi(t) ∈ [0, 1]. rni (t) is the normalized rate of MTD i at t that is

obtained by dividing the achieved rate ri(t) by the maximum

rate Rmax that could be achieved by the node having the

best channel to the BS. In our setting, an arbitrary relatively-

high value for Rmax was selected. For the maximum tolerable

access delay Di(t), the normalization was obtained using a

modified Gompertz function with parameters a, b, c as follows:

f(Di(t)) = a− ae−be−cDi(t)

. (7)

Solving the problem in (5) requires the BS to gather a lot of

information about the MTDs in the network. For instance, the

BS needs to know the QoS requirements of each active MTD at

each time instant, as well as the CSI for optimal throughput.



However, gathering all this information for massive number

of devices, usually with small-sized data packets, is highly

inefficient. In the following, online learning combined with

NOMA will be employed to solve the problem.

IV. PROPOSED SCHEME

The idea of the proposed scheme is to employ both fast grant

and NOMA such that each granted uplink resource is shared

by multiple MTDs. As proposed in [6], the MAB learning

approach is used to enhance the performance of fast grant

where the BS has no information about the MTDs’ channels

or QoS. It is worth mentioning that, a learning parameter in

the approach of [6] is unknown to the BS. This was ignored

in [6], but we take it into consideration as will be shown later.

The proposed scheme is a 2-step as follows. First, MAB

is used such that the BS can select the scheduled devices for

uplink grant [6]. Second, the scheduled devices are considered

as cluster heads (CHs) and seek pairing with other “nearby”

devices that satisfy a power tolerance condition announced by

the BS for successful SIC operation. After transmission, the

BS receives QoS-based rewards from the scheduled MTDs.

This method avoids the resource wastage inherited in fast

uplink grant. The reason is that, if a device receives a grant

and it has no ready packet for transmission, it can still seek

pairing and forward the grant to other “active” MTDs that

will respond to its pairing request. In the following, we show

how the preceding traffic prediction step is abstracted and give

details of both stages of the proposed scheme.

A. Traffic Predictor Abstraction

We assume that the BS employs a predictor with certain

average prediction error ēp. At each cycle, there are an actual

active MTDs list and a BS prediction list that satisfies a per-

cycle error ep ∼ N (ēp, σ
2
e) truncated in [0,1]. We define ep

as the total number of errors in prediction to the total number

of MTDs in the network. Furthermore, the predictor outputs a

probability of being active Pa for each MTD.

B. Fast Grant Scheduling using MAB

Generally, in MAB problems there is a set of available

arms where a decision maker selects an arm and observes the

resulted reward aiming to maximizing the cumulative reward.

The distributions of the rewards of different arms are unknown

to the decision maker. In our problem, the BS is the decision

maker and the MTDs are the arms. According to (5), the

reward of the ith MTD is defined as:

θi(t) = 1[ri(t) ≥ Rimin
]1[di(t) ≤ Di]Ui(t), (8)

where 1(.) is an indicator function that gives 1 if its argument

holds and 0 otherwise. Let us define the regret as the difference

between the rewards of the best arm that could have been

played and the selected arm. In terms of regret, the goal of

the scheduler is to minimize the cumulative regret R. Let θk(t)
be the achieved reward of playing arm k at time t, and θ∗(t)

be the maximum reward that could have been achieved at time

t, the regret up to time T is as follows:

R(T ) = E

[

T
∑

t=1

θ∗(t)−
T
∑

t=1

θk(t)

]

. (9)

To maximize the cumulative reward, the upper-confidence

bound (UCB) concept is used to solve the problem. UCB is

well-known to achieve balance between exploitation and ex-

ploration. This well-known machine learning tradeoff requires

balancing reward maximization based on exploiting the knowl-

edge already acquired while attempting (i.e. exploring) new

actions to further increase knowledge. Since, the availability

of the arms of MTC is probabilistic, sleeping MAB is more

suitable. In sleeping MAB, at each time instant, only a subset

of the arms is available. Given that the BS has a prediction

algorithm, at each time slot t, it has the set of active MTDs

Kt associated with certain probability of being active Pai(t).
Then, the BS employs the UCB to play an arm k(t) such that:

k(t) = argmax
i∈Kt

Pai(t)

(

zi(t)

ni

+

√

8 log t′

ni

)

, (10)

where zi(t) is the sum of rewards of MTD i up to time t, ni

is the number of times MTD i was selected and was active,

and t′ is the total number of times the selected MTD was

active. Note that all the parameters in (10) are known to the

BS except of t′. Using the traffic predictor, the estimate of t′ is

assumed to be the number of times each MTD was estimated

active by the BS. In this scheme, the BS selects the newly

activated MTDs first before starting (10).

C. NOMA Pairing

A major challenge of fast grant is the prediction of the active

MTDs. Although the prescribed MAB learning approach has

a potential to efficiently handle the resource allocation to

MTDs with limited information, its performance is highly

dependent on the preceding prediction step. Particularly, MAB

performance will suffer with the increase of the number of

MTDs selected by the BS for fast grant while they are actually

inactive. To reduce the resource wastage due to prediction

error, and attain better utilization of the limited resources in

massive MTC, a 2-user NOMA technique is adopted.

In the proposed NOMA technique, at each cycle, each

granted device using MAB is assumed as a CH that seek

pairing with other non-CHs (nCH). In this context, nCHs are

all other active MTDs that were not granted an uplink resource.

The pairing is initiated by the CHs by sending a pairing

request, then receive responses from eligible nCH(s). The

eligibility between CHs and nCHs is specified by two pairing

phases. First, the association phase where each nCH associate

itself to the nearest CH for a chance to be paired to it. This

could be done by measuring the received signal strength (RSS)

of the pairing request and select the CH with the highest RSS.

Although restrictive, this phase helps to reduce the interference

and allow the CHs to lower the power needed for sending the

pairing request. It also reduces the communication overhead



needed for the distributed pairing by forcing a single eligible

CH for each nCH which is more suitable for massive MTC.

However, this could be easily relaxed by allowing each nCH

to associate itself to multiple CHs according to their RSS.

The second phase is the pair selection. This phase depends on

a signal-to-noise ratio (SNR) threshold, γth, that guarantees

minimum distinction between the signals of the paired devices

at the BS for smooth SIC operation. In this regard, we assume

that the BS announces a tolerance power, Ptol, as the minimum

power difference required for efficient SIC operation. Also, we

assume that each MTD is able to acquire the CSI of its link

to the BS from the pilot signal sent from the BS.

Based on the above, we have the following proposed pairing

scenario. Each CH transmits a pairing request that contains

its ID and a SNR threshold, γth, to declare itself as a CH.

Then, other nCHs respond to their eligible CHs. Considering

a 2-user NOMA system, each CH randomly selects one of its

responded nCHs to share the uplink grant with it. The value

of γth could be derived from the following formula:

Psγs − Pwγw ≥ Ptol,

where Ps, γs are the transmission power and the normalized

channel gain between the strong device and the BS, respec-

tively. Similarly, Pw, γw are for the weak MTD. Assuming

equal power allocation where Ps = Pw = Pt, then γth is:

γth =

{

γCH + Ptol

Pt

, if γCH = γw(weak),

γCH − Ptol

Pt

, if γCH = γs(strong).
(11)

To sum up, an MTD n can be paired to its nearest CH c iff:

γn ≥ γth, if γc = γw(weak), mode = 0, (12)

γn ≤ γth, if γc = γs(strong), mode = 1. (13)

An extra control bit mode could be added to identify what type

of members the CH is seeking. For throughput maximization,

we assume that mode = 0 is the default where the selected

CHs always consider themselves as the weak users and seek

stronger nodes for NOMA pairing provided that Ptol holds.

Although mode = 0 results in enhanced system throughput,

the CH is susceptible to SIC error propagation. For a network

of both mMTC and ultra reliable low latency communications

(URLLC) MTDs, mode = 1 is recommended to protect the

CH selected by the BS that is most probably would be URLLC

MTD that needs service priority. In general, if a network

operates on certain mode but some CHs did not find eligible

pairs, it may be allowed to switch mode to find a pair.

Under the prescribed scenario, if an inactive CH was granted

a resource, it will seek pairing as well. Thus, the resource

is not wasted with an incentive of an increase in the CH’s

cumulative reward. Particularly, with NOMA, the total system

reward at each cycle is the sum resulted from both CHs and

nCHs which could reach double the achieved rewards without

NOMA. However, the following cumulative rewards of each

CH c and its nCH pair n are used in (10):

zc(t) = zc(t− 1) + θc(t) + ρθn(t) (14)

zn(t) = zn(t− 1) + (1 − ρ)θn(t), (15)

where ρ is a weight factor defining the share of the nCH’s

reward that goes to the paired CH as an incentive. For a

general MTD i, the values of other parameters in (10) are

adjusted independently based on its individual reward θi. For

instance, ni is only incremented for non-zero reward MTDs.

This setting overcomes the prediction inaccuracy as the active

nCHs themselves respond to the pairing request.

V. OPTIMAL NOMA

The regret defined in (9) gives an indication of how far the

system performance is from the optimal one. For NOMA, to

get a meaningful regret, we need to find the optimal NOMA

pairing that maximizes the network reward as a reference

performance which is known to be complex for massive MTC

[14]. However, our objective is to find a reference performance

that is comparable to the proposed 2-step scheme to specif-

ically help in improving the second step of NOMA pairing

while keeping the benefits of the learning step. Hence, we

formalize a quasi-optimal NOMA scenario. In this scenario,

the CHs selected at the first step would be inputs to the

problem and it is required to find the optimal pairs for the

given CHs. The CHs are either the ones with the highest

rewards or MAB-selected. This formulation helps to assess

the performance of the proposed NOMA with random pairing

for future improvement of the 2-step scheme.

Based on that, the problem is formalized as a binary integer

programming (BIP) problem with the objective of maximizing

the total system reward:

max
∑M

c=1

∑Nan

n=1 ωc,nIc,n (16)

s.t.
∑Nan

n=1 Ic,n ≤ 1, ∀c
∑M

c=1 Ic,n ≤ 1, ∀n

Ic,n ∈ {0, 1}, ∀n, c

|Pnγn − Pcγc| ≥ Ptol, ∀n, c

where Ic,n is a pairing binary variable takes the value 1 when

CH c is paired with nCH n. The nCH index n is set to span

all actual active Nan nCHs, whereas a maximum of M CHs,

already selected at the first step, exist in the network at each

cycle. The first two conditions are to assure that each CH is

paired to only one nCH and vice versa. The last condition

is the pairing condition required for successful SIC decoding,

and the absolute value is used to indicate both modes 0, 1.

Maximizing the rewards is done via the optimization weights

ωc,n = θc + θn. To satisfy the last condition, we could set

ω = 0 while solving the problem if the condition does not

hold for any pair. The problem was solved using Matlab.

VI. SIMULATIONS AND DISCUSSIONS

In the following, we consider N MTDs randomly located

at fixed points of a square area with side length 500 meters.

At the beginning, the activation of the MTDs follows the

Beta distribution with parameters (α = 3, β = 4) within

IA = 10 slots. After the first activation of the N MTDs, we

randomly select MTDs for reactivation at each cycle to keep

a dynamic activation process. Note that, by considering a case



TABLE I: System model parameters

Parameter Definition Value

M Number of uplink resources (RBs) 10

N Number of MTDs 500

T Total number of cycles 10000

Pt Transmission power 10 dBm

Ptol Detection threshold for SIC 4 dBm

ρ Weight for nCH reward division 0.3

of N >> M the overload situation sustains. For the channel

modeling parameters, a noise power is considered to be -174
dBm/Hz, bandwidth is 360 kHz and standard deviation for the

log normal shadow fading is 10 dB [6]. The traffic predictor

is assumed to have ep ∼ N (0.01, 0.04), and Pa ∈ [0.8, 1].

Regarding the utility function (6), we set δ1 = 0.2, δ2 =
0.3, δ3 = 0.5, where the delay gets the highest weight.

Additionally, we set the parameters of the function in (7) as

a = 1, b = 8, c = 0.03 [6]. To better illustrate the ability of

MAB learning in achieving the essential delay requirement of

MTC, we chose to set the first N/2 MTDs to be with strict

maximum delay of Di ∈ [1, 100] slots, whereas the other N/2
MTDs are with relaxed maximum delay of Di ∈ [150, 300]
slots. Also, we assumed that the rate threshold is satisfied for

all MTDs (i.e. 1[ri(t) ≥ Rimin
] = 1 in (8)). Table. I shows

the parameters used in the simulations.

Fig. 1 plots the histogram of the number of times each MTD

was scheduled for both OMA and NOMA systems. In both

cases, it is shown that the MAB learning technique is able

to schedule the MTDs with strict delay requirements more

frequently (i.e. first N/2 MTDs). However, with NOMA, the

total number of scheduling times is higher. This is due to

the better utilization of the resources offered by NOMA. This

was also verified in Fig. 2 where the accumulated number

of missed resources with time for both cases are plotted.

The figure depicts the enhancement achieved by the proposed

NOMA in utilizing the resources missed due to prediction

errors. The staircase curve of NOMA case is a result of the

infrequent wastage of resources.

Regarding the rewards and regret, in Fig. 3, we take the

optimal rewards achieved by scheduling the available highest-

reward MTDs, one per each RB, as the minuend of (9). This

is the curve labeled as “Best” in Fig. 3-(a). The subtrahends

are the achieved rewards with MAB only and MAB with

NOMA for OMA and NOMA regrets, respectively. Fig. 3-(a)

depicts the improvement gained from NOMA that exceeds the

best OMA performance. This can also be seen in the regret

curves shown in Fig. 3-(b). Although the reference optimal

reward here is not related to NOMA, it is good to see how

far our practical proposed NOMA-MAB scheme is from the

impractical best non-NOMA case that needs the gathering of

all MTDs’ information and QoS requirements at the BS to be

able to optimally allocate the resources.

Defining the missing ratio as the ratio between the number

of missed resources to the total number of available resources

during the whole period (i.e. MT ), Table II compares the per-

TABLE II: Performance Evaluation with t′ estimated

System Missing Ratio Winners Avg. Max Delay Avg. Access Delay

OMA 0.0271 9.7288 × 104 105.1120 36.6666

NOMA 0.0001 19.0483 × 104 108.5102 19.0421

formance of OMA and NOMA. The table depicts that NOMA

offers better utilization of the resources where the missing ratio

significantly decreases. It also shows the achieved increase

in the number of served MTDs (i.e. winners) along with

an enhancement in their average access delay. The uniform

selection of nCHs pairs results in a slight increase in the

average maximum tolerable delay of the scheduled MTDs.

Focusing on NOMA, Fig. 4-(a) compares the reward re-

sulted from the proposed NOMA with simple random pairing

to the rewards resulted from the 2-step optimal NOMA (i.e.

quasi optimal) pairing analyzed in section V. We consider

two inputs for optimal pairing, the first is the best CHs with

the highest rewards, and the second is the MAB-selected

CHs. These input CHs will seek pairing using (16). The gaps

between each of these two curves and the proposed NOMA

represent the further enhancement that can be achieved by

combining NOMA with fast grant in a 2-step fashion as

proposed in this manuscript. Specifically, the gap between

the proposed NOMA curve and the optimal with MAB CHs

indicates the further enhancement that could be achieved by

enhancing the pairing scheme. On the other hand, to enhance

the performance of random NOMA, we added a mode switch

(MS) function to the system. This function allows each CH to

switch its pairing mode temporarily if it failed to find a NOMA

pair with the nominal mode of the network. Specifically, for

a network operating at mode = 0, each CH that does not find

a pair at certain cycle is allowed to re-announce itself as a

CH operating at mode = 1 at this specific cycle. This is to

increase the resources utilization and not to miss the pairing

opportunity. Fig. 4-(b) depicts the difference in the system

reward while the function is ON and OFF. However, this

enhancement results in an increase of the pairing overhead and

time. The mode switch function could be useful for networks

with strict pairing conditions or non-dense devices where the

probability of not finding a pair increases.

Using different average prediction errors ēp = 0.01, 0.1, 0.4,

we examine the effect of the predictor efficiency on the

OMA and NOMA. Fig. 5 shows a relatively large increase

in the number of wasted resources of OMA system with

the increase of ēp which is not the case for NOMA. This

reflects that NOMA made the system less vulnerable to the

predictor efficiency. For the rewards illustrated in Fig. 6,

although NOMA reward is always higher than OMA with

different ēp values, increasing ēp degrades the performance

of both systems. For OMA, the performance degradation is

due to the loss of the resources. In contrast, with NOMA the

reason is the random selection of the nCHs which represent

larger portion of the selected MTDs with high ēp. This can

be improved by enhancing the pairing scheme in our future

work. Overall, the results show a potential of performance



0 100 200 300 400 500
0

50

100

150

200

250

300

350

MTD index

N
um

be
r o

f t
im

es
 th

e 
M

TD
 w

as
 s

el
ec

te
d

 

 

0 100 200 300 400 500
0

100

200

300

400

500

600

700

800

900

1000

MTD index

N
um

be
r o

f t
im

es
 th

e 
M

TD
 w

as
 s

el
ec

te
d

 

 
OMA NOMA

Fig. 1: Number of times each MTD was
scheduled in both OMA and NOMA
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Fig. 2: Total waste of resources
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Fig. 3: Rewards of both systems (b) The
difference (Best - MAB) gives the regret.
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Fig. 4: Further enhancements to NOMA sys-
tem
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Fig. 5: Effect of the prediction error on the
resource wastage
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Fig. 6: Effect of the prediction error on the
system reward

improvement at affordable complexity.

VII. CONCLUSION

We introduced a communication framework to provide

access to MTC devices based on fast uplink grant with

NOMA. The proposed 2-step scheme, employs MAB learning

technique at the first step to schedule the devices based on

different QoS requirements including latency. Then, it allows

the selected devices to randomly pick a NOMA pair from

an eligible set of active devices in a distributed manner.

This technique decouples the scheduling efficiency and the

predictor performance. We build a simulation model for a

Beta-distributed traffic whereas the traffic predictor was ab-

stracted. The simulation results show the effectiveness of the

proposed technique in providing access to more MTDs in a

timely manner while accommodating their heterogeneous QoS

requirements. Additionally, the results illustrate significant

enhancement in the scarce resources utilization. It was also

depicted that the proposed scheme is more robust against

source traffic prediction errors. A quasi-optimal 2-step NOMA

formulation was provided as a benchmark for future perfor-

mance enhancement.
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