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Abstract—Non-orthogonal multiple access (NOMA) and mil-
limeter wave (mmWave) are two key enabling technologies for
the fifth-generation (5G) mobile networks and beyond. In this
paper, we consider mmWave NOMA systems with max-min
fairness constraints. On the one hand, existing beamforming
designs aiming at maximizing the spectrum efficiency (SE) are
unsuitable for the NOMA systems with fairness in this paper. On
the other hand, previous work on about mmWave NOMA mostly
depends on full knowledge of channel state information (CSI)
which is extremely difficult to obtain accurately in mmWave
communication systems. To address this problem, we propose
a heuristic hybrid beamforming design based on the statistical
CSI (SCSI) user grouping strategy. An analog beamforming
scheme is first proposed to integrate the whole cluster users to
mitigate the inter-cluster interference in the first stage. Then two
digital beamforming designs are proposed to further suppress
the interference based on SCSI. One is the widely used zero
forcing (ZF) approach and the other is derived from the signal-to-
leakage-plus-noise ratio (SLNR) metric extended from orthogonal
multiple access (OMA) systems. The effective gains fed back
from the users are used for the power allocation. We introduce
the quadratic transform (QT) method and bisection approach
to reformulate this complex problem so as to rend it solvable.
Simulation results show that our proposed algorithms outperform
the previous algorithms in term of user fairness.

Index Terms—MIMO, mmWave, NOMA, user grouping, beam
selection, power allocation.

I. INTRODUCTION

Recently, the explosive traffic growth envisioned in future
wireless networks have triggered and attracted tremendous
research interests in millimeter wave (mmWave) communica-
tions due to their large bandwidth and the potential multiple
access schemes [1]. In contrast to the conventional sub-6 GHz
frequency band, the wavelengths in the mmWave frequency
band are short, which facilitates the deployment of massive
antennas in a compact space to provide significant array gains
to combat the propagation loss in the mmWave spectrum.
However, the traditional fully digital structure requires one
dedicated radio frequency (RF) chain for each antenna, which
incurs prohibitively high hardware cost and tremendous en-
ergy consumption in massive multiple-input multiple-output
(MIMO) systems. Hybrid architectures have been proposed as
a feasible and compromise solution to strike a balance between
energy consumption, signal processing complexity, and system

performance, where a large number of antennas are connected
with a limited number of RF chains, which can reduce the
power consumption of RF chains while maintaining highly
directional beamforming to provide array gain [2], [3].

Meanwhile, non-orthogonal multiple access (NOMA) has
been recognized as an effective technique to further increase
the spectral efficiency and support more connectivity [4]. The
principle of NOMA is to server multiple users at the same
time/frequency/code resource block (RB) by differentiating
them in the power domain. The success of NOMA is based
on the successive interference cancelation (SIC) technique
according to their channel condition and resource allocation.
Motivated by its promising advantages, the application of
NOMA to mmWave communications with hybrid beamform-
ing structure is a valuable study topic which has been studied
in considerable research works [5]–[10].

In [5], a machine learning based user clustering technique
for mmWave NOMA systems has been proposed, where the
users are assumed to be physically clustered in rooms or halls.
With this assumption, a K-means based user grouping scheme
is naturally proposed. This paper has proved that the K-means
based user grouping scheme can achieve better performance
than the cluster-head scheme [6]. However, the K-means
user grouping scheme is not generalized applicable to the
common occasions where users are not physically clustered.
[7] has proposed an agglomerative nesting (AGNES) based
user grouping scheme which has been shown to outperform
the K-means user grouping scheme when users are randomly
positioned. [8] extended the work in [7] to derive an enhanced
joint user grouping and beam selection procedure.

[5]–[7] consider spectrum efficiency (SE) or energy effi-
ciency (EE) as the evaluation criterion. Thus, the beam patterns
are pointed to the strongest user in each cluster to achieve a
better performance. However, this kind of beamforming design
does not suitable for NOMA with fairness. For instance, for a
α→∞ constrained NOMA system, i.e., the max-min fairness,
the weak users barely benefit from the beamforming pointed to
the strongest user, which will result in a poor SE performance
since the users are required to be absolutely fair in the system.
Many works have investigated the fairness problem of NOMA
systems [9], [10], while they either considered the sub-6 GHz
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frequency band or failed to include the influence of beam
alignment to the fairness among the users. Furthermore, most
works about NOMA [5]–[8] are based on the assumption that
the transceivers have the full knowledge of the instantaneous
channel state information (ICSI). However, the fast variation
of the mmWave channels makes it difficult to estimate the
channel accurately. Moreover, due to the large number of users
in the NOMA systems and the massive antenna arrays at the
base station (BS), the channel estimation results in a high
training overhead. Fortunately, the fading channel statistics
of mmWave channels, such as angle of department (AoD)
and large scale fading coefficient, are wide-dense stationary
(WSS) due to its scattering-dependency [11]. The feature that
AoDs remain invariant over several periods of covariance time
arouses an approach naturally fitting to a hybrid structure
which is widely used in orthogonal multiple access (OMA)
systems [12]. The analog beamforming is based on the slowly-
varying second order channel statistics and the digital beam-
forming matrix is designed based on the ICSI.

In this paper, we consider the max-min fairness problem
of the downlink mmWave MIMO NOMA system which
consists of user grouping, hybrid beamforming design, and
power allocation. In contrast to the previous mmWave MIMO-
NOMA works, we propose to design the user grouping strategy
and hybrid beamforming matrices based on the second order
statistical CSI (SCSI) and the power allocation is based on
the feedback of the effective channel gains which are scalars
resulting in small feedback cost. More specifically, a modified
AGNES user grouping scheme based on the correlation matrix
distance (CMD)is proposed. At the analog beamforming stage,
a concept of average channel covariance matrix is proposed
since we regard all users in the cluster equally rather than
focusing on the strongest user as in [7], [8]. Two digital
beamforming schemes are proposed to further suppress the
inter-cluster interference. One is to find the null space of
the effective average covariance channel of each cluster and
the other is inspired by the signal-to-leakage-plus-noise ratio
(SLNR) metric which is widely used in OMA systems [13].
We extend the SLNR metric in the NOMA system and
obtain the corresponding digital beamforming vectors. The
power allocation is formulated as a max-min problem which
can be solved by bi-section method and convex theory. The
simulation results suggest that under the proposed analog
beamforming, the SLNR metric based digital beamforming can
achieve approximate the same performance as the ZF digital
beamforming. Besides, under the max-min fairness constraint,
the proposed algorithms are shown to outperform the cluster-
head beamforming schemes, which means that the proposed
algorithms can balance the fairness among the users better
than the previous designs.

Throughout this paper, upper-case and lower-case boldface
letters denote matrices and vectors, respectively; (·)T and (·)†
denote the transpose and the Hermitian transpose of a matrix
or a vector. S denotes a set; | · | denotes the absolute value of
a scalar or the cardinality of a set; ‖·‖2 denotes the Frobenius
norm of a vector or a matrix. diag(·) represents a diagonal

matrix. CI×J denotes the set of all M ×N matrices with
complex entries. E{·} denotes the expectation operation. IN
denotes a N order unit matrix.

II. SYSTEM MODEL

We consider a downlink mmWave MIMO-NOMA system
model. The base station (BS) with Nt antennas and G RF
chains serves K single-antenna users simultaneously. To sim-
plify the description, the k-th user is denoted as Uk. After the
users are grouped into G groups, the u-th user in the g-th group
is denoted as Ug,u. Hybrid beamforming is used to provide
beam gain as well as suppress the interference among the
users. The signals first go through the digital beamforming ma-
trix W = [w1,w2, ...,wG] ∈ CG×G and then are precoded by
an analog beamforming matrix F = [f1, f2, ..., fG] ∈ CNt×G.
The received signal of Ug,u is given as

rg,u=

|Sg|∑
v=1

√
Pg,vhg,uFwgxg,v +

G∑
q 6=g

|Sq|∑
v=1

√
Pq,vhg,uFwqxq,v,

where hg,u, xg,u, and Pq,v are the channel information,
transmitted signal and the allocated power of Ug,u.

At mmWave frequencies, the channels tend to be sparse and
highly directional. We consider a general ray-based directional
model with limited paths [3] which is defined as

hg,u=

√
Nt
Lg,u

Lg,u∑
l=1

αg,u,la†BS(θg,u,l) ,

√
Nt
Lg,u

ᾱg,u∆g,uAg,u,

(1)
where Lg,u is the number of multipath components (MPC)
of Ug,u. αg,u,l ∼ CN (0, ρ2

g,u,l) denotes the small-scale
fading of the l-th MPC. ρ2

g,u,l can be viewed as the aver-
age power of the l-th MPC normalized by the large scale
loss. We assume that the MPCs are independent and we
have

∑Lg,u
l=1 ρ2

g,u,l = 1. The normalized path gain vector
ᾱg,u = [ᾱg,u,1, ᾱg,u,2, ..., ᾱg,u,Lg,u ], where ᾱg,u,l =

αg,u,l
ρg,u,l

.
∆g,u = diag[ρg,u,1, ρg,u,2, ..., ρg,u,Lg,u ] stores the normal-
ized average path gains {ρg,u,l}. The beam steering vec-
tors of AoD {θg,u,l} of Ug,u are stacking in Ag,u, i.e.,
Ag,u = [aBS(θg,u,1), aBS(θg,u,2), ..., aBS(θg,u,Lg,u)]†. Under
an assumption of a uniform linear array (ULA), aBS(θ) can
be written as

aBS(θ) =
1√
Nt

[
1, ej

2πd
λ sin θ, ..., ej

(Nt−1)2πd
λ sin θ

]
, (2)

where λ is the wavelength and d = λ
2 is the antenna spacing.

Under the block fading assumption, the small-scale fading
vector remains constant within the coherence block and varies
independently across blocks. However, the fading channel
statistics (angular power spectrum), i.e., ∆g,u and Ag,u are
WSS to tens or hundreds of coherence block lengths. Hence,
this statistical channel information can be evaluated efficiently
by channel estimation techniques such as [14] with negligible
normalized cost. The long-term channel covariance matrix of
Ug,u can be calculated as

Rg,u = E{h†g,uhg,u} =
Nt
Lg,u

A†g,u∆
2
g,uAg,u. (3)



In Section III, we elaborate that our proposed user grouping
and beamforming design depends only on the long-term SCSI.
In the power allocation stage, each user only needs to feed
back an equivalent channel gain vector, which significantly
reduces the information exchange overhead.

In mmWave MIMO-NOMA, multiple users are served in
one beam where different beams (groups) will occur inter-
group interference. The users in the same group successively
cancel the interference in a specific order which is referred
as intra-group interference. The decoding order is an essential
issue which depends on not only the channel gain but also the
beam gain and power allocation. The details of the decoding
order will be discussed in Section III. We assume that the
decoding order has been decided that Ug,u can decode the
signal of Ug,r only if r ≥ u. The signal-to-interference-plus-
noise ratio (SINR) of Ug,u to decode its own signal can be
denoted as

SINRg,u = |hg,udg|2 Pg,u/ηg,u, (4)

where dg = Fwg denotes the equivalent precoding vector for
Sg . ηg,u = I intra

g,u + I inter
g,u + σ2 denotes the interference of

Ug,u, which affects the decoding of its own signal. I intra
g,u =∑u−1

v=1 |hg,udg|2 Pg,v denotes the intra-group interference and
I inter
g,u =

∑G
q 6=g

∑|Sq|
v=1 |hg,udq|2 Pq,v denotes the inter-group

interference. The SINR for Ug,u decoding the signal of Ug,r
can be calculated as

SINRg,u,r = |hg,udg|2 Pg,r/ηg,u,r, (5)

where ηg,u,r = I intra
g,u,r + I inter

g,u,r + σ2, I intra
g,u,r =∑r−1

v=1 |hg,udg|2 Pg,v and I inter
g,u,r = I inter

g,u . To successfully
perform SIC, the SINR condition should be satisfied which is
given by SINRg,u,r ≥ SINRg,u.

III. PROBLEM FORMULATION AND PROBLEM
SOLUTION

A. User grouping based on the SCSI

Due to the principle of NOMA, an appropriate user group
strategy will lay a solid foundation for the system performance
because the user grouping directly influences the beam gain
and power allocation scheme. In mmWave-NOMA systems,
the directionality of the mmWave channels enables us to clus-
ter the users with high channel correlation in the same group
and the users with low channel correlation in different groups.
Since the second order SCSI can capture the directionality
feature of the channels, we use the CMD to show the distance
between two channel covariance matrices [13]. The distance
between Ui and Uj is given by

C(Ui, Uj) = 1− Tr(R†iRj)
‖Ri‖2‖Rj‖2

. (6)

C(Ui, Uj) measures the channel similarity between Ui and Uj
ranging from 0 (the users’ channels are completely uncorre-
lated)to 1 (the users’ channels are completely orthogonal). As
in our previous work [7], we choose the complete linkage
method to derive the linkage between cluster. We suppose

that Si,j is the user group merged from Si and Sj , namely,
Si,j , Si ∪Sj . Let Sq be one of the remaining groups except
for Si and Sj . The complete linkage between Si,j and Sq is
given by

C(Si,j ,Sq) = max{C(Si,Sq), C(Sj ,Sq)}. (7)

The SCSI based AGNES algorithm is summarized in Algo-
rithm 1.

Algorithm 1 AGNES clustering user grouping algorithm
Inputs: Group number G, user set U = {U1, U2, ..., UK},
second order SCSI Rk, k = 1, ..,K;
Outputs: User grouping strategy Π = {S1,S2, ...,SG};
Initialization: Initial single user groups Sk = {Uk}, k =
1, 2, ...,K, group number index t = K.

1: Calculate the correlation C in U by (6) and (7);
2: repeat
3: Search for two groups with the maximal similarity by

the complete linkage method;
4: Merge the groups with the maximal similarity;
5: t← t− 1
6: until t = G

B. Hybrid beamforming based on the SCSI

After finishing user grouping, we design the hybrid beam-
forming matrices to provide beam gain. In most previous
works [5]–[7], the beams are designed to point to the cluster
head of each group since those works aim to maximize the
sum rate of the systems. Thus, it is reasonable that the users
with best channel condition can get the best power resources.
While in this paper, we consider the fairness problem among
the users. The cluster head beamforming strategy only cares
the strongest user in each group, which will directly omit
the weak users. With a forcing power allocation scheme to
keep the fairness among the users, the data rate of the system
is dragged due to the low beam gain of the users far from
the strongest user in the angle domain. We consider the user
fairness before the power allocation stage and propose a new
hybrid beamforming design scheme based on the second order
SCSI. The hybrid beamforming is difficult to design jointly
because the constant modules (CM) constraint of the elements
of the analog beamforming. Thus, we design the two matrices
separately as the same in many hybrid beamforming works.

a) Analog beamforming: The basic idea is to design the
analog beamforming matrix to enhance the beam gain of the
whole cluster and suppress the interference from other clusters.
We regard the users in the same group equal in priority and
they can be treated as a virtual multi-antenna user for this
group with the average channel covariance matrix given by

R̄g =
1

|Sg|
∑|Sg|

u=1
Rg,u. (8)

The eigenvalue decomposition (EVD) of R̄g is denoted as

R̄g = UgΛgU†g, (9)



where Ug = [umax
g UNg ] and umax

g ∈ CNt×1 presenting the
largest eigenvectors of R̄g . We define the interference matrix
of Sg with the dominant eigenvector of all other clusters as

Ξg =
[
umax

1 , ...,umax
g−1 ,u

max
g+1 , ...,u

max
G

]
∈ CNt×(G−1). (10)

We perform the singular-value decomposition (SVD) of the
interference matrix as

Ξg = QgΣgV†g, (11)

where Qg =
[
QO
g QN

g

]
, with QN

g ∈ CNt×(Nt−(G−1)) repre-
senting the null space of Ξg . By connecting the projection the
space of QN

g and the average channel covariance matrix of
Sg , we give the effective channel covariance R̂g as

R̂g = ÛgΛ̂gÛ
†
g = (QN

g )†UgΛgU†gQN
g , (12)

where Ûg =
[
ûmax
g Û

N

g

]
, with ûmax

g ∈ C(Nt−(G−1))×1 repre-

senting the largest eigenvector of R̂g . The analog beamforming
vector corresponding to Sg can be calculated as

fg = QN
g ûmax

g . (13)

b) Digital beamforming: Since the analog beamforming
cannot fully cancel the inter-group interference. The digital
beamforming is used to further mitigate the interference. After
obtaining F, the BS can get the effective channel of Ug,u
as hg,u,eff = hg,uF ∈ C1×G, where the effective channel
covariance matrix can be calculated as Rg,u,eff = F†Rg,uF ∈
CG×G. With the central covariance matrix R̄g , the effective
average channel covariance matrix of Sg is denoted as R̄g,eff =
F†R̄g,uF ∈ CG×G. The digital beamforming vector of Sg can
be designed in the nullspace of the dominant eigenvectors of
the effective channel matrices of the other clusters for q 6= g,
i.e.,

w†gumax(R̄q,eff) =

{
0 g 6= q,

1 g = q,
(14)

where umax(R̄q,eff) denotes the largest eigenvector of R̄q,eff .
Thus, with zero forcing (ZF) method, the digital beamforming
matrix can be obtained by

W = U†max

(
UmaxU†max

)−1
, (15)

where Umax =
[
umax(R̄1,eff),umax(R̄2,eff), · · · ,umax(R̄G,eff)

]
collects the eigenvectors of the effective average channel
covariance matrices. This design intends to reduce the
inter-group interference. Another perspective is to maximize
the desired power and suppress the leakage power to other
clusters. Inspired by this, we derive the SLNR metric to
strike a balance between the desired signal power and the
interference. In OMA systems, SLNR is a widely used
metric where each digital beamforming vector is for one
single user [13]. However, each digital beamforming vector

is corresponding to a group with multiple users. Thus, we
define SLNR of Sg as

SLNRg =

|Sg|∑
v=1

Pg,v

∣∣∣h†g,v,effwg
∣∣∣2

σ2 + Pg
G∑
q 6=g

|Sq|∑
v=1

∣∣∣h†q,v,effwg
∣∣∣2 , (16)

where Pg =
∑|Sg|
v=1 Pg,v denotes the power allocated to Sg .

The numerator of SLNRg is the combination gain consists of
the channel gain and beamforming gain of Sg . The denomi-
nator is the leakage power to other clusters for q 6= g. The
lower bound on the average SLNR can be derived as

E(SLNRg) =

E(

|Sg|∑
v=1

Pg,v

∣∣∣h†g,v,effwg
∣∣∣2)E(

1

σ2 + Pg
G∑
q 6=g

|Sq|∑
v=1

∣∣∣h†q,v,effwg
∣∣∣2 )

≥
w†g

(
|Sg|∑
v=1

Pg,vRg,v,eff

)
wg

σ2 + Pgw†g

(
G∑
q 6=g

|Sq|∑
v=1

Rq,v,eff

)
wg

, SLNRLB
g . (17)

The first equation in (17) is from the dependence between the
numerator and the denominator and the inequation is obtained
by the convexity of f(x) = 1/x. [15] has proved that the
optimal unit norm wg to maximize SLNRLB

g is the generalized
eigenvector given by

wg = umax


|Sg|∑
v=1

Pg,vRg,v,eff

σ2IG + Pg
G∑
q 6=g

|Sq|∑
v=1

Rq,v,eff

 . (18)

Due to the beamforming power constraint, the digital beam-
forming vector can be normalized as W =

√
GW

‖FW‖2 .

C. Max-Min Fairness Power Allocation

In Subsection B, we design the beamforming matrices to
consider the other weak users rather than straightforwardly
pointing the beam to the strongest user, so that the fairness
can be imposed in the beamforming aspect. After obtaining the
beamforming matrices, we reorder the users in the same group
to decide the decoding order based on the effective channel
gain feedback. Each user feeds back the effective channel gain
vectors, i.e.,

[
|hg,ud1|2 , |hg,ud2|2 , · · · , |hg,udG|2

]
, according

to the fixed beamforming matrices. The users are ordered as
|hg,idg|2 ≥ |hg,jdg|2 in Sg for i < j, g = 1, · · · , G. To ensure
user fairness, proper power allocation is essential. Consider
the fairness of the other weak users in the system, we choose
max-min fairness as the criterion which aims to maximize the



minimum achievable user rate in the cluster. The problem can
be formulated as follows

P1 max
{Pg,u}

min
{g,u}

Rateg,u (19)

s.t. C1 :

G∑
g=1

|Sg|∑
u=1

Pg,u ≤ Pmax, (19a)

C2 : Rg,u ≥ Rmin, (19b)
∀g = 1, 2, ..., G, u = 1, 2, ..., |Sg|,

C3 : SINRg,u,r ≥ SINRg,r, (19c)
∀g = 1, 2, ..., G, r = u+ 1, ..., |Sg|,

where Rateg,u = log 2(1 + SINRg,u) is the achievable data
rate of Ug,u. C1 is the total power constraint for the BS. C2
is the QoS guarantee for each user. With the given decoding
order, C3 is a constraint to ensure the SIC can be performed
successfully. P1 is a non-convex problem because its objective
function is non-convex. We introduce a variable t to denote
the minimum achievable rate of the users. Thus, P1 can be
re-written as P2.

P2 max
{Pg,u},t

t (20)

s.t. C1,C3,

C4 : Rg,u ≥ max{Rmin, t}. (20a)

C4 is the combination constraint of Rg,u > t and C2. In
P2, {Pg,u} and t are entangled, which makes the problem
difficult to solve directly. However, the introduced variable
t is a one-dimension scalar. With a fixed range, t can be
searched by the bisection method. As t presents the minimum
achievable rate of all users, the lower bound tmin should be
the Rmin under the QoS constraint. We consider an extreme
case that the BS generates one beam with all power pointing
to the strongest user among the K users. Assuming Ui is
the strongest user, the beam pattern can be obtained by the
equal gain transmission (EGT) algorithm in [17] which can
be calculated by f? = ]u†max (Ri) /

√
(Nt), where ] means

the angle extraction operation. The initial upper bound can be

calculated by tmax =
|f†?Rif?|
Ntσ2 . With a specific constant value t,

we evaluate that whether there exists a feasible power solution
by solve the following problem

P3 min
{Pg,u}

G∑
g=1

|Sg|∑
u=1

Pg,u (21)

s.t. C3,

C4 : 2yg,u

√
|hg,udg|2 Pg,u − y2

g,uηg,u ≥ 2% − 1,

(21a)

where % = max{Rmin, t} and {yg,u} is the auxiliary variable
in the quadratic transform [16]. With the fixed t and yg,u, P3
is a convex problem as to Pg,u. yg,u can be updated by

y?g,u =

√
|hg,udg|2 Pg,u/ηg,u. (22)

If the sum power
∑G

g=1

∑|Sg|
u=1 Pg,u ≤ Pmax, the power sat-

isfies the minimum data rate constraint as well as the sum
power limit, which implies that the mininum rate bound tmin

should be larger than the current t. Otherwise, the maximum
achievable data rate tmax should be smaller than the current t.
By appropriately adjusting the bounds of t by the bisection
procedure, t and {Pg,u} can be found within a desirable
accuracy τ . It should be noted that (20a) and (21a) are two
equivalent constraints. The equivalence and the convexity of
P3 can be found in [16]. The whole power allocation algorithm
is summarized in Algorithm2.

Algorithm 2 Power Allocation
Inputs: User grouping strategy Π, FBB , FRF , Rg,u.
Outputs: Power Allocation {Pg,u};

1: repeat
2: t = tmin + tmax/2 ;
3: repeat
4: Update y?g,u by (22);
5: Update Pg,u by solving the convex optimization

problem P3 for fixed y and t;
6: until P converges.
7: if

∑G
g=1

∑|Sg|
u=1 Pg,u ≤ Pmax then

8: tmin = t;
9: else

10: tmax = t;
11: end if
12: until tmax − tmin < τ .

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
SCSI based mmWave MIMO-NOMA through Monte Carlo
simulations. Different user grouping schemes and beamform-
ing designs are tested and compared. The BS is amounted
with Nt = 64 transmitting antennas connected to G = 4 RF
chains. Without loss of generality, Lg,u = 6 component paths
are assumed for each user. The DoA parameters θg,u,l are
uniformly distributed within [−π2 ,

π
2 ]. The accuracy for power

allocation convergence is set as τ = 10−5. The QoS minimum
rate constraint for each user is Rmin = 0.01bps/Hz [4]. We
set SNR = Eb

σ2 .

(a) Minimum data rate vs. Pmax. (b) Sum rate MMSE vs. K.

Fig. 1. Performance comparison.



Next, we briefly introduce the schemes compared in the sim-
ulation. For the user grouping phase, there are two schemes,
i.e., AGNES and K-means, where AGNES can be applied
based on ICSI [7] or SCSI and K-means is used in the
scheme with ICSI. The proposed analog beamforming matrix
design is denoted as “Statistical analog beamforming (SAB)”.
We also proposed two digital beamforming designs, where
one by (15) is based on ZF method and the other one with
SLNR metric by (18) can be applied based on either ICSI
or SCSI. In the classical cluster-headed scheme, the analog
beamforming vector is chosen from the codebook to maximize
the channel gain [5] and the digital beamforming is designed
by choosing the strongest effective channel and perform ZF.
To fairly compare the schemes, we calculate the analog beam-
forming vectors with EGT to harvest the large array gain. We
match several schemes to better observe the influence of each
stage. For instance, “AGNES+EGT+SLNR ICSI” represents
that we choose AGNES user grouping scheme, EGT analog
beamforming scheme and SLNR digital beamforming scheme
based on ICSI.

In Fig. 1(a), we show the minimum spectrum efficiency
performance of the different algorithms with the settings to be
K = 9 and SNR = 0 dB. We see that with the proposed sta-
tistical analog beamforming scheme SAB, the ZF method and
the SLNR based metric can achieve approximate performance,
which means that either eliminating the effective inter-cluster
interference or suppress the cluster leakage power can produce
good effect. However, this only happens when proposed analog
beamforming scheme is used. When only the strongest users
in each cluster are chosen, i.e., the analog beamforming is
calculated based on EGT, the algorithm based on SLNR is less
effective than the ZF algorithm. The reason is that the EGT
algorithm only takes the strong users into account which omits
the interference to the weak users. The SLNR metric fails to
decrease the leak interference due to this omission. When ICSI
is assumed, the AGNES based user grouping scheme is better
than the K-means user grouping scheme because the AGNES
algorithm can form the cluster spontaneously and does not
depend on the initial points used by the K-means algorithm.
This is consistent with the conclusion in [7].

In Fig. 1(b), the performance of the minimum data rate
versus the number of users of different algorithms is shown.
We set SNR = 5 dB and Pmax = 21 dBm. We see that the
minimum data rate decreases when the number of users K in-
creases for all algorithms since the average power for each user
decreases. Under SCSI, the SLNR based digital beamforming
design also show good performance to be approximately the
same as the ZF digital beamforming design. This means that
the SLNR metric can successfully suppress the inter-cluster
interference when considering the interference leakage metric
even in the overload mmWave MIMO-NOMA system.

V. CONCLUSION

In this paper, we have studied the fairness problem of
mmWave MIMO-NOMA systems. We have consider a more
practical scenario that only second order SCSI has been

obtained in the user grouping and hybrid beamforming phases.
A user grouping scheme based on the SCSI and AGNES
algorithm has been proposed which allows more than one user
in a cluster. Hybrid beamforming schemes have been provided
to promote the fairness among the users in each cluster and
reduce the inter-cluster interference. Power allocation with QT
has been solved using convexity tools to ensure the fairness for
NOMA. The simulation results show that the proposed beam
alignment balances the beam gain in a cluster better, which
balances the SE performance with fairness.

REFERENCES

[1] W. Roh, J. Y. Seol, J. Park, B. Lee, J. Lee, Y. Kim, J. Cho, K. Cheun, and
F. Aryanfar, “Millimeter-wave beamforming as an enabling technology
for 5G cellular communications: theoretical feasibility and prototype
results,” IEEE Commun. Mag., vol. 52, no. 2, pp. 106–113, Feb. 2014.

[2] J. Zhu, Z. Wang, Q. Li, H. Chen, and N. Ansari, “Mitigating intended
jamming in mmWave MIMO by hybrid beamforming,” IEEE Wirel.
Commu. Lett., vol. 8, no. 6, pp. 1617–1620, Dec. 2019.

[3] O. El Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, Jr.,
“Spatially sparse precoding in millimeter wave MIMO systems,” IEEE
Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

[4] L. Dai, B. Wang, Z. Ding, Z. Wang, S. Chen, and L. Hanzo, “A survey of
non-orthogonal multiple access for 5G,” IEEE Commun. Surveys Tuts.,
vol. 20, no. 3, pp. 2294–2323, 3rd Quart., 2018.

[5] J. Cui, Z. Ding, P. Fan, and N. Al-Dhahir, “Unsupervised machine
learning-based user clustering in millimeter-wave-NOMA systems,”
IEEE Trans. Wireless Commun., vol. 17, no. 11, pp. 7425–7440, Nov.
2018.

[6] S. Ali, E. Hossain, and D. I. Kim, “Non-orthogonal multiple access
(NOMA) for downlink multiuser MIMO systems: User clustering,
beamforming, and power allocation,” IEEE Access, vol. 5, pp. 565–577,
Mar. 2017.

[7] J. Zhu and Q. Li, “Flexible user grouping for MIMO-NOMA
millimeter wave communication systems,” in Proc. IEEE Int.
Conf. Commun. (ICC), Dublin, Ireland, Jun. 2020, pp. 1-6, doi:
10.1109/ICC40277.2020.9149350.

[8] J. Zhu, Q. Li, Z. L. Liu, H. Y. Chen, and H. V. Poor, “Enhanced
user grouping and power allocation for hybrid mmWave MIMO-NOMA
systems,” [Online]. Avaliable: https://arxiv.org/abs/2010.10980.

[9] J. Choi, “Power allocation for max-sum rate and max-min rate propor-
tional fairness in NOMA,” IEEE Commun. Lett., vol. 20, pp. 2055–2058,
Oct. 2016.

[10] Z. Xiao, L. Zhu, Z. Gao, D. O. Wu, and X. Xia, “User fairness
nonorthogonal multiple access (NOMA) for millimeter-wave commu-
nications with analog beamforming,” IEEE Trans. Wireless Commun.,
vol. 18, no. 7, pp. 3411–3423, Jul. 2019.

[11] A. Adhikary et al., “Joint spatial division and multiplexing for mm-wave
channels,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1239–1255,
Jun. 2014.

[12] Z. Li, S. Han, and A. F. Molisch, “Optimizing channel-statistics-based
analog beamforming for millimeter-wave multi-user massive MIMO
downlink,” IEEE Trans. Wireless Commun., vol. 16, no. 7, pp. 4288–
4303, Jul. 2017.

[13] M. Sadek, A. Tarighat, and A. H. Sayed, “A leakage-based precoding
scheme for downlink multi-user MIMO channels,” IEEE Trans. Wireless
Commun., vol. 6, no. 5, pp. 1711–1721, May 2007.

[14] A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath, Jr., “Channel
estimation and hybrid precoding for millimeter wave cellular systems,”
IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 831–846, Oct.
2014.

[15] M. Dai and B. Clerckx, “Transmit beamforming for MISO broadcast
channels with statistical and delayed CSIT,” IEEE Trans. Commun., vol.
63, no. 4, pp. 1202–1215, Apr. 2015.

[16] K. Shen and W. Yu, “Fractional programming for communication
systems Part I: Power control and beamforming,” IEEE Trans. Signal
Process., vol. 66, no. 10, pp. 2616–2630, May 2018.

[17] L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding in
massive multiuser MIMO systems,” IEEE Wireless Commun. Lett., vol.
3, no. 6, pp. 653–656, Oct. 2014.


	I Introduction
	II System model
	III PROBLEM FORMULATION AND PROBLEM SOLUTION
	III-A User grouping based on the SCSI
	III-B Hybrid beamforming based on the SCSI
	III-C Max-Min Fairness Power Allocation

	IV SIMULATION RESULTS
	V CONCLUSION
	References

