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Abstract—This paper studies the long-standing problem of
outage-constrained robust downlink beamforming in the multi-
user multi-antenna wireless communications systems. State of
the art solutions have very high computational complexity which
poses a major challenge to meet the latency requirement in the
future communications systems, e.g., the targeted 1 ms end-to-end
latency in 5G. By transforming the robust beamforming problem
into a deep learning problem, we propose a new unsupervised
data augmentation based deep neural network (DNN) method
to address the outage-constrained robust beamforming problem
with uncertain channel state information at the transmitter.
Simulation results demonstrate that our proposed data aug-
mentation based DNN method for the robust beamforming
problem is capable to satisfy the required outage probability,
and most importantly, compared to the benchmark Bernstein-
Type Inequality (BTI) method, it is less conservative, more power
efficient and several orders of magnitude faster.

I. INTRODUCTION

In the multi-user and multi-antenna systems, the beamform-
ing method has shown its excellent performance in enhanc-
ing the quality of service (QoS) and improving the system
throughput [1]. By exploiting the channel state information
(CSI) at the transmitter side (CSIT), the beamforming al-
gorithms are capable to optimize the resource allocations
between multiple users, while keeping the interference low
[2]. However, perfect CSIT is not always available in practical
systems. Even under the assumption of perfect CSI at the
receiver side, the feedback is prone to quantization errors.
Moreover, the time-varying nature of the wireless channels
makes the estimated CSI vulnerable to channel error and
uncertainty.

With imperfect CSIT, the resource allocation algorithms
including the beamforming algorithms are subject to perfor-
mance deterioration. This makes the optimal beamforming
under perfect CSIT suboptimal with regard to the designed
targets, such as throughput and signal-to-interference plus
noise ratio (SINR). It may even fail the communications due
to the uncertainty in the estimated CSIT, which makes the
whole communications system unreliable. Traditionally, this
challenge is addressed via robust beamforming, which has
been well studied to provide the worst-case or probabilis-
tic performance guarantee using semidefinite relaxation [2],
Bernstein-Type Inequality (BTI) method and Large Deviation

Inequality (LDI) method [3]. These methods have been then
extensively applied in the study of systems with CSI uncertain-
ties, including simultaneous wireless information and power
transfer (SWIPT) [4] and multicell interference networks [5].

However, existing numerical methods are subject to high
computational complexity and cannot meet the latency require-
ment in the fifth-generation (5G) and beyond networks. The
targeted latency in 5G networks is below 1 millisecond (ms),
which is in contrast to the 10 ms performance in 4G net-
works [6]. This is essential in supporting various time-critical
services, such as self-driving cars and industrial automation
applications, but also poses a more stringent constraint to the
advanced signal processing techniques to be applicable in these
time-critical systems, whose advantages such as throughput
improvement might be invalid due to the high complexity.
Together with the potential performance degradation due to
uncertainty in CSI, the robust beamforming problem is chal-
lenging from both latency and reliability aspects.

To address the aforementioned challenges, we propose an
unsupervised data augmentation based Deep Neural Network
(DNN) approach for the outage constrained robust beamform-
ing in multi-user wireless networks. The proposed training
method transforms the robust beamforming problem under
uncertainties to a deep learning problem, where the beam-
forming output from the DNN is trained with the data aug-
mentation method to be robust against potential CSI errors,
and the estimated CSIT is the DNN’s input. Comparing to the
benchmarking BTI algorithm, the simulations show that the
proposed data augmentation based DNN approach is capable
to guarantee the required outage probability, and achieve better
power efficiency and 800 times faster time performance.

In the rest of the paper, we will first formulate the robust
beamforming problem in multi-user wireless communication
networks in Section II. The robust beamforming problem is
then transformed to a deep learning problem, and a novel data
augmentation based DNN method is proposed in Section III.
The simulation results are presented in Section IV. Finally, the
conclusions are drawn in Section V.



II. PROBLEM FORMULATION

In this work, we consider a multi-user wireless commu-
nications network, where the transmitter is equipped with nT
antennas and each receiver (user) has a single antenna. Specif-
ically, an M -user multiple-input and single-output (MISO)
system is considered as follows [2]:

ym = hH
m

(
M∑
n=1

tnxn

)
+N0,m = 1, . . . ,M, (1)

where (·)H is the conjugate transpose operation and xn is the
complex digital symbol sent to user n with Exn

{|xn|2} = 1
and Ex{·} denotes the expectation operation with respect to x,
ym (complex scalar) is the received symbol at the user m, hm

(nT×1 complex vector) is the MISO channel coefficients from
the transmitter to user m , tm (nT × 1 complex vector) is the
transmit beamforming vector for user m and N0 is the power
of the noise at user m that follows a circularly symmetric
complex Gaussian distribution.

For each user m, it decodes its own information signal and
treats others’ information signals as interference. Hence the
SINR γm can be given as follows:

γm =
|hH

mtm|2∑M
n=1,n6=m |hH

mtn|2 +N0

, ψ({t1, . . . , tM}, {h1, . . . ,hM}).
(2)

The transmit power to user m is given by ||tm||22, therefore
the total transmit power P for all M users is given as follows:

P (t1, . . . , tM ) =

M∑
m=1

||tm||22, (3)

where || · ||2 denotes the Euclidean norm. The problem of
finding the optimal configurations of t1, . . . , tM in (2) with
targeted performances such as throughput or SINR are called
beamforming optimization, whose solutions under perfect
CSIT have been well studied in the existing literature [7].

In practical systems, the transmitter cannot obtain the per-
fect CSIT, because of the estimation errors at the transmit-
ter/receiver side, or quantization errors in the feedback from
the receivers. In this paper, it is assumed that CSIT is not
perfect, which is modeled as follows:

hm = h̃m + ∆hm, (4)

where the CSIT estimation h̃m is known at the transmitter
side, and ∆hm is the channel error.

The channel error ∆hm is a random variable, we cannot
know the actual CSI hm and need to make beamforming
decisions based on the estimated CSI h̃m and the statistical
information about ∆hm. In this paper, the robust beamforming
problem is formulated as the minimization of the expectation
of transmit power, while satisfying the outage constraints for
each user due to different channel error {∆h1, . . . ,∆hM}
under a given set of estimated CSI {h̃1, . . . , h̃M}. Mathemat-

ically, this problem is formulated as

min
t1,...,tM

E∆h1,...,∆hM
{P (t1, . . . , tM )}

s.t. E∆h1,...,∆hM
{Pr{γm ≤ Γm}} ≤ ρmax,∀m,

(5)

where Pr{x} denotes the probability of the event x, ρmax

denotes the maximum outage probability and Γm denotes the
targeted SINR threshold. The outage is defined as the case
that the user’s SINR γm is below the targeted SINR threshold
Γm, where the constraints in (5) is to stress that for each user
this outage probability should be statistically bounded by ρmax

with regard to all potential channel error {∆h1, . . . ,∆hM}.
Note that the statistical formulation in (5) is different from

beamforming problem with perfect CSI. The exact channel
error {∆h1, . . . ,∆hM} cannot be known in advance, where
usually only historical or statistical distributions can be known.
Therefore with a given estimated CSI {h̃1, . . . , h̃M}, solutions
{t1, . . . , tM} via the robust beamforming (5) are functions
of both channel error {∆h1, . . . ,∆hM} and estimated CSI
{h̃1, . . . , h̃M}, while the traditional beamforming solutions
with perfect CSI only rely on the estimated CSI.

The problem (5) is highly involved to solve because there
is no closed-form expression for the outage constraint. In
the existing literature, this problem is partially solved by
robust beamforming methods such as BTI method and LDI
method [1]. However due to the complexity, these existing
numerical algorithms are subject to the high computational
latency and the solutions are conservative which requires
much more power than necessary to guarantee the robustness.
Due to the complexity of the problem, the required time for
traditional methods are large (over hundreds of milliseconds),
which cannot meet the 5G’s latency requirement of sub-
millisecond time performance. In this paper, we address the
time and reliability challenges under imperfect CSIT using a
data augmentation based DNN method as detailed in the next
section.

III. DATA AUGMENTATION BASED DNN METHOD

Compared to the traditional numerical methods, the deep
learning based solutions are attractive since the inference of the
trained models is competitive in its time performance, which
is especially desirable in the scenarios with stringent latency
requirements. In this section, a data augmentation based DNN
method is proposed to solve the robust beamforming problem
under imperfect CSIT.

Assume there is a perfect robust beamforming function f(·),
where for each estimated CSI {h̃1, . . . , h̃M}, its outputs are
the robust beamforming solutions {t1, . . . , tM} that satisfy the
constraints defined in the optimization problem (5), which can
be written as follows:

{t1, . . . , tM} = f(h̃1, . . . , h̃M ). (6)

Next assume there is a DNN network fθ(·) with parameter
set θ that can represent (6) as follows:

{t1, . . . , tM} = fθ(h̃1, . . . , h̃M ;θ). (7)



In this way, the general objective of the DNN based method
is to use deep learning method to find the parameter set θ, such
that (7) produces solutions for (5). The deep learning method
cannot be directly applied to solve the optimization problem
(5) because of the constraints and the channel errors, where
several transformations are performed as follows.

Firstly, it is noticed that the outage performance needs to be
derived in the constraints in (5). To facilitate the calculation of
the outage, the quantile function gm(γm, ρmax) is introduced
as follows [8]:

gm(γm, ρmax) = inf{γ|Pr{γm ≤ γ} ≤ ρmax}, (8)

where the quantile function gm(γm) calculates the minimum
SINR value γ that makes the probability of γm ≤ γ no more
than the maximum outage probability ρmax. This transforms
the original constraint in (5) to its equivalent form as follows:

min
{t1,...,tM}

E{∆h1,...,∆hM}{P (t1, ..., tM )}

s.t. E{∆h1,...,∆hM}{gm(γm, ρmax)− Γm} ≤ 0,∀m.
(9)

Next, in (5), for every given estimated CSI {h̃1, . . . , h̃M},
the traditional optimization method requires a new numerical
search. Different from that, this paper is to find the a universal
parameter set θ such that the DNN network fθ(h̃1, . . . , h̃M ;θ)
will provide solutions to all estimated CSI {h̃1, . . . , h̃M} as
inputs, instead of training different sets θ for every combina-
tion of {h̃1, . . . , h̃M}. By using the relation between γm and
the beamforming solutions {t1, . . . , tM} in (2) as well as the
definition in (7), the problem in (9) is further transformed to
find the optimal parameter set θ as follows:

min
θ

E {h̃1,...,h̃M}
{∆h1,...,∆hM}

{P (fθ(h̃1, . . . , h̃M ;θ))}

s.t. E {h̃1,...,h̃M}
{∆h1,...,∆hM}

{gm(ψ(fθ(h̃1, ..., h̃M ;θ),h1, ...,hM ),

ρmax)− Γm} ≤ 0,∀m.
(10)

Since the deep learning method cannot directly include the
constraint in the training procedure, the Lagrange dual method
[9] is applied and the Lagrangian of (10) is derived as follows:

L(θ,λ) , E {h̃1,...,h̃M}
{∆h1,...,∆hM}

{P (fθ(h̃1, . . . , h̃M ;θ))}+

M∑
m=1

λmE {h̃1,...,h̃M}
{∆h1,...,∆hM}

{gm(ψ(fθ(h̃1,...,h̃M ;θ)),ρmax)−Γm}

(11)
where λ = {λ1, . . . , λM} are the Lagrange dual variables
associated with each constraint in (10). Then the dual problem
of (10) can be given as follows:

max
λ

min
θ
L(θ,λ)

s.t. λm ≥ 0,∀m.
(12)

By using L(θ,λ) as the loss function, it is seen that the
transformed problem in (12) provides an unsupervised deep
learning approach to solve the original outage constrained

robust beamforming under imperfect CSIT problem in (9).

Fig. 1. An illustration of the proposed DNN training method for the robust
beamforming problem in the URLLC networks.

Recall that during the operation, only the estimated CSI
{h̃1, . . . , h̃M} are available to calculate the beamforming
{t1, . . . , tM}, while the actual CSI {h1, . . . ,hM} are not
known. To make the beamforming outputs {t1, . . . , tM} ro-
bust to all possible {h̃1, . . . , h̃M} and {∆h1, . . . ,∆hM}, we
propose a data augmentation based DNN method, which is
illustrated in Fig. 1. During the training, the inputs are the es-
timated CSI {h̃1, . . . , h̃M}, while the outputs of the DNN are
the beamforming {t1, . . . , tM}. To evaluate the performance
of the DNN outputs and calculate the loss function, we need
to calculate the outage performance. Since there is no closed-
form expression for the outage constraint in (5), we propose
that each {h̃1, . . . , h̃M} is combined with a set of potential er-
rors to facilitate the evaluation of the outage probability, which
results in an augmented CSI data set containing a group of the
possible CSI realizations {h1, . . . ,hM}. Then this augmented
CSI data set is used to calculate their corresponding SINR with
regard to the same beamforming output {t1, . . . , tM} via (2),
which is referred to as the SINR Calculation Module in Fig. 1.
Meantime, the transmit power P ({t1, . . . , tM}) is calculated
via (3), which is referred to as the Power Calculation Module
in Fig. 1. Finally the SINR and transmit powers are calculated
via (11) to form the loss function.

In (11), the expectation calculation can be fulfilled by the
arithmetic mean over a subset of all potential combinations
of estimated CSIs and channel errors. With the assumption of
independence between estimated CSIs and the channel errors,
the training samples for the estimated CSIs and channel errors
can be created independently and much reduced in size. In
practice, we can sample the estimated CSIs into a set Sh̃
and the potential channel errors into a set S∆h, either via the
historical measurements from the real-world system, or the
random samples from the known distributions.

During the training procedure, both the Sh̃ and S∆h can
be divided into batch-wise subsets Sh̃ and S∆h, respectively.
Then the augmented data set Sh̃+∆h can be created via
Sh̃+∆h = {hi|hi = h̃i + ∆hj ,∀h̃i ∈ Sh̃,∀∆hj ∈ S∆h}.

Then at the training step t, the DNN parameter θ and the
dual parameters λ are updated using (13) and (14) at the top
of this page based on the Gradient Decent (GD) method [10].
where the clamp operation is defined as (x)+ , max{x, 0},



θ(t) = θ(t−1)−αDNN

|Sh̃|
∑
h̃∈Sh̃

∇θP (fθ(h̃;θ(t−1)))+

M∑
m=1

αDNNλ
(t−1)
m

|Sh̃+∆h|
∑

h∈Sh̃+∆h

∇θ

(
gm(ψ(fθ(h̃;θ(t−1)),h), ρmax)− Γm

)
(13)

λ(t)
m =

λ(t−1)
m +

αLλ
(t−1)
m

|Sh̃+∆h|
∑

h∈Sh̃+∆h

(gm(ψ(fθ(h̃;θ(t−1)),h), ρmax)− Γm)


+

, (14)

αDNN and αL are the learning rates for DNN network and
Lagrange dual parameters, respectively.

IV. SIMULATION

In order to validate the performance of the proposed data
augmentation based DNN method for the robust beamforming
problem, a scenario with a 2-antenna transmitter and two
single-antenna users is considered, which is referred to as
2 × 2 scenario in the rest of the paper. In the simulation,
the estimated CSIs and the channel errors are assumed to be
mutually independent and follow the independent and identical
distribution of (i.i.d.) standard circularly symmetric complex
Gaussian distribution with the variance of 1 and 0.002, respec-
tively [1]. The systems’ statistical performance requirement is
set as a maximum outage probability ρmax = 0.05 with an
SINR threshold of 2 dB. In order to compare the performance
of the proposed DNN based method with the state-of-the-art
methods, the BTI method in [1] is used as the benchmark
algorithm, which is solved with SeDuMi via CVX [11].
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Fig. 2. The CDF performance comparison between the BTI method and the
proposed DNN method for user 1 in a 2x2 scenario.

For the training purpose, a set of CSI estimation is randomly
generated with a total size of 104, while the size of the channel
error set is 4× 105. The batch size for the estimated CSIs is
set as 103, while the batch size for the channel errors is set
as 105, which is equivalent to an augmentation ratio of 100 in
Fig. 1. The complex channels are represented in real forms,
where each estimated CSI and channel errors are reshaped to
a 1× 8 row vector with the imagine parts concatenated after
the real parts.

A DNN network with 5 hidden layer is constructed, where
all hidden layers are fully connected layers with width 200,
and the PReLU activation function [12] is applied as the
activation layer, which is defined as PReLU(x) = max{x, 0},
if x ≥ 0, and 0.25x otherwise. The batch normalization [13]

for each hidden layer and Adam algorithm [14] are used as the
optimizer with a learning rate of 10−5 and an L2 penalty of
10−5. The Lagrangian in (11) is used as the loss function for
the unsupervised learning procedure as detailed in Fig. 1, with
a learning rate of 10−2 for the Lagrange dual parameters. The
models were trained with the open-source machine learning
framework PyTorch on GPU Nvidia Titan RTX.
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Fig. 3. The CDF performance comparison between the BTI method and the
proposed DNN method for user 2 in a 2x2 scenario.

The trained models are evaluated against 104 randomly
generated estimated CSIs and 104 randomly generated channel
errors. The cumulative distribution function (CDF) of the
achievable SINR under the considered 2 × 2 scenario are
considered, where the results for User 1 and User 2 are shown
in Fig. 2 and 3, respectively. In this considered scenario, the
equivalent SINR threshold Γm for both users are the same as 2
dB, which is illustrated as the vertical solid line in the figures.
It can be seen that both the proposed data augmentation based
DNN method and the BTI method have achieved the robust
beamforming objective, where the CDF at 2 dB are both
below the designed goal of 5% as indicated by the horizontal
dashed line. Compared to the proposed DNN based method as
indicated in Fig. 2 and 3, the BTI method has a much lower
probability than the design threshold of 5% outage below
2dB. As detailed in Table I, the proposed DNN method also
shows a 1.63 dB average transmit power performance saving
against the BTI method, which indicates that BTI provides
much conservative performance at the cost of more average
consumed power as compared to the proposed DNN method.
This demonstrates that the proposed DNN method achieves
a better performance with regard to the outage-constrained
robust beamforming targets, where the objective is to minimize
the average transmit power. It is also noticed that the CDF
performances for User 1 and User 2 are sharing similar trends,
which demonstrates that the proposed DNN method is capable



TABLE I
TIME AND AVERAGE TRANSMIT POWER PERFORMANCE FOR THE COMPARED METHODS

Average Time (s) Min. Time (s) Max. Time (s) Average Transmit Power
DNN method 3.23e-4 3.17e-4 4.00e-4 12.47 dB
BTI method [1] 2.65e-1 2.46e-1 3.23e-1 14.10 dB

to provide a fair performance trade-off between the two users.

Fig. 4. The frequency of the 2000 execution time performance, compared
between the proposed DNN method and the BTI method.

The executing time for the proposed DNN method and the
benchmarking BTI method are also investigated, which is of
great importance to the time-critical applications in the 5G
and beyond networks. For a fair comparison, both methods
exploit the same set of randomly generated 2000 estimated
CSIs as inputs, and executed on an Intel Core i7 CPU instead
of GPU. The statistical results are presented in Fig. 4, while
the details of the minimum, average and maximum time to
complete the algorithms, as well as the average transmit power,
are reported in Table I. It can be seen that the minimum time
for the BTI method to complete the beamforming calculation
is 246 ms, while in contrast, the maximum execution time
for the proposed DNN method is 0.4 ms. On average, our
proposed DNN methods can reduce the executing time of the
BTI method by 800 times.

From Fig. 4, it can be seen that the execution time for the
proposed DNN based method has less variation compared to
that for the BTI method. This can be indicated by two aspects,
a) the variation range of the proposed DNN based method is
within 0.1 ms, while that of the BTI method is more than 70
ms, and b) the execution time for the proposed data augmen-
tation based DNN method is more concentrated to its mean
value (0.32 ms), while the time performance for BTI method
is more diverse around its mean value (265 ms) as indicated
in Fig. 4. This can be explained by the formulation difference
between the BTI method via (6) and the proposed DNN based
method via (7), because the numerical searching procedure
in BTI method varies with different estimated CSIs, but the
proposed data augmentation based DNN method applies the
same calculation procedure to all possible estimated CSIs. This
indicates a more reliable executing time performance of the
proposed data augmentation based DNN method compared to
the BTI method.

V. CONCLUSION

In this paper, the outage-constrained robust beamforming
problem was studied in multi-user multi-antenna wireless
communications systems, where the time complexity and
statistical outage performance were addressed simultaneously.
The robust beamforming problem was transformed to a deep
learning problem by applying Lagrange dual method, and
a novel augmentation-based DNN training approach was
proposed. The simulation results verified that the proposed
data augmentation based DNN method satisfied the outage-
constrained robust beamforming targets, while it outperformed
the benchmarking robust beamforming algorithms in terms of
executing time and average transmit power performance.
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