| Universit
of Glasg_;rowy

vvvvvvvvvvvvvv

Cao, M., Cao, B., Hong, W., Zhao, Z., Bai, X. and Zhang, L. (2021) DAG-
FL: Direct Acyclic Graph-based Blockchain Empowers On-Device
Federated Learning. In: 2021 IEEE International Conference on
Communications (ICC 2021), 14-23 Jun 2021, ISBN 9781728171227
(doi:10.1109/1CC42927.2021.9500737)

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/235759/

Deposited on 3 March 2021

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/ICC42927.2021.9500737
http://eprints.gla.ac.uk/235759/
http://eprints.gla.ac.uk/

DAG-FL: Direct Acyclic Graph-based Blockchain
Empowers On-Device Federated Learning

Mingrui Cao', Bin Cao', Wei Hong?, Zhongyuan Zhao!, Xiang Bai®, and Lei Zhang*
!State Key Laboratory of Networking and Switching Technology,
Beijing University of Posts and Telecommunications, Beijing, 100876, China
2Beijing Xiaomi Mobile Software, Beijing, 100085, China
3China Electronic Technology Cyber Security Co., Ltd., Chengdu, 610041, China
4James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, U.K.

Abstract—Due to the distributed characteristics of Federated
Learning (FL), the vulnerability of global model and coordination
of devices are the main obstacle. As a promising solution of
decentralization, scalability and security, leveraging blockchain
in FL has attracted much attention in recent years. However, the
traditional consensus mechanisms designed for blockchain like
Proof of Work (PoW) would cause extreme resource consumption,
which reduces the efficiency of FL greatly, especially when the
participating devices are wireless and resource-limited. In order
to address device asynchrony and anomaly detection in FL while
avoiding the extra resource consumption caused by blockchain,
this paper introduces a framework for empowering FL using
Direct Acyclic Graph (DAG)-based blockchain systematically
(DAG-FL). Accordingly, DAG-FL is first introduced from a three-
layer architecture in details, and then two algorithms DAG-
FL Controlling and DAG-FL Updating are designed running on
different nodes to elaborate the operation of DAG-FL consensus
mechanism. The extensive simulations show that DAG-FL can
achieve the better performance in terms of training efficiency
and model accuracy compared with the typical existing on-device
federated learning systems as the benchmarks.

I. INTRODUCTION

N order to solve the data island problem caused by privacy

and make the best use of distributed data on various
devices, Federated Learning (FL) has recently drawn much
attention. It is a distributed machine learning framework,
and participants in FL transfer and communicate the model
parameters without revealing user privacy to establish machine
learning models [1, 2]. For wireless scenarios, on-device FL is
one of the most typical application where participating nodes
of FL are numerous mobile devices under a wireless network
[3, 4]. Meanwhile, with the advent of 5G era, mobile devices
would have sufficient communication bandwidth which makes
it possible to establish an efficient FL system on mobile
devices.

Although FL is widely considered to be a feasible way to
enhance privacy and security in 5G wireless networks, it still
faces many challenges during deployment [5]. The main two
points are as follows.

o Device asynchrony: Various nodes have different re-
sources for FL in terms of computing, communication,
caching, battery power, data, and training time, which
would result in heterogeneity and it is a natural character-
istic especially in wireless networks [5]. As a result, due

to the limited capacity and ability of node, network and
system, it is hard to coordinate FL process perfectly gen-
erating the device asynchrony. To this end, the traditional
centralized and synchronous FL system like Google FL
proposed in 2017 [1], a single node must wait for other
nodes to complete their tasks and then enter the next
iteration together after completing its own training task.
However, this manner might generate the deteriorated
cost incurred by the bottleneck node obviously, in which
the worst case is that if a node shuts down during training,
it may let an iteration of FL be invalid completely [6, 7].

o Anomaly detection: Due to privacy concerns, the local
data set and local operation process of a node are invisible
by others, which makes FL suffer from abnormal actions
of nodes easily. Especially considering massive partici-
pating nodes, the challenge of FL is to detect abnormal
nodes and avoid adverse effects as much as possible.
Abnormal nodes will reduce the overall efficiency of
FL system as well as model accuracy by uploading
abnormal parameters during the FL process, the machine
learning model built by all nodes together would be very
vulnerable, and thus anomaly detection in FL is necessary
[8, 9].

To this end, some researches focus on asynchronous FL
framework to solve device asynchrony, and anomaly detection
strategy to mitigate the impact of abnormal node in FL system.
Recently, considering the asynchronous system and security
protection, blockchain becomes a nature design adopted in FL
[10], the reasons are twofold. 1) Nodes can announce local
model immediately without any asynchrony requirement. 2)
Blockchain miners can collect and validate model parameters
to encourage normal action while avoiding anomaly.

Although recent blockchained FL work [3, 11] have
achieved some progress and advantages to address the men-
tioned challenges, there are still some problems that have
not been investigated thoroughly. First, these work basically
follow the synchronous framework of Google FL, in which
the innovation is to use miners to replace the central servers.
However, due to the synchrony, the mobile device acted
as a miner should be associated with each other, which
obeys the decentralization of blockchain while declining the

performance of FL in terms of delay, convergence, accuracy
and etc. Second, to maintain the blockchain operation, most
work use PoW [12] which allows node acted as a miner
consuming an amount of computing resource for consensus
achievement. Meanwhile, in order to detect abnormal nodes,
the miner should also verify the correctness of uploaded model
parameters. As a result, the training/learning efficiency might
not meet the expectation well caused by the blockchain cost
since the overall resource is limited, especially for on-device
FL under wireless networks.

Through the above observations, our concerned issue is
whether blockchain is available to establish an efficient asyn-
chronous on-device FL system without introducing too much
extra resource consumption. Owing to the evolution of consen-
sus mechanism, we notice that Directed Acyclic Graph (DAG)
ledger technology promotes blockchain from synchronous to
asynchronous bookkeeping without miner nor mining [13]. In-
spired by these, we propose a DAG empowered asynchronous
FL for purpose of efficiency and immunity, referred as DAG-
FL. Specifically, with an asynchronous architecture, DAG-
FL can well meet the device asynchrony and allow nodes
participating in FL iterations without considering the state of
others. Meanwhile, due to the voting consensus mechanism
of DAG ledger technology, the workload of model validation
is allocated to every node in DAG-FL, enabling anomaly
detection and the immunity to abnormal nodes.

The rest of this paper is organized as follows. Section II pro-
vides some basic concepts in DAG-FL. Section III introduces
DAG-FL in terms of architecture, consensus mechanism, and
FL algorithm. Furthermore, Section IV eleborates the opera-
tion of DAG-FL. Then, Section V analyzes the performance of
DAG-FL in the case of large-scale nodes through simulation
experiments. Finally, Section VI gives a summary.

II. FUNDAMENTALS

In order to elaborate the proposed DAG-FL, the basic
concepts of FL. and DAG leger technology involved in DAG-
FL are introduced briefly in this section.

A. Federated Learning

Traditional synchronous FL like Google FL is composed
of a central server and numerous nodes, where the global
model is maintained on central server and FL iterations is
performed on nodes. To complete an FL iteration, the central
server first selects several idle nodes to assign FL tasks, and the
assigned nodes download the current global model from the
central server. When the central server collects all local models
trained by assigned nodes, it runs the FederatedAveraging
algorithm [1] that combines all the local models on averaging
to get an aggregated new global model. In fact, due to device
asynchrony [5], synchronous FL cannot fit the on-device FL
scenarios well, and thus asynchronous FL has been studied
recently. Nodes in asynchronous FL can download the global
model from the central server at any time, and update it
immediately whenever it has trained a local model [6].

B. Blockchain and DAG technology

DAG-based blockchain is proposed to promote the syn-
chronous blockchain to asynchronous bookkeeping. The prin-
ciple of DAG-based blockchain is to attach the new transac-
tions in a forking topology [13] without maintaining a main
chain, and thus any new arrival transaction can be recorded in
blockchain immediately without any coordination [14]. The
consensus used in DAG-based blockchain can be treated as
a voting mechanism, which requires nodes to validate and
approve some early published transactions before publishing
their owns. Transactions that are newly published and not
approved yet on DAG are usually called as tips [15]. To publish
a transaction on DAG, one node needs to go through three
stages. In the first stage, the node selects some tips according
to some algorithms or just randomly. In the second stage, the
node validates the authentication and correctness of selected
tips. In the final stage, a new transaction, composed of essential
information and approvals to selected tips, is constructed and
published on DAG. Through these three stages, the votes
are stored in the published transactions, and unidirectional
connections among transactions are built forming the DAG
architecture through the approval relationship.

III. DAG-FL OVERVIEW

In this section, an overview of DAG-FL is provided in terms
of three aspects which are architecture, consensus mechanism,
and FL algorithm.

A. Asynchronous Architecture

DAG-FL is proposed as a decentralized asynchronous FL
system, including application, DAG and FI layers from top to
down. To well elaborate, this hierarchical structure of DAG-
FL is shown in Fig. 1, in which two mobile device nodes and
an external agent are involved.

1) FL Layer: FL layer is the bottom layer to provide
FL function. In order to obtain local models recorded as
transactions on DAG, FL layer allows any participating node
to use its own data to train the global model. The global model
is formed by using FederatedAveraging algorithm to aggregate
local models stored in transactions on DAG. After training the
global model, a new trained local model would be processed
and published as a transaction on DAG.

2) DAG Layer: In DAG layer, each node maintains a local
DAG, where the transaction contains authentication informa-
tion, local model parameters, and the approval connections.
The local DAG can be updated by broadcasting or inquiring
through wireless network using P2P technology, and thus
the new transaction (or say the new model) can be spread
throughout the DAG-FL network finally.

3) Application Layer: Application layer is deployed on
the top of DAG-FL, which provides the interface to external
agents by running smart contracts. Through the smart con-
tract, external agents can release FL task to nodes, observe
FL process, and obtain the target model as soon as FL is
completed. When a specific FL task is released according to
a smart contract, nodes in DAG layer can participate in this

Smart Contract

External Agent: ==
Application Layer

—
[Local DAG fi i Local DAG |
| Transaction | | Transaction | | Transaction | | Transaction |
DAG Layer
\ / __/

1Y 4 1Y r4
[Global Model | 1| Global Model |
| Trained Model l— —| Trained Model |

Node Node

FL Layer

Fig. 1: Architecture of DAG-FL.

work based on an incentive mechanism to gain an amount of
reward. And then, during FL process, the smart contract will
observe transactions on DAG to determine whether a target
model has been published.

Accordingly, the application layer provides an interface for
external agents to deploy DAG-FL easily, the DAG and FL
layer form an asynchronous platform for FL. Nodes with
device asynchrony like smart phones and IoT devices in DAG-
FL all need to maintain a local DAG to record transactions
published by every node. The local DAG on each node is
updated by communicating with adjacent nodes periodically
using the P2P technology in blockchain field, and thus newly
published transactions can be seen by all nodes in time. As
there is no central server in DAG-FL, one node in DAG-FL
constructs a global model from its local DAG to iterate FL
instead of requiring a global model from the central server.
This feature promises that nodes in DAG-FL can immediately
participate in an iteration of FL. whenever they are in idle state.
When the node completes an iteration of FL and gets a new
trained local model, the new local model can be published on
its local DAG as a transaction immediately, and latter the new
published transaction would be seen by all other nodes. In this
manner, the operation of any node cannot affect the state of
other nodes, which would satisfy the asynchrony of mobile
devices.

B. Consensus based Anomaly Detection

We propose a DAG-FL consensus to keep the asynchronous
FL platform stable, and present an effective way for anomaly
detection in DAG-FL.

Traditional blockchained FLs often use miners to update the
blockchain by running the consensus mechanism like PoW,
enabling every node to observe transactions published on
blockchain. Similarly, as there are no miners in DAG-FL, each
node in DAG-FL should both perform FL tasks and update the
DAG by running the DAG-FL consensus. Based on the voting
mechanism of DAG ledger technology, DAG-FL consensus
approves the nodes by validating both the authentication and

local model correctness of tips. Whenever a node in DAG-FL
performs one iteration of FL, it runs DAG-FL consensus and
should first choose some tips on its local DAG to validate. The
authentication of transactions can be validated by cryptography
technology like RSA in blockchain fields, and the local model
can be simply validated by computing the accuracy with a local
test data set. Authenticated transactions with higher accuracy
of local model would be chosen to construct the global model.
The node then uses local data set to train the global model to
get a local model. Finally, a new transaction that contains the
newly trained local model is published and approves the tips
which are used to construct the global model. Unlike the PoW
consensus in other blockchained FL systems which consume
resource on solving hash cryptography problems, DAG-FL
consensus avoids the extra consumption of resource unrelated
to FL.

DAG-FL consensus combines the voting mechanism of
DAG ledger technology with the process of local model
validation in FL, which can effectively detect abnormal nodes
and mitigate their impact on FL. With the continuous extension
of transactions on DAG, every approval of a transaction means
that the local model on the approved transaction is selected
to form a global model and influences the target model
co-construction of FL. Consequently, the more approvals a
transaction get, it will lead to the greater impact on FL,
otherwise it will be isolated and has less impact on FL.
Due to this unique consensus, the machine learning model
in DAG-FL is always trained towards the direction that most
nodes expect, and we assume that most nodes in DAG-FL are
normal nodes while only a few nodes are abnormal. Abnormal
transactions published by abnormal nodes usually have less
prediction accuracy on test set than that of transactions pub-
lished by normal nodes. Thus, compared with normal ones,
the probability of abnormal transactions being approved by
subsequent published transactions is much smaller. During the
process of FL, abnormal transactions are isolated and their
impact is minimized. In addition, nodes with too many isolated
transactions can be detected by the DAG-FL as abnormal
nodes, and then DAG-FL can react to these abnormal nodes.

C. FL Algorithm and Problem Formulation

DAG-FL is an asynchronous FL system without any central
server, so we design a special FL algorithm to perform FL
iterations. This part will give some numerical definition and
introduce the FL algorithm of our DAG-FL.

Our DAG-FL is deployed on nodes which are mobile
devices under a wireless network, such as the smart phones,
wearable devices, and IoT devices. We assume that these nodes
can communicate with each other considering an average
communication bandwidth B under the wireless network. Let
the set of mobile devices be denoted as D = {1,2,3,---, Np}
with |D| = Np, where Np, is the number of nodes. D; is the
i-th node in D, and the set of training data on D; is denoted
as S; with |S;| = N;, where N; is the number of samples in
S;. Node D; can create a local DAG g; that is only visible
to itself, and g; can be periodically updated. Let the model

stored in the transaction be denoted as w. So the local model
trained by node D; at time ¢ can be denoted as w?.

In order to build a common machine learning model with
DAG-FL, e.g., a two-layer CNN model, usually thousands of
FL iterations are requested. Initially, node D; starts an FL
iteration at ¢y by validating some tips on its local DAG first,
and then choose k tips with local models wzll, waQ,..., wfi’;_
(t1,te, ...ty < to, di,da,...,d, € D) to aggregate a global
model w® using the FederatedAveraging algorithm:

k
W' =Y nw, (1)
i=1

where Zle n; = 1, and n; is the weight factor representing
the importance of local models, and to simplify the FL
algorithm of our DAG-FL, here we set n; = 1/k which means
each local model is equally important.

After getting the global model, D; extracts m samples from
data set S; as the mini-batch z; to train the global model for
B times. Once D; gets a new local model wfo trained by w'©,
a transaction with local model wf” is published on g;, and
the FL iteration is completed. Samples in mini-batch z; can
be denoted as (z;,y;), where x; is the feature set and y; is
the label set. Then the loss function in machine learning can
be denoted as f,, (w), where f.,(w) = I(z;,y:;w), and is the
prediction error of (z;,y;) in model w.

In addition, due to the incentive mechanism of DAG-FL, D;
in DAG-FL expects to train global models in every participated
FL iteration to get the local model w;, which can minimize
F;(w;) as follows.

min Fi(wi) = EziNSifzi (wz) (2)

And for the whole DAG-FL system, external agents expect
to get target model w through smart contract after thousands
of FL iterations to minimize F'(w) as follows.

. 1
min F(w) = N, ZieD Fi(w;). 3)

IV. DAG-FL OPERATION

After a brief overview of DAG-FL, two algorithms involved
in DAG-FL will be proposed in this section to introduce the
operation process of DAG-FL in details.

The task publisher of FL in DAG-FL can be denoted as an
external agent E, which can be regarded as an authoritative
organization in the application layer holding a virtual machine
to run the smart contract. Agent E' can initialize the machine
learning model in DAG-FL and update a local DAG period-
ically to detect whether to terminate the FL task. We regard
a virtual DAG formed by all the published transactions in the
DAG-FL network as the global DAG. As mentioned in the
introduction of DAG-FL architecture, any node in DAG-FL
updates its local DAG from adjacent nodes at a fixed time
through wireless network. And this process can be seen as
a node communicating with the global DAG to update its
local DAG. When agent E publishes an FL task specifying
the structure of the machine learning model with an expected

final prediction accuracy ACC), then nodes in D are applied
to participate in this FL task. We assume that the beginning
time of an FL task is ¢, at ty agent E runs DAG-FL controlling
algorithm to publish the initial transaction with the initial local
model w8° to the global DAG. After ty, agent E updates
its local DAG and gets global model to compute the current
accuracy ACCY periodically. If ACC} is greater than or equal
to ACCy, agent E' broadcasts an termination signal to all
participating nodes in DAG-FL to terminate the FL, thereby
the FL task is completed.

Algorithm 1 DAG-FL Controlling

1: External agent F executes:

2: Input the framework of machine learning model and
target accuracy ACCy

3: Initialize the machine learning model with w’

4: Publish initial transaction including w® to all dodes

5: while true do

6: Update local DAG

7.

8

9

Choose k tips to compute global model wy
Get accuracy ACCy by wy
if ACCy > ACCy then

10: Send end signal to all nodes
11: break
12: end if

13: end while

Algorithm 2 DAG-FL Updating

1: Any node D; executes:

2: while true do

3: if end signal is recieved then

4 break

50 else

6 Update local DAG

7 if idle state then

8 Validate no more than « tips on local DAG

9 Choose k tips with the highest accuracy rate to
compute global model w;

10: Train w; with mini-batch z; for 8 times to get local
model w}

11 Publish a new transaction including w! and ap-
prove k transactions used to compute w; on local
DAG

12: end if

13: end if

14: end while

After £, all the participating nodes run the DAG-FL updat-
ing algorithm to achieve DAG-FL consensus whenever they
are in idle state. As nodes in DAG-FL are mobile devices,
nodes may shutdown during one iteration of FL because of
device asynchrony. And any node in DAG-FL which is in idle
state should go through four stages to participate within one
iteration:

o
N

Local DAG g; t

Time

. Normal Transactions Tips before t;

Isolated Transactions ‘ New Transactions in t;

New Transactions between t; and t;

Fig. 2: Transaction alternations on DAG g¢;.

1) Stage I: The node selects some tips (no more than «)
from local DAG randomly.

2) Stage 2: The node first validates the authentication of
tips selected in stage 1. Then the node computes the prediction
accuracy of the local models in the selected tips using its own
test data set.

3) Stage 3: The node chooses k (k < «) tips selected in the
first stage with the highest accuracy to run FederatedAveraging
algorithm and gets a global model. The node utilizes local data
set to train the global model and gets a trained local model.

4) Stage 4: A new transaction is constructed. The new
transaction contains authentication information, local model
trained in the third stage, and the approval information to
approve the k tips chosen in the third stage.

After the completion of the above four stages, the node then
successfully finishes one iteration in DAG-FL and publishes
the new transaction to the DAG, which will be soon observed
by all other nodes in DAG-FL.

Here we take node D; in DAG-FL as an example to illustrate
the alterations of transactions on g; during the process of
running the DAG-FL updating. Suppose that node D; is in idle
state at ¢; and intends to perform an iteration of DAG-FL. As
shown in Fig. 2, D; selects « recently published and has not
been yet approved tips from its local DAG g; to validate them.
Node D; then computes the global model w; with &k validated
transactions by using the FederatedAveraging algorithm. After
D; trains w; with the mini-batch z; of local data set S; for
[times, a new local model wfz is built, at time fo. Finally,
a new transaction contained the local model w? and approval
information is published to DAG g;.

V. SIMULATION

We design a simulation platform pySimuFL that can evalu-
ate the performance of the proposed DAG-FL as compared to
Google FL [1] and Block FL [3]. For simulation, there are 100
nodes in our pySimuFL that share the same wireless network
with a radius of 1km. In the following simulation experiments,
the goal of DAG-FL is to build a CNN machine learning model
which is also used in Google FL [1]. The used CNN model
has two 5x5 convolution layers (the first with 32 channels,
the second with 64, each followed with 2x2 max pooling), a
fully connected layer with 512 units and ReLu activation, and

TABLE I: Iteration delay

FL Systems | Average latency for 100 iterations/s
Google FL 132.06
Block FL 208.33
DAG-FL 103.05

a final softmax output layer (1,663,370 total parameters). We
also use the MNIST set as the data set like Mecmahan did
in [1]. To reflect the non-IId feature of local data on mobile
devices, 60000 training set is equally divided into 200 groups,
in which the samples in a group have same labels and every
node has two groups of 600 samples of training data with
two different labels. In order to enable models to validate
transactions, 10000 validation data set is equally allocated to
the 100 nodes with different labels for validation. Considering
a quasi-static network environment, we set up a relatively
conservative bandwidth B of wireless network, i.e., 20 Mbps.
Nodes are set to be in idle state for FL at different times, thus
enabling one node on average ready for a DAG-FL iteration
per second. The results of Blcok FL and Google FL in the
following figures are obtained by using the same nodes setting
as DAG-FL with the fittest learning rates. The average time
consumption per 100 iterations in our piSimuFL for the three
FLs is shown in Table. 1.

We first evaluate the accuracy of DAG-FL compared with
other FL systems in the ideal case shown as Fig. 3.(a). Note
that the accuracy of local CNN is obtained by training CNN
model on a single node with the whole MNIST data set. The
increase rate of accuracy can indicate the convergence rate
of the CNN model. According to Fig. 3.(a), we find that all
the three systems can accelerate the convergence rate of CNN
model. Although DAG-FL has a lower convergence rate than
Block FL and Google FL in the early stage, DAG-FL finally
achieves the highest accuracy. Furthermore, Block FL and
Google FL have nearly the same accuracy performance with
the increase of iterations. However, Block FL has the higher
latency per iteration among the three FLs as shown in Table 2.
This is because that Block FL should consume much time to
run PoW consensus mechanism unrelated to FL. We can also
notice that DAG-FL generates less latency than Google FL
per iteration, this is because that DAG-FL is an asynchronous
system and needs not to solve device asynchrony problem. In
summary, we can conclude that DAG-FL is an effective FL
system than Block FL and Google FL.

We consider normal and abnormal nodes, where abnormal
nodes can be set as lazy nodes and malicious nodes. The lazy
node reads the model parameters from an existing transaction
and uploads them directly without training the global model
with local data, so as to obtain potential rewards of FL and
achieve the purpose of laziness. In contrast, the malicious node
can train the global model with wrong data set to get poisonous
transactions.

The accuracy of different FL systems with 10 percent lazy
nodes are shown in Fig. 3.(b), and we find that DAG-FL is
more immune to lazy nodes. It can be observed that Block FL

0.8 0.8

0.8

e v o 5 — —

0.950 4

0.925 1

<
o

0.900 1

0.875 1

> >
3 3
< 0.6 S 064 1
]]
o o J'
< < . 0.95
8 04 8000 8500 9000 9500 | 10000 B 041 I 8000
° o |t
© —— DAG-FL o
024 --- Block FL 024
N R Local CNN model
Google FL

8500

9000

—— 10 lazy nodes in DAG-FL
—-— 10 lazy nodes in Block FL
10 lazy nodes in Google FL

9500 10000 8000 8500 9000 9500 10000

Global Accuracy
o
S

—— 10 malicious nodes in DAG-FL
—-— 10 malicious nodes in Block FL
10 malicious nodes in Google FL

0.2

0.0

0.0

2000 4000 6000

Number of Iterations

(a)

8000 10000 2000

4000
Number of Iterations

(b

6000

0.0

2000 4000 6000

Number of Iterations

©

8000 10000 8000 10000

Fig. 3: (a) The accuracy of different federated learning systems in ideal case, (b) The accuracy of different federated learning
systems with lazy nodes, (c) The accuracy of different federated learning systems with malicious nodes.

is significantly affected by the participation of lazy nodes in
term of the convergence rate and the accuracy. The reason is
that with more associated lazy nodes, the miner in Block FL
usually has more time to run PoW to win the right to publish
the next block. This means that more transactions published
by normal nodes are dropped instead of being adopted for the
global model updating.

We demonstrate the accuracy of different FL systems with
10 percents malicious nodes in Fig. 3.(c), and find DAG-
FL and Block FL are both insensitive to the participation
of malicious nodes. However, the accuracy of Google FL
significantly reduces when malicious nodes are involved, this
is due to the fact that Google FL is not capable of distin-
guishing malicious nodes. In contrast, Google FL can only use
the average algorithm to dilute the harmful model parameters
uploaded by malicious nodes, so as to achieve the purpose of
mitigation.

VI. CONCLUSION

In this paper, we proposed a DAG empowered FL system
named as DAG-FL, which combines DAG ledger technology
to overcome the problems of mobile device asynchrony and
abnormal nodes to complete the model co-construction task
of FL efficiently. DAG-FL is constructed by a three-layer
asynchronous architecture including FL, DAG, and application
layers taking the responsibilities of model training, commu-
nicating and observing. In this manner, DAG layer could
provide blockchain as a service (BaaS) establishing DAG-FL
controlling and DAG-FL updating algorithms for operation
process of DAG-FL. Finally, experimental results showed
that DAG-FL has the higher system efficiency and a better
target model with device asynchrony compared with other two
benchmark FL systems. Meanwhile, DAG-FL is also proved
to be insensitive to the impact of abnormal nodes and has the
ability of anomaly detection.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized

[2]

[3]

[4]

[5]

[6

=

[7]

[8]

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

data,” in Proc. 20th International Conference on Artificial Intelligence
and Statistics, vol. 54. Fort Lauderdale, FL, USA: PMLR, 20-22 Apr.
2017, pp. 1273-1282.

B. McMahan and D. Ramage, “Federated learning: Collaborative ma-
chine learning without centralized training data,” Google Research Blog,
vol. 3, 2017.

H. Kim, J. Park, M. Bennis, and S. Kim, “Blockchained on-device
federated learning,” IEEE Communications Letters, vol. 24, no. 6, pp.
1279-1283, 2020.

A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.
T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50-60, 2020.

C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
arXiv preprint arXiv:1903.03934, 2019.

X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous decentralized
parallel stochastic gradient descent,” in Proc. 2018 35th International
Conference on Machine Learning, vol. 80. Stockholmsmaissan, Stock-
holm Sweden: PMLR, 10-15 Jul. 2018, pp. 3043-3052.

E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proc. 23rd International Conference
on Artificial Intelligence and Statistics, vol. 108. PMLR, 26-28 Aug.
2020, pp. 2938-2948.

J. Zhang, J. Chen, D. Wu, B. Chen, and S. Yu, “Poisoning attack
in federated learning using generative adversarial nets,” in Proc. 2019
18th IEEE International Conference On Trust, Security And Privacy In
Computing And Communications/13th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE), Rotorua,
New Zealand, 2019, pp. 374-380.

Y. Chen, W. Liu, Z. Niu, Z. Feng, Q. Hu, and T. Jiang,
“Pervasive intelligent endogenous 6g wireless systems: Prospects,
theories and key technologies,” Digital Communications and Networks,
2020. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S235286482030242X.

U. Majeed and C. S. Hong, “Flchain: Federated learning via mec-
enabled blockchain network,” in Proc. 2019 20th Asia-Pacific Network
Operations and Management Symposium (APNOMS), 2019, pp. 1-4.
S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
Manubot, Tech. Rep., 2019.

Y. Li, B. Cao, M. Peng, L. Zhang, L. Zhang, D. Feng, and J. Yu,
“Direct acyclic graph-based ledger for internet of things: Performance
and security analysis,” IEEE/ACM Transactions on Networking, vol. 28,
no. 4, pp. 1643-1656, 2020.

B. Cao, Y. Li, L. Zhang, L. Zhang, S. Mumtaz, Z. Zhou, and M. Peng,
“When internet of things meets blockchain: Challenges in distributed
consensus,” I[EEE Network, vol. 33, no. 6, pp. 133-139, 2019.

S. Popov, “The tangle,” 10 Apr. 2018. [Online]. Available: https:
/Iwww.iota.org/research/academic- papers

