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Abstract—A novel intelligent reflecting surface (IRS)-aided
multi-robot network is proposed, where multiple mobile wheeled
robots are served by an access point (AP) through non-orthogonal
multiple access (NOMA). The goal is to maximize the sum-
rate of all robots by jointly optimizing trajectories and NOMA
decoding orders of robots, reflecting coefficients of the IRS,
and the power allocation of the AP, subject to the quality of
service (QoS) of each robot. To tackle this problem, a dueling
double deep Q-network (D3QN) based algorithm is invoked for
jointly determining the phase shift matrix and robots’ trajectories.
Specifically, the trajectories for robots contain a set of local optimal
positions, which reveals that robots make the optimal decision
at each step. Numerical results demonstrated that the proposed
D3QN algorithm outperforms the conventional algorithm, while the
performance of IRS-NOMA network is better than the orthogonal
multiple access (OMA) network.

I. INTRODUCTION

A robot is an intelligent machine that can work semi-

autonomously or fully autonomously, which can bestead or

replace humans in accomplishing dangerous, arduous, and com-

plex tasks, furthermore, expand the scope of human activities

and capabilities. Among them, an integration technology of

cellular networks with robots, namely, a communication-aware

connected robot technology, turns into an appealing heated topic

for channeling mission completion in recent years. This technol-

ogy can support reducing the complexity of local calculations

when robots are adopted for repeatedly handling high dimen-

sional data. And in the fifth-generation (5G) mobile networks

era, data transmission rate, latency, and compatibility of large-

scale device connections have all been ameliorated. Integrating

5G or beyond 5G cellular networks with connected robots [1]

are expected to create breakthrough developments. Additionally,

communication-aware connected multi-robot systems provide

system redundancy and enhanced capability compared to the

single robot systems, which improves mission execution effi-

ciency.

Despite the aforementioned benefits of connected robots,

there are some challenges during the applications. On the one

hand, with respect to the multi-robot networks, the conventional

scheme is to allocate a single wireless resource to a robot,

such as by frequency or time, however, which cannot guarantee

the spectrum efficiency and stability of multi-user connection.

As an amelioration to the conventional scheme, non-orthogonal

multiple access (NOMA) [2] technologies enhance spectrum

utilization efficiency and increase system throughput. The core

idea of NOMA is to opportunistically explore the users’ dif-

ferent channel conditions to superimpose the signals of robots,

thereby improving spectrum utilization efficiency. On the other

hand, when the robots are in the designated positions, the

transmission link between the AP and the robots is blocked

by obstacles and compels interruption of signal transmission.

Intelligent reflecting surfaces (IRSs) [3] can be a potential

candidate solution for addressing this problem and enhancing

communication quality. IRS has the capability of proactively

modifying the wireless communication links by controlling a

large number of passive reflective elements, which are rec-

ognized as a promising technique to enhance both spectrum

efficiency and energy efficiency of wireless networks. Thus, the

employment of the IRS can provide a solution for addressing

signal blockage.

Recent years, IRS-aided networks have witnessed a signifi-

cant improvement on spectrum efficiency and energy efficiency.

The authors in [4] developed a K-means-based online user

clustering algorithm to reduce the computational complexity and

derive the optimal power allocation policy in a closed form. In

[5], an energy-efficient algorithm is proposed to yield a good

tradeoff between the sum-rate maximization and total power

consumption minimization, by maximizing the system energy

efficiency by jointly optimizing the transmit beamforming at

the BS and the reflecting beamforming at the IRS. In [6],

efficient algorithms are proposed to maximize the sum-rate

of all users by jointly optimizing the active beamforming at

the BS and the passive beamforming at the IRS, subject to

successive interference cancellation decoding rate conditions

and IRS reflecting elements constraints. The authors of [7]

investigated the energy efficiency maximization problem in an

IRS-assisted multiple-user multiple-input single-output (MISO)

system. Also, To further improve the spectrum efficiency,

NOMA technology were considered in the IRS-assisted com-

munication. An semidefinite relaxation based solution in [8] is

proposed to address maximizing the sum-rate of all users in an

IRS-assisted uplink NOMA system. The authors in [9] proposed

a novel framework of resource allocation in multi-cell IRS-aided

NOMA networks, which is capable of being enhanced with the

aid of the IRS, and the proper location of the IRS can also

guarantee the trade-off between spectrum and energy efficiency.
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The effectiveness of IRS in NOMA system with respect to

transmit power consumption is examined in [10], which can

significantly reduce the required transmit power. The authors

of [11] analyzed various system performances in an IRS-aided

NOMA network, and provided useful design insights.

Sparked by the above advantages of NOMA and IRS, in

this paper, we explore the potential performance gain of the

IRS-aided multi-robot network. Particularly, we propose a novel

framework for multi-robot networks, where NOMA is employed

at the AP for serving multiple robots, and an IRS is invoked

to enhance communication efficiency and overcome the signal

blockage. Based on this framework, a sum-rate maximization

problem is formulated by jointly optimizing trajectories and

NOMA decoding orders of robots, reflecting coefficients of the

IRS, and the power allocation at the AP, subject to the quality

of service (QoS) of each robot. Then, an efficient algorithm is

developed jointly determining the phase shift matrix and robots’

trajectories. Numerical results show that: 1) The proposed IRS-

aided NOMA networks achieve significant gain compared to

IRS-OMA and without-IRS-assisted schemes; and 2) The pro-

posed D3DN algorithm outperforms the conventional algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION
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Fig. 1: Illustration of the IRS aided multi-robots cruise system

for the indoor environment.

As shown in Fig. 1, we focus our attention on a downlink

IRS-aided multi-robot NOMA networks, which consists of one

single-antenna AP which serves N (an example of N = 3

is shown in Fig. 1) single-antenna mobile wheeled robots

with the aid of an IRS with K passive reflecting elements.

We assume that the two-dimensional (2D) motion space for

robots moving and rotating is approximately smooth without

undulation, where the height hr of the robot (the height of the

antenna) is treated as constant. For simplicity, the value involved

in the precision of the motion space is ideal. Accordingly,

the position of the AP is denoted as (xA,yA,hA). Note that

for guaranteeing fairness, the IRS is located in the center of

the ceiling in the environment. The passive reflecting elements

K in the IRS can be partitioned into M sub-surfaces, while

each sub-surfaces consists of K̃ = KhKv elements. With the

explored 2D motion space and the pre-defined three-dimension

(3D) Cartesian coordinate system, the position of the IRS can

be denoted as (xI ,yI ,hI). Additionally, the position of the robot

i is denoted as Si = (xi,yi,hr).

In view of the deployment of the IRS, the composite received

signal is the combination of two components, where the signals

derived from AP-robot direct link, and the signals obtained

from the AP-IRS-robot reflecting link. We denote baseband

equivalent channels from the AP to the robot i, the AP to

the IRS and the IRS to the robot i as hhhi, i = {1, 2, · · · , N},

(hhh)H ∈ C1×K , and gggi ∈ CK×1, i = {1, 2, · · · , N}, respec-

tively. Additionally, the distance-dependent channel path loss is

modeled as Lu = Cd−γu , u = {Ai, Ii, AI} [12], where C and

γ denote the path loss when the distance away from the AP is

1m, and the path loss factor, respectively. Denote the q(t) and

q = (xI , yI , hI) as the positions of the robot and IRS. Thus,

the three individual channels at location q(t) for robot i can be

expressed as

hhhi(qi(t)) = LAi(qi(t)){
√

1

αAi(qi(t)) + 1
·

[
√
αAi(qi(t))̃lll

LoS

i (qi(t)) + l̂ll
NLoS

i ]},
(1)

gggi(qi(t)) = LIi(qi(t)){
√

1

αIi(qi(t)) + 1
·

[
√
αIi(q(t))g̃gg

LoS
i (qi(t)) + ĝgg

NLoS
i ]}, (2)

hhh = LAI{
√

1

αAI + 1
[
√
αAIh̃hh

LoS
+ ĥhh

NLoS
]}, (3)

where αu, u = {Ai, Ii, AI}, vLoS, v = {̃llli, g̃ggi, h̃hh}, wNLoS, w =
{̂llli, ĝggi, ĥhh} denote the Rician factor, deterministic line-of-

sight (LoS) component and random non-line-of-sight (NLoS)

Rayleigh fading components, respectively. Denote ΦΦΦ(t) =
diag(φ1(t), φ2(t), · · · , φK(t)) as the reflection coefficients

matrix of the IRS, where φk(t) = βk(t)e
jθk(t), k =

{1, 2, 3, · · · ,K}. Additionally, the |βk(t)| = 1 and θk(t) ∈
[0, 2π) denote the amplitude and phase of k-th element in the

IRS. Thus, the effective channel from the AP to the robot i is

given by

HHHi(qi(t)) = (hhh)HΦΦΦ(t)gggi(qi(t)) + hhhi(qi(t)),

i = {1, 2, · · · , N}. (4)

The interference among robots cannot be negligible while

one AP serves N robots simultaneously. Thus, according to

the fairness principle, the interference information needs to

be employed for the received signal at robot i. We consider

the NOMA strategy to mitigate interference among robots. For

the NOMA scheme, in addition to the superposition coding

(SC) method, the successive interference cancelation (SIC)



method should be leveraged for sharing the same time/frequency

resources to all the robots.

According to the NOMA principle, the SC method is applied

at the AP. Let Si =
√
pisi denote the transmitted signal for

the robot i, i = {1, 2, · · · , N}, while si, i = {1, 2, · · · , N}
represents the transmitted information symbol for the robot

i, i = {1, 2, · · · , N}. It is worth noting that Si is satisfied

E[|Si|2] = pi ≤ Pi, i = {1, 2, · · · , N}, with pi and Pi denoting

the transmitted power and its maximum value of the robot

i, i = {1, 2, · · · , N}, respectively. SIC is applied for each robot

to remove the interference. The robots with stronger channel

power gain decode signals of other robots with weaker channel

power gain priorily over decoding its own signal. Denote O(i)
as the decoding order of the robot i. For any two robots i and

j, i 6= j, i, j = {1, 2, · · · , N}, if the decoding order satisfying

O(i) > O(j), the recieved signal of robot i in equation can be

modeled as

Yi(qi(t)) =HHHi(qi(t))Si +
∑

O(j)>O(i)

HHHj(qj(t))Sj + n,

i = {1, 2, · · · , N}, (5)

where the n ∼ CN (0, σ2) denotes the additive white Gaussian

noise (AWGN) with average power σ2. For each robot i, i =
{1, 2, · · · , N}, the achievable rate can be denoted as Ri. Then

we denote (hhh)HΦΦΦgggi = (υυυ)Hψψψi, where ψψψi = diag{(hhh)H}gggi, υυυ =
[υ1, υ2, · · · , υK ]H , and υk = ejθk . so the signal-to-interference-

plus-noise ratio (SINR) of robot i is given by

τi(qi(t)) =
[|(υυυ)Hψψψi + hhhi|2pi]qi(t)∑

O(j)>O(i)

[|(υυυ)Hψψψj + hhhj |2pj]qj (t)
+ σ2

, (6)

where the σ2 denotes the variance of the AWGN. Then, accord-

ing to the formula R=log2(1+SINR), the achievable communi-

cation rate at robot i can be expressed as

Ri(qi(t)) =

log2(1 +
[|(υυυ)Hψψψi + hhhi|2pi]qi(t)∑

O(j)>O(i)

[|(υυυ)Hψψψj + hhhj |2pj]qj (t)
+ σ2

).

(7)

Let the P denote the total transmit power at the AP, where∑N
i=1 pi ≤ P . According to the decoding order, the transmit

power at robots i and j should satisfy the condition pi ≥
pj , O(j) < O(i).

Our goal is that all the robots can achieve maximum sum-

rate by jointly optimizing trajectories for robots, reflecting

coefficients matrix, the decoding order, and the power allocation

at the AP, subject to the quality of service (QoS) for all the

robots. Thus, the optimization problem is formulated as

max
υυυ,Ω,{pi},QQQ

N∑

i=1

Ri(qi(t)) (8)

s.t. Ri(qi(t)) ≥ R, (8a)

|υυυ| = 1, (8b)

[|(υυυ)Hψψψi + hhhi|2]qi(t) > [|(υυυ)H

[ψψψj + hhhj |2]qj(t), if Oi > Oj , (8c)

Ω ∈ ΠΠΠ, (8d)

N∑

i=1

pi ≤ P , (8e)

qi(t) ∈QQQi, (8f)

where the R, ΠΠΠ andQQQ = [QQQ1,QQQ2, · · · ,QQQN ] denote the minimal

required communication rate for all the robots in the 2D

explored space, the set of all the possible decoding orders and

the set of trajectories for all the robots, respectively. Constraint

(8a) and constraint (8b) are the QoS requirements for robot i and

the restraint for the IRS reflection coefficients. Constraint (8c)

and constraint (8d) are the decoding conditions for the NOMA

scheme. However, the main difficulty to solve the problem (8)

involves the integer constraints for decoding order design owing

to the following reasons. Firstly, according to the equations (1)

- (4), the channel model is position-dependent, which relies

on no concave trajectory QQQi and phase shift υυυ. Secondly, with

respect to the continuous-time t, infinite variables optimization

is difficult to handle. Thirdly, the communication rate for each

robot i is generally not a continuous function in virtue of

the position-dependent channel model. Fourthly, the individual

channel consists of LoS and NLoS components, which is

difficult to determine which components are included in the

channel model established according to robot positions. Thus,

conventional non-convex optimization methods are not proper

to be employed to solve these difficulties.

III. DUELING DOUBLE DEEP Q-NETWORK ALGORITHM

FOR TRAJECTORIES PLANNING AND PASSIVE

BEAMFORMING DESIGN

In this section, we propose a machine learning (ML)-based

algorithm, namely, dueling double deep Q-network (D3QN)-

based algorithm to solve problem (8), which is invoked for

trajectories planning and the phase shifts of the IRS, as well

as the power allocation from the AP to the robots, where

the D3QN makes full use of the advantages of double deep

Q-network (Double DQN) [13] and dueling deep Q-network

(Dueling DQN) [14].

1) State in the D3QN Model: The state space EEE = {et}
at each epoch of the IRS-enhanced multi-robot networks is

defined into three parts: the current phase shift θk(t) ∈ [0, 2π) of

each passive reflecting elements in the IRS, the current position

(xi,yi,hr) of the robot i, and the current set of allocation power

{pi} from the AP to all the robots. Thus, the state space EEE can

be expressed as

EEE = [θ1(t), θ2(t), · · · , θK(t);xi; {pi}]. (9)



The total number of positionsNp in the trajectories is denoted

as (|x
ŜI

− x
ŜF

| + |y
ŜI

− y
ŜF

| − 1) with randomly generated

[15] initial position ŜI and final position ŜF . The primary state

space complexity is calculated as (K +Np + 3).

2) Action in the D3QN Model: The action space FFF = {ft}
at each epoch of the IRS-enhanced multi-robot networks is

defined into three parts: the available quantity of phase shifts

{ 2πn0

2B0
, n0 = 0, 1, 2, · · · , 2B0 − 1}, the moving direction and

distance DDD = {dr, dl, d0, du, dd} for the IRS, the available

quantity of power allocation {p1, p2, · · · , pv}. Note that the B0,

dg,uuu = {r, l, 0, u, d}, v denote the resolution for the IRS phase

shift, the right-left-stillness-up-down direction with 1 unit pace,

and the total number of the available power allocated to the

robots. Thus, the action state FFF can be expressed as

FFF = [{2πn0

2B0
};DDD; {p1, p2, · · · , pv}]. (10)

Accordingly, the primary action space complexity is calcu-

lated as (2B0 + v + 3).

3) Reward in the D3QN Model: The reward is a considerable

factor in the optimization of trajectories planning and passive

beamforming design. To make the calculation simple, we com-

pare the communication rates between two adjacent timeslots of

all the robots and give the robots the 1000 times rate difference

as rewards. The reward function of robot i can be calculated as

i(t) = 1000{[log2(1 +
|(υυυ)Hψψψi + hhhi|2pi∑

O(j)>O(i)

|(υυυ)Hψψψj + hhhj|2pj + σ2
)](t)

− [log2(1 +
|(υυυ)Hψψψi + hhhi|2pi∑

O(j)>O(i)

|(υυυ)Hψψψj + hhhj |2pj + σ2
)](t−1)}, (11)

where [·](t) and [·](t−1) denotes the uniform for the communi-

cation rates at time t and t − 1. Thus, the maximization of

long-term sum reward can make dedication to the optimize

trajectories and passive beamforming.

4) D3QN-based Algorithm for trajectories planning and IRS

design: In the D3QN model, the AP acts as an agent. The

controller is installed at the AP, while the AP can make a

decision policy for the robots’ positions, IRS phase shifts

adjustment, as well as the power allocation from the AP to the

robots. At each timeslot t, the AP observes the state et ∈ EEE

of the system. The decision policy in the D3QN model is

determined by Q value in the Q-function. According to the

double DQN model, it does not directly find the maximum Q

value in each action in the target Q network, but first finds the

action corresponding to the maximum Q value in the current Q

network, which can be expressed as

fmaxt (et+1, ψt) = argmax
ft+1

Q(et+1, ft;ψt), (12)

and the target Q-value can be calculated by

Wt = r(t) + ηQ(et+1, f
max
t (et+1, ψt);ψt), (13)

Algorithm 1 D3QN-based algorithm for trajectories planning

and beamforming design

Input:

Q-network structure, LSTM network structure, ARIMA

structure, reply memory DDD, minibatch size N .

Return: Target Q-value function and decision policy.

1: Initialize:

2: Reply memory DDD, Q-table QQQ, R-table rrr, state space EEE,

action space FFF , 2D space MMM , Q-network weights ψ, ψ, ψ1,

and ψ2, phase shift ΘΘΘ, power allocation {pi}.

3: Explore the positions of AP, IRS, and boundaries in MMM .

4: LSTM-ARIMA for initial-final positions prediction.

5: Randomly choose phase shift and power allocation factor.

6: repeat

7: The agent randomly selects et ∈ EEE with probability ǫ.

8: Execute action ft, observe reward r(t), append to et+1.

9: Otherwise select argmax
ft+1

Q(et+1, ft;ψt).

10: According to the NOMA method, determine the decoding

order for the robots.

11: Store transition (et, ft; r(t); et+1) in DDD.

12: Sample random minibatch of transition (et, ft; r(t);
et+1) from DDD. Set Wt =

13:

{
r(t), if episode terminates at step t+ 1,

r(t) + ηQ(et+1, f
max
t (et+1, ψt);ψt, ψt1 , ψt2), others

14: for u ∈ {ψ, ψ, ψ1, ψ2} do

15: Perform a gradient descent step:

16: ut+1 = ut + η0[r(t) + ηmaxft+1 Q(et+1, ft+1;ut) −
Q(et, ft;ut)]▽ut

Q(et, ft;ut).
17: end for

18: Every C steps reset Qf(·).
19: until EEE is terminal.

where the ψt and ψt are the parameters for the action value

function and state value function, respectively. The update

method for ψt and ψt are identical. For ψt, the update equation

can be expressed as

ψt+1 = ψt + η0[r(t) + ηmax
ft+1

Q(et+1, ft+1;ψt)

−Q(et, ft;ψt)]▽ψt
Q(et, ft;ψt), (14)

where the ▽{·} is the gradient operator. However, in some given

states, any action has little effect on the state. In order to

consider this case, we employ the structure of dueling DQN

to measure the value of the state and the value of the action in

the state. Thus, the Q-value in the equation (13) can be rewritten

as

Q(et+1, f
max
t (et+1, ψt);ψt, ψt1 , ψt2)

= Qe(et+1;ψt, ψt1) +Qf(et+1, f
max
t (et+1, ψt);ψt, ψt2),

(15)

where the Qe(·), Qf (·), ψt1 , ψt2 denote the state value function,



action value function, parameter for state value function, and

parameter for action value function, respectively. Additionally,

in order to enhance the identifiability of Qe(·) and Qf (·), we

introduce a mean square error (MSE) loss function, which can

be given by

Q(et+1, f
max
t (et+1, ψt);ψt, ψt1 , ψt2)

= Qe(et+1;ψt, ψt1) + (Qf (et+1, f
max
t (et+1, ψt);ψt, ψt2)

− 1

AAA
∑

(fmax
t )′∈AAA

Qf(et+1, (f
max
t )

′

(et+1, ψt);ψt, ψt2), (16)

where the AAA, (fmaxt )
′

(·) are the sampling set and a action

sampled in the set, respectively. The target Q-value can be re-

calculated as

Wt = r(t) + ηQ(et+1, f
max
t (et+1, ψt);ψt, ψt1 , ψt2). (17)

Thus, according to the D3QN model mentioned above,

through continuous learning, the agent can find the optimal

execution policy for the robot trajectories and phases in the

IRS. The detailed pseudo code is shown in Algorithm 1.

Remark 1. One of the core decisions of the Q-network-based

reinforcement learning algorithm is the ǫ-greedy algorithm.

When training the model, the robot will have a probability of

(1 − ǫ) not to perform the expected decision. Therefore, the

episodes of convergences to the model are different in each

training.

IV. NUMERICAL RESULTS

In this section, we provide simulation results to verify the

effectiveness of the proposed machine learning-based optimiza-

tion algorithms for joint trajectories planning and passive beam-

forming design, as well as the performance of the algorithms.

In the simulation, the standard size of length, width, and height

in this indoor environment is 8m× 6m× 3m, while there are

four pillars with regular size 1m× 1m× 3m and two parterres

with regular size 1m × 1m × 1m. Additionally, in the middle

of the 2D plane, an artificial fountain with a regular base size

1.5m×1.5m×1m. Note that, all values of the height mentioned

above are more than that of the robot. The maximal transmit

power at AP is pre-defined as 20 dBm, while the heights of AP

and IRS are defined as 2m and 3m. We analyze the performance

of the proposed D3QN algorithms, the trajectories for all the

robots, and the achievable sum-rate for all the robots.

A. The analysis for D3QN algorithms

The performance of the ML-based algorithm occupies a

pivotal place in the entire optimization. In the D3QN algorithm

proposed in this paper, after selecting the initial-final points and

the total path length of the robot, we optimize the sum-rate.

In order to analyze the performance of D3QN, we compared

the double DQN algorithm and the dueling DQN algorithm.

As shown in Fig. 2, the double DQN algorithm and dueling

DQN algorithm have no big difference in convergence speed,.

They can converge when episodes are 358 and 363 respectively.

However, the convergence speed of the proposedD3QN is faster

than these two algorithms, reaching 305. It is worth noting that

in virtue of ǫ-greedy strategy, the convergence episodes of these

three algorithms cannot be guaranteed to be the same during

each training. Therefore, the result given in the figure is the

average convergence given by 10 repetitive training.
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algorithms.
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B. Achievable sum-rate for the robots

Denote the velocity of robots and the resolution as 0.1 m/s

and 0.1 m, respectively, which can guarantee the path length

traversed by each robot is identical at each time slot. Note that

the robot can only move back, forth, left, and right. For ease

of exposition, we make the size of the grid approximate to the

center point of the grid as the resolution is small. Thus, the sum-

rate at each timeslot ts can be calculated when the robots move
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to the center of the s-th grid on their trajectories. As shown

in Fig. 3, the paths for all robots are depicted in ”IRS-OMA”

and ”IRS-NOMA” cases, while the number of elements in the

IRS is 10. The ”◦” with ”Iw, w = {1, 2, 3}” denotes the initial

position for the robots, while the ”◦” with ”Fw, w = {1, 2, 3}”

represents the final position. It is observed that all planned paths

tend to be close to the positions of AP and IRS.

As shown in Fig. 4, mark the ”OMA-strategy” as a bench-

mark scheme, the maximal sum-rate for three robots at any

given point on their trajectories are obtained. Comparing ”IRS-

NOMA” and ”Without-IRS NOMA” cases, the maximal sum-

rate difference between ”with IRS deployment” and ”without

IRS deployment” cases reaches 0.1425 bits/s/Hz when the IRS

elements are 30, while the gap reaches 0.1205 bits/s/Hz when

the IRS elements are 10. Additionally, the discrepancy under

”with IRS deployment” and ”without IRS deployment” cases

between the NOMA and OMA strategies from 0.3512 bits/s/Hz

to 0.4866 bits/s/Hz, and 0.5236 bits/s/Hz to 0.6490 bits/s/Hz,

respectively. Furthermore, Fig. 4 shows the path length of each

robot from the randomly generated initial position to the final

position. In the ”IRS-OMA” case, the total path length of

each robot is identically achieved 9.5m, whether the number of

elements is 10 or 30. When the NOMA strategy is employed, the

path lengths of robots are successively 7.1 m, 8.3 m, and 9.2 m

with the case of 10 elements in the IRS, respectively. When the

elements are increased to 30 elements, the path length of each

robot is 7.8 m, 9.1 m, and 9.5 m, respectively. It is worth noting

that the first robot has priority to reach the final point, however,

the transmission signal it receives cannot be interrupted until

other robots arrive at their planned final positions. Furthermore,

in order to compare to the ”IRS-OMA” case, the signal is an

outage at 9.5s, which equivalent to the total path length of 9.5

m. The sum-rate at each timeslot can be calculated according

to the equation (7).

V. CONCLUSION

In this paper, we explored a downlink IRS-aided multi-

robot NOMA networks. The sum-rate maximization problem

was formulated by jointly optimizing trajectories for robots,

reflecting coefficients matrix, the decoding order, and the power

allocation at the AP, subject to the QoS for all the robots. To

tackle the formulated problem, a machine learning algorithm

were proposed to plan trajectories for the robots and design

the phase shift matrix. Numerical results were provided for

demonstrating that the proposed IRS-aided NOMA networks

achieve significant gain compared to IRS-OMA and without-

IRS assisted scheme. Additionally, the explored D3QN al-

gorithm attained considerable performance compared to the

conventional algorithm.
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