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Abstract—Distributed computing (cloud) networks, e.g., mobile
edge computing (MEC), are playing an increasingly important
role in the efficient hosting, running, and delivery of real-time
stream-processing applications such as industrial automation,
immersive video, and augmented reality. While such applications
require timely processing of real-time streams that are simulta-
neously useful for multiple users/devices, existing technologies
lack efficient mechanisms to handle their increasingly multicast
nature, leading to unnecessary traffic redundancy and associated
network congestion. In this paper, we address the design of
distributed packet processing, routing, and duplication policies
for optimal control of multicast stream-processing services. We
present a characterization of the enlarged capacity region that
results from efficient packet duplication, and design the first fully
distributed multicast traffic management policy that stabilizes any
input rate in the interior of the capacity region while minimizing
overall operational cost. Numerical results demonstrate the effec-
tiveness of the proposed policy to achieve throughput- and cost-
optimal delivery of stream-processing services over distributed
computing networks.

I. INTRODUCTION

The proliferation of real-time stream-processing applica-

tions such as augmented reality, telepresence, and industrial

automation [3]–[5], is pushing the evolution of networking

and cloud technologies in order to meet their stringent low

latency and compute-intensive requirements [6]. Traditional

approaches treat network and cloud resources separately,

with fairly centralized core clouds handling the processing

of compute-intensive tasks, while the network takes care of

routing data streams from sources to the cloud, and back to

their destinations. However, next-generation services can be

decomposed into chains of individual functions that allows

a more flexible and granular processing of data streams at

distributed cloud locations. Service function chaining precisely

refers to the routing of traffic flows through an ordered

sequence of service functions deployed at multiple cloud loca-

tions [6]. In recent years, multicast data-streams (contents with

multiple destinations) have become an increasingly dominant

component of network traffic,1 especially in the coming Inter-

net of things (IoT) era. For example, multi-user conferencing

An extended version of this paper is submitted to the IEEE Transactions
on Communications [2].

1To clarify, the term multicast in this paper refers to content delivery to
multiple destinations, not related to the wireless communication technique of
transmitting data to multiple nodes simultaneously, as considered in [7].
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Fig. 1. Two widely-used applications involving multicast network traffic: a)
multiuser conferencing and b) vehicle coordination, which require the source
information to be processed and delivered to multiple destination nodes.

(Fig. 1a) requires to encode and deliver source information to

several audiences; applications of another type, which can be

summarized as joint decision making of multi-agent systems,

including robot (or car) coordination in smart factory (or

intelligent vehicle system, as shown in Fig. 1b), also require

the access point to distribute the sensing information/decided

actions to multiple end nodes.

In order to maximize the benefit of distributed computing

networks to support multicast services, two fundamental prob-

lems need to be addressed:

• how to instantiate processing functions on edge/cloud

servers and route the data-stream through them;

• how to schedule and allocate network (computing and

transmission) resources for different requests.

The first problem, usually referred to as service function

chain (SFC) optimization, involves jointly allocating tightly

coupled cloud and network resources in order to decide where

to run each service function and how to route service flows

through the appropriate sequence of functions in order to

maximize throughput and minimize overall operational cost.

A number of recent works have addressed the SFC optimiza-

tion problem with the goal of either maximizing accepted

service requests or minimizing overall resource cost [8]–[10].

However, the problem is usually formulated under a static

configuration, without taking into account increasingly promi-

nent uncertain network conditions and time-varying service

demands.

For the second problem, a closely related research field is

dynamic packet routing, which has been extensively studied in

the past, with two main celebrated mechanisms for decision

making. On one hand, source routing schemes determine the
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entire route of the packet to the destination at the source node.

In [11], a universal throughput-optimal source routing policy

is designed for both unicast and multicast traffic. On the other

hand, distributed routing schemes based on the fluid model

determine packet routes based on local decisions on a hop-

by-hop basis. The backpressure algorithm [12] is an example

of such policy that achieves throughput-optimal routing for

unicast traffic. While, in general, source routing can achieve

better delay performance, its centralized nature incurs addi-

tional overhead in collecting network-wide state information,

making it more suitable for regimes with low congestion levels

and relatively stable arrival rates. On contrary, distributed

fluid-based algorithms only require local information exchange

and decision making, and while they can suffer from inefficient

loopy routes in low congestion scenarios, they are especially

suitable for high congestion regimes. Besides, a recent study

[13], [14] proposes a distributed, backpressure-fashioned net-

work control policy, which is designed to support services with

stringent latency constraints.

Extensions of the above policies for SFCs have also been

studied in recent works, either by introducing the computa-

tion flow [15] or constructing the layered graph [16]. More

concretely, [16] investigates throughput-optimal service chain

source routing for both unicast and multicast traffic; [15], [17]

study throughput and cost optimal service chain distributed

routing and resource allocation for unicast traffic (in particular,

[17] addresses the related problems under a MEC network

scenario). However, no throughput-optimal fully distributed

policies have been designed for the multicast service chain

control problem.

Motivated by the increasing multicast nature of next-

generation real-time stream-processing services and scalating

network congestion levels, in this paper, we focus on the

design of throughput and cost optimal multicast service chain

control policies. Multicast routing policies are of paramount

importance to avoid excessive network congestion from un-

necessary traffic redundancies. However, the main challenge

in the design of distributed multicast routing policies is the

difficulty to capture in-network packet duplication mechanisms

that break flow conservation laws.

In this work, we provide the first formal analysis of fully

distributed multicast routing policies (for arbitrary commu-

nication and computation services) that include joint packet

processing, routing, and duplication. Our contributions can be

summarized as follows:

• We characterize the enlarged multicast computing net-

work capacity region that results when allowing in-

network packet duplication.

• We develop the first throughput- and cost-optimal fully

distributed packet processing, routing, and duplication

policy for multicast service chain control.

• We present numerical results demonstrating the en-

larged multicast capacity region, and the tunable

[O(V ),O(1/V )] cost-delay tradeoff associated with the

proposed control policy.

II. SYSTEM MODEL

A. Cloud network

We consider a wide-area distributed computing network,

simply referred to as cloud network, modeled by graph G =
(V , E). Each node i ∈ V represents a network node with

computing capabilities (e.g., core cloud, edge cloud, compute-

enabled base station). Data can be transmitted from node i to

j via network link (i, j) ∈ E . We denote by δ−i and δ+i the

incoming and outgoing neighbors of node i, respectively.

Assuming a time-slotted system, the available processing/

transmission resources, and associated costs, are defined as

• Ci: the processing capacity, e.g., the number of comput-

ing cycles per time slot, at node i;
• ei: the processing cost, i.e., the cost of running one unit

of processing resource, at node i;
• Cij : the transmission capacity, i.e., the data-stream size

that can be transmitted in one time slot, on link (i, j);
• eij : the transmission cost, i.e., the cost of transmitting

one unit of data, on link (i, j).

B. Service Chain

The cloud network offers a set of services Φ. Each service

φ ∈ Φ is modeled as an ordered chain of (Mφ − 1) functions,

through which incoming packets must be processed. Functions

can be executed at different network locations. While, for

ease of exposition, we assume every cloud node can host any

service function, it is straightforward to extend our model to

limit the set of functions available at each cloud node. There

are two parameters associated with each function: for the m-th

function of service φ, we define

• ξ
(m)
φ : the scaling factor, i.e., the output data-stream size

per unit of input data-stream;

• r
(m)
φ : the workload, i.e., the amount of computing re-

source required to process one unit of input data-stream.

We refer to the input and output data-streams of service φ
as the stage m and stage m + 1 data-streams of service φ,

respectively. Data-streams are divided into packets of uniform

length, and we assume that each packet can be processed

separately.

In order to characterize the multicast nature of offered

services, we assume each service φ ∈ Φ is consumed by a set

of destinations denoted by D = {d1, · · · , dD} with D ⊂ V
and |D| = D.

C. Data Management

In the unicast service control problem [15], there are two

relevant packet operations, i.e., processing and transmission.

For multicast service control, we add the packet duplication

operation to allow any network node to make two copies of

any incoming packet.

Originally, prior to any duplication operation, each packet

of a given service is associated with the entire destination

set D. After a duplication operation, each resulting copy is

associated with a new destination set. The key requirement

for any duplication operation is the coverage of the original



destination set, i.e., each destination node of the original

packet must be present in the destination set of least one of the

resulting copies. If the destination sets of the resulting copies

do not overlap, the duplication operation is termed efficient

(and inefficient otherwise).

To keep track of the changes in the destination sets after

packet duplication operations, we introduce the concept of

packet duplication status.

Definition 1 (Duplication Status): The duplication status of

a packet, denoted by q = [q1, · · · , qD] ∈ 2D, is a binary vector

with qk = 1 (k = 1, · · · , D) indicating that dk ∈ D is one of

its current destinations.

In the above definition, 2D is the set of indicator vectors

corresponding to the power set of D. In addition, we define

a subset of it as 2q , {s : sk = qkuk with u ∈ 2D},

which collects s whose entry must be 0 if the entry is 0 in q.

Specially, q = bk (the binary vector with only the k-th entry

equal to 1) indicates a packet with only one destination dk
(behaves as a unicast packet); and q = 0 indicates a packet

with no destination, which is not of interest and all the related

quantities should be ignored.

We define a commodity as the collection of packets with

the same 4-tuple (φ,m,D, q) description, i.e., service φ, stage

m, destination set D, and duplication status q. To simplify the

notation, we define c , (φ,m,D), and label a commodity as

(c, q).

Finally, we define the process of exogenous arrival of

packets of commodity (c, q) at node i as
{

a
(c,q)
i (t) : t ≥ 0

}

.

All the arriving processes are assumed to be i.i.d. over

time slots and independent with each other, with mean rate

E
{

a
(c,q)
i (t)

}

= λ
(c,q)
i , and finite second moment.

III. POLICY SPACE

In this section, we first present a general policy space for

multicast service control, as well as the conditions for a policy

to be admissible. We then describe an efficient policy space, by

restricting the duplication process to be efficient, which does

not reduce the performance (capacity region and the achievable

optimal cost).

A. General Policy Space

We consider a general policy space for multicast service

control, encompassing all packet processing, routing, and

duplication policies. The decisions made by a policy in this

space can be described by the following variables

f(t) =
{

f
(c,q)
i,pr (t), f

(c,q)
ij (t) : ∀ (c, q), i ∈ V , (i, j) ∈ E

}

(1)

which are the amount of packets of each commodity that are

operated (processed or transmitted) on each interface.

A control policy is called admissible, if it makes decisions

satisfying the following constraints: 1) non-negativity

f(t) � 0 (element-wise) (2)

2) capacity constraints (recall that c = (φ,D,m))

f̃i(t) =
∑

(c,q)
r
(m)
φ f

(c,q)
i,pr (t) ≤ Ci, ∀ i ∈ V (3a)

fij(t) =
∑

(c,q)
f
(c,q)
ij (t) ≤ Cij , ∀ (i, j) ∈ E (3b)

3) the generalized flow conservation and duplication law, for

any commodity c and ∀ k ∈ {1, · · · , D}:
∑

{q:qk=1}

[

f
(c,q)
→i + λ

(c,q)
i

]

≤
∑

{q:qk=1}
f
(c,q)
i→ (4)

where {q : qk = 1} is the set of all the duplication status

which indicates that dk ∈ D is one of the current destinations;

the incoming and outgoing flows are

f
(c,q)
→i =

{

f
(c,q)
pr,i (t) +

∑

j∈δ
−

i

f
(c,q)
ji (t)

}

(5a)

f
(c,q)
i→ =

{

f
(c,q)
i,pr (t) +

∑

j∈δ
+

i

f
(c,q)
ij (t)

}

(5b)

with the processed flow f
(c,q)
pr,i (t) = f

(φ,m,D,q)
pr,i (t) defined as

f
(φ,m,D,q)
pr,i (t) =

{

0 m = 1

ξ
(m−1)
φ f

(φ,m−1,D,q)
i,pr (t) m > 1

(6)

and {·} denotes the long-term average operator

{z(t)} , lim
T→∞

1

T

∑T

t=1
z(t). (7)

The generalized flow conservation and packet duplication law

(4) holds because of the coverage requirement (see previous

section). For any destination dk of an incoming packet, there

is at least one outgoing packet (one of its copies if duplicated,

or itself otherwise) with dk in its destination set.

The instantaneous overall resource cost incurred by the

above policy is defined as

h(t) =
∑

i∈V
eif̃i(t) +

∑

(i,j)∈E
eijfij(t) (8)

and its long-term average {h(t)} is employed to characterize

the cost performance of the policy. Furthermore, we denote

by h⋆(λ) the optimal cost that can be achieved by the general

policy space, under the arrival rate λ.

Finally, we define the capacity region Λ of the cloud

network as the set of all arrival vectors λ =
{

λ
(c,q)
i

}

, such

that there exists a control policy satisfying (2) – (6).

B. Efficient Policy Space

We now define an efficient policy space as a subset of the

general space, by requiring all the duplication operations to

be efficient. More concretely, if two copies are created from

a packet by a duplication operation, then

q = s+ r (9)

with q, s, r ∈ 2D denoting the duplication status of the original

packet and the two copies, respectively.

When a duplication is performed in an efficient way, for

any destination node of a particular incoming packet, there



will be exactly one outgoing packet steering to it. In this case,

the flow conservation and duplication law can be cast as
∑

{q:qk=1}

[

f
(c,q)
→i + λ

(c,q)
i

]

=
∑

{q:qk=1}
f
(c,q)
i→ . (10)

By restricting to the efficient space, we eliminate repeated

delivery of identical content to the same destination node,

which is beneficial for 1) alleviating the network traffic, as

well as 2) reducing the resource cost. Specially, this is true

when comparing with the optimal policy of the general space.

As a consequence, the efficient policy space can achieve the

same capacity region as the general space, and the achievable

optimal cost by the efficient policy space equals to h⋆(λ).

IV. QUEUEING SYSTEM

We construct the queueing system by creating a queue

Q
(c,q)
i (t) for each commodity (c, q) at each node i.
The efficient policy space is considered, and we describe

a typical operation procedure for a packet in one time slot

in the following. Suppose a packet of duplication status q is

selected for operation (processing or transmission) on a certain

interface, we need to decide whether it will be duplicated or

not.2 If a packet is duplicated, only one copy is operated on

the interface, while the other copy is reloaded to the queueing

system at the end of the time slot (i.e., it is not involved in

any other decisions in the current time slot).

The above description motivates us to involve the posterior

duplication status s ∈ 2q in the formulation, which is the status

of the operated copy (and by (9), the status of the reloaded

copy is q − s). Specially, the case q = s indicates that the

packet is not duplicated. To sum up, the (q, s)-pair specifies a

duplication decision.

A. Queueing Dynamics

Let x
(c,q,s)
i,pr (t) and x

(c,q,s)
ij (t) (j ∈ δ+i ) be the amount of

packets of commodity (c, q) desired by the output interfaces,

on which the duplication decision (q, s) will be performed. In

general, the queueing dynamics is given by

Q
(c,q)
i (t+ 1) ≤

[

Q
(c,q)
i (t)−

∑

s∈2q
µ
(c,q,s)
i→ (t)

]+

+ µ
(c,q)
→i (t) + a

(c,q)
i (t)

(11)

where the outgoing flow is

µ
(c,q,s)
i→ (t) = x

(c,q,s)
i,pr (t) +

∑

j∈δ
+

i

x
(c,q,s)
ij (t) (12)

and the (controllable) incoming flow is

µ
(c,q)
→i (t) =

∑

s∈2q̄

[

x
(c,q+s,q)
pr,i (t) +

∑

j∈δ
−

i

x
(c,q+s,q)
ji (t)

]

+
∑

s∈2q̄
µ
(c,q+s,s)
i→ (t) (13)

with q̄ = 1− q; and [z]+ , max{z, 0}. The two lines in (13)

represent the operated and the reloaded packets, respectively.

2We consider the scheme where each packet is duplicated at most once in
a time slot. Compared to a more general scheme without this restriction, the
considered scheme just splits duplications into multiple steps, and that does
not increase traffic, while only increasing delay by a finite amount of slots,
which does not affect the capacity region or the cost performance.

Queueing system at node  

(including queues of different 

duplication statuses)

one copy ! = 1, 0 operated

one copy " = 0, 1 reloaded

(to corresponding queue)

0, 0 1, 0 0, 1

2

1, 1

0

1
operation interface

packet selected for operation with 

duplication status # = 1, 1

duplicate

...

...

...

...

Fig. 2. Structure of the established queueing system at any network node
i (for an application with D = 2 destination nodes). In order to distinguish
packets with different current destination set, we create 2D = 4 queues
corresponding to the 4 duplication statuses, i.e., {0, 1}2. In each time slot,
in addition to the scheduling decision, i.e., which packets will be operated at
which interface (the blue link), we also need to make a duplication decision,
i.e., whether to split the network flow or not, and how (mathematically, to
determine the duplication status of the operated copy s and the reloaded copy
r). When r = (0, 0) (and thus s = q), the packet is operated without changing
the assigned destination set, and no copy is created in this case (in fact, node
i does not need to manage packets in the (0, 0) queue; we present it in the
figure just for completeness).

The reloaded part is explained as follows: a packet of status

q + s is duplicated, with the copy of status s operated; thus

the other copy of status (q + s)− s = q will be reloaded.

Specially, (11) does not apply to queues of destination state,

i.e., Q
(c0,q)
i0

(t) with i0 = dk ∈ D and c0 = (φ,Mφ,D). If a

packet of commodity (c0, q) (with qk = 1) arrives at i0, it will

be consumed. But due to the multicast nature of the packet

(in general), it will be duplicated into two copies of status

bk and q′ = q − bk (and thus q′k = 0), with the copy of

bk departing the network, and the other copy reloaded to the

queue q′. Therefore, the queue q is always empty, while queue

q′ receives an extra packet compared to the general case. To

sum up, in this case, the queueing dynamics is given by

Q
(c,q)
i (t+ 1) ≤

{

0 qk = 1

R + µ
(c,q+bk)
→i (t) + a

(c,q+bk)
i (t) qk = 0

(14)

where R is the right-hand-side of (11).

B. Problem Formulation

Based on the queueing system introduced in the previous

section, mathematically, the multicast service chain control

problem is formulated as

min
x(t)

{E {h(t)}} (15a)

s. t. stabilizing the queueing system (11) – (14) (15b)

x
(φ,m+1,D,q,s)
pr,i (t) = ξ

(m)
φ x

(φ,m,D,q,s)
i,pr (t) (15c)

x̃i(t) ,
∑

(c,q,s)

r
(m)
φ x

(c,q,s)
i,pr (t) ≤ Ci ∀ i ∈ V (15d)

xij(t) ,
∑

(c,q,s)

x
(c,q,s)
ij (t) ≤ Cij ∀ (i, j) ∈ E (15e)

x(t) � 0 (element-wise). (15f)



Remark 1: In the above formulation, note that decisions x(t)
are made regardless of the available packets in the queue, it

can happen that the requests raised by the interfaces cannot be

satisfied. In that case, dummy packets will be created and sent

to the interface to compensate for the lack of actual packets,

as is considered in [15] for the unicast case.

V. CAPACITY REGION

In this section, we present a characterization for the capacity

region of cloud network with multicast flows, which is based

on the celebrated fact [18] that there exists a stationary

randomized policy ∗ to stabilize any point within the capacity

region, while achieving the optimal objective (cost) value.
Theorem 1: An arrival vector λ is within Λ if and only

if there exists flow variables f =
{

f
(c,q,s)
i,pr , f

(c,q,s)
ij

}

�

0 together with probability values {β
(c,q,s)
i }(c,q,s) and

{β
(c,q,s)
ij }(c,q,s) for ∀ i ∈ V , (i, j) ∈ E such that

∑

s∈2q̄

[

f
(c,q+s,q)
pr,i +

∑

j∈δ
−

i

f
(c,q+s,q)
ji + f

(c,q+s,s)
i,pr +

∑

j∈δ
+

i

f
(c,q+s,s)
ij

]

+ λ
(c,q)
i ≤

∑

s∈2q

[

f
(c,q,s)
i,pr +

∑

j∈δ
+

i

f
(c,q,s)
ij

]

(16a)

f
(φ,m+1,D,q,s)
pr,i = ξ

(m)
φ f

(φ,m,D,q,s)
i,pr (16b)

f
(c,q,s)
i,pr ≤

(

Ci/r
(m)
φ

)

β
(c,q,s)
i (16c)

f
(c,q,s)
ij ≤ β

(c,q,s)
ij Cij . (16d)

and the stationary randomized policy ∗ specified by the

probability values β makes decisions x∗(t) such that

{E {h(x∗(t))}} = h⋆(λ) (17)

with h⋆(λ) denoting the optimal cost that can be achieved

when the arrival vector is λ.

Proof: The result is derived by applying the fact to the

queueing system in Section IV-A [18]. Details can be found

in [2].

The policy ∗ is defined as follows. For each interface,

select the commodity (c, q) and the duplication action (q, s)
independently in every time slot according to the probability

value β; duplicate the packets according to (q, s), and use all

the available resource to operate the copies of status s.

VI. CONTROL POLICY DESIGN

Problem (15) can be solved by Lyapunov drift-plus-penalty

(LDP) approach [18], as is shown in the following section.

A. The LDP Approach

We first define the Lyapunov function as L(t) = ‖Q(t)‖22/2

with Q(t) =
{

Q
(c,q,s)
i (t)

}

, quantifying the current network

congestion, and define the drift as ∆(t) = L(t+ 1)− L(t).

The LDP approach advocates to minimize (the upper bound

of) a linear combination of the Lyapunov drift ∆(t) and the

objective function h(t) = h(x(t)) weighted by a tunable

parameter V , given by [18]

∆(t) + V h(t) ≤ B −
∑

i∈V

∑

(c,q,s)

w
(c,q,s)
i x

(c,q,s)
i,pr (t)

−
∑

(i,j)∈E

∑

(c,q,s)

w
(c,q,s)
ij x

(c,q,s)
ij (t)

(18)

where B is a constant, and the weights are given by

w
(c,q,s)
i =

Q
(c,q)
i (t)−Q

(c,q−s)
i (t)− ξ

(m)
φ Q

(c′,s)
i (t)

r
(m)
φ

− V ei (19a)

w
(c,q,s)
ij = Q

(c,q)
i (t)−Q

(c,q−s)
i (t)−Q

(c,s)
j (t)− V eij (19b)

where c′ = (φ,m+ 1,D).
The constraints on the decision variables x(t) are given by

(15d), (15e) and (15f), which leads to a solution in the form

of max-weight, presented in the following section.

B. Control Policy

Note that minimizing (18) can be completed separately on

each interface (due to the additive form). The processing (or

transmission) decisions are made by the following steps: for

each node i ∈ V (or each link (i, j) ∈ E),

1) calculate the weight for each tuple (c, q, s) according to

(19a) (or (19b)), based on the observed queue status;

2) find the tuple (q, s, c) with the largest weight, i.e.,

(q, s, c)⋆ = argmax
(q,s,c)

w
(q,s,c)
i

(

or w
(q,s,c)
ij

)

; (20)

3) the optimal flow assignment is given by

x
(q,s,c)
i,pr (t) =

Ci

r
(m⋆)
φ⋆

I

{

(q, s, c) == (q, s, c)⋆, w
(q,s,c)⋆

ij (t) > 0
}

x
(q,s,c)
ij (t) = Cij I

{

(q, s, c) == (q, s, c)⋆, w
(q,s,c)⋆

ij (t) > 0
}

(21)

where I{·} denotes the indicator function, which equals to 1
only when the two conditions are both satisfied.

The developed algorithm only requires local information

exchange and decision making, which can be implemented

in a fully distributed manner.

C. Performance Analysis

We evaluate the performance of the proposed algorithm in

the following theorem, using the achievable optimal cost as

the benchmark.

Theorem 2: For any arrival vector λ that is in the interior of

the capacity region, the queue backlog and the cost achieved

by the proposed algorithm satisfy

{E {‖Q(t)‖1}} ≤
B

ǫ
+

[

h⋆(λ+ ǫ1)− h⋆(λ)

ǫ

]

V (22)

{E {h(t)}} ≤ h⋆(λ) +
B

V
(23)

for any ǫ > 0 such that λ+ ǫ1 ∈ Λ.

Proof: The proof closely follows the philosophy of the

proof of Theorem 2 in [15].



Fig. 3. The continental US Abilene network.

The above theorem reveals the [O(V ),O(1/V )] tradeoff

between the delay (which is proportional to queue backlog

by Little’s theorem) and cost performance achieved by the

proposed algorithm. In addition, for any fixed V , the queue

backlog is mean rate state (i.e., {E {‖Q(t)‖1}} < ∞),

implying that the proposed algorithm is throughput-optimal.

D. Complexity Issue

Finally, we analyze the complexity of the proposed algo-

rithm, from both the communication and computation aspects.

1) Communication Overhead: The proposed algorithm re-

quires local exchange of queue backlog information in every

time slot. In contrast to transmitting the entire queueing status

∼ O(2D) in every time slot, we take advantage of the

underlying max-weight structure of the proposed algorithm.

More concretely, in every time slot, the proposed algorithm

selects one commodity to operate on each interface; as a result,

only one element of the queueing vector of node j changes.

Therefore, the number of queues with varying backlogs is

∼ O(δ+max), where δ+max is the largest incoming degree. By

transmitting information related to only these queues, the

communication overhead can be greatly reduced.

2) Computational Complexity: In every time slot, each

node needs to calculate the weights of all (c, q, s) tuples in or-

der to decide the best commodity to operate on, and make the

duplication decision. It can be shown that for a fixed content

c, the number of possible (q, s) pairs is 3D − 2D ∼ O(3D).
Although to calculate the weight for each (c, q, s) (at each

interface) by (19) requires only simple algebraic operations,

the number of the tuples grows exponentially with the size of

the destination set, and there is no quick way to reduce the

computation complexity of the algorithm to polynomial-time.3

To sum up, with more destination nodes, we can envision

larger performance improvement compared to the simple

approach that treats them as individual unicast flows (since

the proposed method has the potential to reuse more inter-

mediate results). However, the algorithm also becomes more

computationally demanding, making it not suitable to apply

to large scale networks. Developing an efficient, approximate

algorithm is the topic of our ongoing research work, and a

polynomial-time heuristic algorithm will be reported in [2].

3This is determined by the combinatorial nature of the multicast problem.
Another solution to the multicast problem provided by [16] requires to solve
the minimum Steiner tree problem to determine the route for each packet,
which is a NP-complete problem.
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Fig. 4. The capacity region achieved by the multicast algorithms (with V = 0
and V = 3× 106), as well as the unicast-based solution.

VII. NUMERICAL RESULTS

We perform the numerical experiments based on the con-

tinental US Abilene network, as is shown in Fig. 3. The

processing capability of each node is Ci = 20 CPUs, and

the processing cost is ei = 0.5 /CPU per second. The cloud

network links exhibit homogeneous transmission capabilities

and costs, given by Cij = 10 Gbps, and eij = 1 /Gb. We set

the length of each time slot as τ = 1 ms, and unify the size

of each packet as F = 1 kb.

Two services are provided by the cloud network, each

consisting of 2 functions, with the following parameters

φ1 : ξ
(1)
1 = 1, ξ

(2)
1 = 2; 1/r

(1)
1 = 300, 1/r

(2)
1 = 400

φ2 : ξ
(1)
2 =

1

3
, ξ

(2)
2 =

1

2
; 1/r

(1)
2 = 200, 1/r

(2)
2 = 100

where 1/r
(m)
φ [Mbps/CPU] denotes the supportable input size

given 1 CPU resource.

We consider any destination set D consisting of two nodes

selected from {7, 8, 9, 10, 11} (e.g., {7, 10}), and hence there

are 10 possible destination sets in total. Each destination set

can request both services φ1 and φ2, which originate from

any source node in {1, 2, 3, 4}. The packets of commodity

(c, q) = (φi, 1,D,1) (i = 1, 2) arrive at each source node,

and it is modeled by i.i.d. Poisson process, independent of

each other, with parameter λ.

We employ the simple approach (see Section VI-D2) as

the baseline for comparison, i.e., treating data-streams for

different destination nodes as separated unicast flows. A more

comprehensive comparison of the proposed approach with

existing multicast techniques will be reported in [2].

A. Capacity Region

We first study the capacity region of the cloud network

with multicast flow (using the proposed algorithm), compared

with the achieved capacity region by treating the problem as

separate unicast problems. The initial queue backlog is set as

Q(0) = 0, and we observe the system for 106 time slots. The

stable queue backlogs are recorded under various λ values. If
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Fig. 5. The queue backlog and cost performance of the proposed algorithm
under various values of V .

the queue keeps growing at the end of the period, the stable

queue length is set as ∞.

The results is shown in Fig. 4. It is obvious that the queue

backlog grows monotonously with the arrival rate for all the

three cases. Then we focus on the queue backlog performance

of the proposed algorithm under various values of V . We find

that a larger value of V results in a heavier queue backlog;

however, the two values V = 0 and V = 3 × 106 lead

to an identical critical point λm ≈ 42 Mbps, which can be

interpreted as the boundary of the capacity region. The result

validates the conclusion that the proposed algorithm, using

any fixed value of V , always achieves finite queue back-

log within the capacity region, and therefore is throughput-

optimal. Finally, we compare the capacity regions achieved by

the proposed algorithm with the unicast-based solution, which

is λu ≈ 21 Mbps. An increment of 100% is gained, by making

smart duplication decision, which reuses some intermediate

results to fully exploit the available resource.

B. Delay-Cost Tradeoff

Next, we study the queue backlog, as well as the cost

performance of the proposed algorithm under various V . The

arrival rate is selected as λ = 20 Mbps. The results are

compared with the unicast-based solution.

The results are depicted in Fig. 5. Visually, it exhibits a

[O(V ),O(1/V )] tradeoff between the queue backlog and the

resource cost, as is established in (22) and (23). Considering

the decreasing rate, we anticipate the optimal cost of the

proposed algorithm to be 8, which reduces by 50% when

comparing with the optimal cost 17 achieved by the unicast-

based solution. Again, the reduction is thanks to the reuse gain

as is explained in the previous experiment. A larger gain can

be expected for a destination set with more nodes, but this

comes at the price of increasing the algorithm complexity.

VIII. CONCLUSIONS

In this paper, we investigated the problem of cloud network

control in the presence of multicast flows. We proposed a

queueing system that allows flow-level (rather than packet-

wise) decision making, and presented an efficient policy space

that is cost-optimal. The characterization of the new capacity

region was presented, and we developed a fully distributed

control algorithm guided by Lyapunov optimization theory.

Numerical results showed the performance gain of the pro-

posed algorithm over the unicast-based solution, in terms of

the capacity region and the achieved resource cost.
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