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Abstract—Current IoT networks are characterized by an
ultra-high density of devices with different energy budget con-
straints, typically having sparse and sporadic activity patterns.
Access points require an efficient strategy to identify the active
devices for a timely allocation of resources to enable massive
machine-type communication. Recently, group testing based
approaches have been studied to handle sparse activity detection
in massive random access problems. In this paper, a non-adaptive
group testing strategy is proposed which can take into account
the energy constraints on different sensor clusters. A theoretical
extension of the existing randomized group testing strategies
to the case of multiple clusters is presented and the necessary
constraints that the optimal sampling parameters should satisfy
in order to improve the efficiency of group tests is established.
The cases of fixed activity pattern where there is a fixed set of
active sensors and random activity pattern where each sensor can
be independently active with certain probability are examined.
The theoretical results are verified and validated by Monte-Carlo
simulations. In massive wireless sensor networks comprising of
devices with different energy efficiencies, our proposed low-
power-use mode of access can potentially extend the lifetime
of battery powered sensors with finite energy budget.

Index Terms—IoT, Internet of Things, active device discovery,
group testing, multi-cluster networks, wireless sensor networks,
energy efficiency, massive random access.

I. INTRODUCTION

Being a vital enabler for the digital metamorphosis in
today’s data driven world, IoT provides an ideal platform
for a plethora of applications in domains including, but not
limited to smart cities, smart factories and smart homes.
Ericsson [1] estimated that the cellular IoT growth will lead
to 3.5 billion cellular IoT connections by 2023. The ITU-R
workshop on IMT-2020 terrestrial radio interfaces [2] noted
that the minimum requirement for connection density for
evaluation in the mMTC usage scenario is 1,000,000 devices
per km2. These numbers are telltale of the accrescent demand
for a unified connection fabric of things to cater to a multitude
of smart sensing applications thereby making it viable for
devices to autonomously function as a part of a smarter
ecosystem.

In comparison to the traditional cellular systems, IoT plat-
forms come with several key differentiators that call in for an
alternate perspective on system design. First of all, there is an
ultra-high density of devices and hence the number of devices
being managed by an access point (AP) can be quite large.
Secondly, the activity pattern exhibited by the devices in the
network is typically sparse (i.e., only a small fraction of the
sensor population is active at a given time) and sporadic across
the time domain due to the random nature of the events trig-
gering the sensor activities. Furthermore, many IoT links need

to support only low data rates in contrast to regular WiFi or
cellular systems. Moreover, system energy usage is a critical
aspect as many of the wireless sensors are meant to be low-
power consumption devices. These differences have strong
implications on how to facilitate active device discovery in IoT
scenarios. For example, as pointed out in [3], the conventional
coordinated multiple access schemes such as FDMA, TDMA,
CDMA, SDMA and NOMA get extremely overloaded and are
unable to perform the required coordination among sparse and
sporadic users with low latency requirements. On the other
hand, ALOHA, the classical uncordinated multiple access
strategy suffers from too many collisions while the more
recent approach of Coded-Slotted ALOHA requires a large
number of retransmissions thereby significantly reducing the
efficiency.

Several novel schemes has been proposed in literature
as candidate solutions to enable massive random access. In
[4], an MMSE-based AMP algorithm is proposed for device
activity detection exploiting the sparsity of the problem. The
paper shows that in an asymptotic regime where the AP is
equipped with a massive number of antennas, perfect activity
detection is possible. Various compressive sensing based adap-
tive schemes are proposed in [5] by exploiting the sporadic
traffic of massive connected devices and the virtual angular
domain sparsity of massive MIMO channels. Recently, there
has been an emergence of group testing (GT) based methods
for enabling sparse activity detection in massive random
access scenarios. Specifically, in [6], a low-energy massive
random access scheme for a single cluster of sensors based
on non-adaptive group testing is studied where there is a
global energy constraint which is translated to a constraint
on the number of times a sensor is tested. In this work, the
group testing codewords were based on the Kautz-Singleton
construction [7].

In this paper, we consider a multi-cluster scenario where
each cluster is characterized by a different level of activity
and energy budget constraint. Our aim is to efficiently identify
all the active sensors while taking into account the energy
budget constraints on each cluster. Using a GT strategy during
the active device discovery phase, multiple active sensors
are allowed to transmit simultaneously. At the AP, a simple
energy detector is employed to detect the presence of energy.
The number of transmissions each sensor makes during the
active device discovery phase is restricted to accommodate
for the energy budget constraints. We rely on a randomized
Bernoulli design based GT strategy [8] rather than using
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explicit deterministic constructions.
The remainder of this paper is organized as follows: In

section II, we describe the system model. Section III in-
troduces GT and provides an overview of the different GT
techniques relevant to the active device discovery problem.
Section IV describes the equivalence of GT and active device
discovery problem. Thereafter, we propose a modification to
the randomized GT code based on Bernoulli design to account
for the multi-cluster nature of the IoT environment. Subse-
quently, we derive constraints on optimal sampling parameters
for the modified GT strategy which leads to efficient active
device discovery under random and fixed activity patterns.
We also derive the optimal sampling parameters for a multi-
cluster scenario with energy budget constraints on each cluster.
Finally, we conclude our paper in Section V.

II. SYSTEM MODEL

Throughout the paper, we use the following notations and
definitions. The set U ={s1, s2, ..., sn} denotes the universe of
sensors consisting of n sensors. There are two possible states
for each sensor: Active State (AS) and Inactive State (IS).
We will reuse the notations AS and IS to indicate the set of
active and inactive sensors respectively. The meaning should
be clear from the context. We assume that the sensors can
be disjointly partitioned into M clusters. The set of sensor
clusters is represented as C ={c1, c2, ..., cM}. The M clusters
have a deterministic number of sensors. i.e., |ci|= ni. ASj
and ISj represents the set of active and inactive sensors in
cluster cj respectively. Clustering of wireless sensors in IoT
based on various metrics of interest has been well explored in
the literature [9]. In our model, we assume that each cluster is
characterized by a unique activity pattern as well as an energy
budget (or energy efficiency) constraint.

We consider two models for the activity pattern as follows:
• Fixed activity: There is a fixed number of active sensors

in each cluster with ~k = [k1, k2, ..., kM ] denoting the
number of active sensors in each of the M clusters. Let
k =

∑M
i=1 ki.

• Random activity: In this model, each sensor becomes
active independent of all the other sensors. ~pa =
[p1, p2, ..., pM ] defines the probability of sensors being
active in each of the M clusters.

To model the energy budget constraint, we assume that the
AP periodically assigns a βi value to cluster ci based on its
relative energy efficiency. We assume that βi’s are normalized
such that 0 ≤ βi ≤ 1 and a higher βi corresponds to higher
energy efficiency (or more available energy). The relative βi
value essentially controls the number of transmissions sensors
in cluster ci perform during the active device discovery phase.
Further details are described in Section IV.

To model the sparsity of the “active set” we will be
assuming that the number of active sensors (ki) in the ith

cluster scales sublinearly w.r.t the population size (ni). i.e.,
ki = Θ(nαi ), where α ∈ (0, 1).

In our approach, we will be using GT based strategy
for energy-efficient active device discovery, the suitability of
which will be described in the next sections.

III. OVERVIEW ON GROUP TESTING

Group testing can be viewed as a sparse inference problem
where the objective is to identify a small number of “defec-
tive” items from a large collection of items by performing
tests on groups of items. In its standard form, each group test
leads to a binary outcome where a 1 indicates the presence
of at least one “defective” in the group being tested and a 0
indicates the presence of zero defectives. The tests need to be
devised such that the defective set of items can be recovered
using the binary vector of test outcomes. Minimizing the
number of tests is critical in many applications including the
active device discovery problem we focus on. Classifications
of group testing models relevant to our active device discovery
problem are as below:

1) Adaptive vs non-adaptive: In adaptive GT, the previous
test results can be used to design the future tests. In non-
adaptive setting, all group tests are designed independent of
each other.
2) Small error vs zero error: In small error setting, we
aim to recover the defective set with high probability, i.e., the
probability of error can be made arbitrarily small and vanishes
asymptotically with the number of items. In zero error GT
setting, we ensure that the defective set is certainly recovered.

A group testing matrix W is defined as a binary matrix
formed by a set of n-coordinate column vectors (test vectors),
wt ∈ {0, 1}n where, t ∈ {1, 2, . . . , T}. i.e.,

W = [w1, . . . ,wT ] = [x1, . . . ,xn]
ᵀ ∈ {0, 1}n×T (1)

where T denotes the number of tests and xi denote the ith

row of the matrix corresponding to the test schedule for the
ith item. Each column in a GT matrix is called a test vector.

Now, we will discuss some of the well known bounds
that characterize the number of tests T needed to recover a
defective set of cardinality k from a set of n items.
1) Bounds on non-adaptive zero-error GT : The non-
adaptive zero-error GT usually relies on explicit design tech-
niques for construction of disjunct matrices [7]. A binary
group testing matrix, W as in (1) is k-disjunct if the Boolean
sum of upto k rows does not logically include any other
row that is not a part of the summation. Bassalygo [10]
establishes that for the existence of a k-disjunct (n × T )-
matrix, T ≥ min{

(
k+2
2

)
, n}. This implies that, asymptoti-

cally, when k = Θ(nα), where α ≥ 1
2 , individual testing is

the optimal non-adaptive zero-error scheme. When α < 1
2 ,

the lower bound translates to T ≥ Ω(k2). There are known
constructions of disjunct matrices discussed in literature [11],
[7] which are able to achieve T = O(k2 log n). For example,
the Kautz-Singleton construction explained in [7] requires
T = O(k2 log2

k n) which matches with O(k2 log n) in the
sub-linear regime.

2) Bounds on non-adaptive small-error GT: The non-
adaptive small-error GT schemes of our interest are based
on Bernoulli matrix design where all the entries of the group
testing matrix W are independent samples from a Bernoulli
random variable with an optimally designed parameter q.
Achievability results [12] show that non-adaptive GT matrices



with asymptotically vanishing probability of error can be
constructed with T = O(k log n). There is a saving by a
factor of O(k) when we go from the zero-error to small-error
setting.

IV. GROUP TESTING BASED MULTI-CLUSTER MASSIVE
ACCESS

A. Group testing for sparse-Massive Random Access

Consider an (n× T )- matrix W in which the ith row is a
binary signature of length T designed for the ith sensor. In
the active device discovery phase, each active sensor transmits
its binary signature (On-Off keying) in a time-synchronized
manner over the T probes. This potentially involves a group
of sensors transmitting at the same time if there are multiple
active sensors with a 1 at identical indices in their signatures.
Note that in massive access, acquiring each device’s channel
state information (CSI) is impractical as it typically needs
an overwhelming amount of pilot resources. Moreover, adap-
tively calibrating each device’s channel is infeasible due to the
massive device count [3]. Thus, we assume that the decoder
at the AP makes a binary decision indicating the presence
of energy in the received signal. This is essentially a non-
coherent energy detector and hence does not require any CSI.
Let −→y = (yt) ∈ {0, 1}T indicate the results vector.

yt =

 1 if energy detected (∃i ∈ AS with wt(i) = 1)

0 if no energy detected (∀i ∈ AS,wt(i) = 0)
(2)

Given the matrix W composed of binary signatures and results
vector (~y), we need to identify (decode) which sensors are
active in a computationally efficient manner. Clearly, this is
equivalent to a group testing problem. The tth probe is a
positive probe if yt = 1 and a negative probe if yt = 0.
Thus, designing binary signatures for the n sensors to detect
the active sensors while minimizing the number of probes (T )
is same as designing a GT matrix and decoding the test results
efficiently. Inan et al. considered this model in [6].

In our approach, we will be using a small error non-
adaptive GT strategy. The non-adaptive nature allows us to
probe multiple groups of sensors as dictated by the GT matrix
simultaneously using other degrees of freedom (for eg: Fre-
quency Division Multiplexing) thereby improving the latency
performance. Furthermore, considering small-error instead of
zero-error can reduce the number of probes (equivalently,
the resource utilization) required during the active device
discovery phase by a factor of O(k) as we noted in Section
III.

In our study, we consider the Combinatorial Orthogonal
Matching Pursuit (COMP) decoding strategy, which is a
practical and fast approach and is discussed thoroughly in the
literature [8], [13] . COMP classifies all participant sensors of
a negative probe as inactive and all the remaining sensors as
active. Note that COMP does not lead to any false negatives in
comparison to the other non-adaptive decoding strategies such
as Definitely Defective (DD), Sequential-COMP or Smallest
Satisfying Set (SSS) [12]. This is useful in an IoT environment

which prevents misdetection of active sensors with critical
information.

B. Modified Bernoulli GT matrix for multi-cluster networks

In the original Bernoulli design, each sensor is indepen-
dently included in a probe (equivalently, group test) based
on a “global” sampling probability q computed based on
the sparsity of the problem. However, this scheme ignores
the fact that there can be multiple clusters of sensors in
the network with different energy budget constraints. In our
paper, we bridge this gap by using a modified Bernoulli
sampling strategy. Specifically, we include each sensor within
cluster ci independently in a group test with probability
qi. Let ~q = [q1, q2, ..., qM ] denote the vector of sampling
probabilities. From a design point of view, we have the
flexibility to choose ~q to optimize performance metrics of our
interest while achieving successful decoding of sensor states
without violating the energy constraints in place. We define
success as the event of inferring states of all sensors correctly.
Thus, an error occurs in COMP decoding if there are inactive
sensors that are not part of any negative tests. We use the term
shadowing to denote the event in which a sensor is always
tested along with at least one other active sensor in the entire
probing session. Thus,

P(error) = P
( ⋃
si∈IS

{si is shadowed }
)

(3)

In the remainder of this section, we derive a constraint on
the optimal ~q for COMP which minimizes the probability of
error. Thereafter, we incorporate the energy budget constraints
to derive the corresponding optimal sampling probabilities
minimizing an upper bound on the probability of error.

C. Optimal sampling parameters for COMP decoding

1) Fixed Activity Pattern: In this case, there are M clusters
[c1, c2, ..., cM ] with a cardinality of [n1, n2, ..., nM ]. Also,
[k1, k2, ..., kM ] represents the number of active sensors in
each of the M clusters. Chan et al. [13] derives the optimal
sampling probability for a single cluster case using a union
bound approach. We will be using a similar strategy along
with reasonable approximations to derive the optimal sam-
pling probabilities for a multi-cluster case. Using eq. (3), we
can write,

P(error) ≤
∑
si∈IS

P({sensor si is shadowed}) (4a)

=

M∑
j=1

∑
si∈ISj

(
1− qj

( M∏
r=1

(1− qr)kr
))T

(4b)

=

M∑
j=1

(nj − kj)
(

1− qj
( M∏
r=1

(1− qr)kr
))T

(4c)

=: f(~q) (4d)

where, the term
∏M
r=1(1− qr)kr in (4b) represents the prob-

ability that none of the active sensors are selected. Equation
(4c) uses the fact that the terms in the inner summation in (4b)
remains constant within each cluster. Moreover, the number
of inactive sensors in cluster cj is (nj − kj).



In order to identify the optimal sampling probabilities (q∗j ),
we need to minimize f(~q). For the (n1, k1)- single cluster case
Chan et al. considered in [13], (4c) reduces to f(q1) = (n1−
k1)×

(
1− q1(1− q1)k1

)T
which is minimized at q1 = 1

k1+1 .
For ease of analysis of the multi-cluster case, let us define:

α(~q) =

M∏
r=1

(1− qr)kr (5)

ñi = (ni − ki) (6)

Thus, (4c) implies

f(~q) =

M∑
j=1

ñj(1− qjα)
T (7)

where, for brevity, we used α to denote α(~q). In order to
minimize f(~q), we use the method of Lagrange multipliers,
with (5) as an equality constraint as follows:

L(~q) =

M∑
j=1

ñj(1− qjα)
T

+ λ

(( M∏
r=1

(1− qr)kr
)
− α

)
(8)

Taking the derivative of (8) w.r.t qi,∀i ∈ {1, 2, . . . ,M}, and
equating it to zero, we get:

(Tαñi) (1−qiα)T−1 +λki(1−qi)ki−1
( M∏
r=1
r 6=i

(1−qr)kr
)

= 0

(9)
Taking the derivative of (8) w.r.t α and equating to zero leads
to:

M∑
j=1

Tqj ñj(1− qjα)
T−1

+ λ = 0 (10)

Multiplying (9) by qi
α , we get:

Tqiñi (1− qiα)
T−1

+
λqiki
α

(1− qi)ki−1
( M∏
r=1
r 6=i

(1−qr)kr
)

= 0

(11)
Adding the set of equation in (11) for all values of i in the
set {1, 2, . . . ,M} and using the value of α as in (5), we get,

M∑
i=1

Tqiñi(1− qiα)
T−1

+ λ

M∑
i=1

(
qiki

1− qi

)
= 0 (12)

Comparing (10) and (12), we can conclude that
M∑
i=1

(
qiki

1− qi

)
= 1 (13)

Equation (13) is a constraint on the optimal sampling proba-
bility q∗i .

We incorporate the energy constraint as follows. Assume
that we have a base sampling probability q and each cluster
uses a fraction of q as its sampling probability. Specifically,
define the sampling probability of ith cluster as

qi = βi × q,∀i ∈ {1, 2, . . . ,M}. (14)

One can think of βi as a predefined parameter for the ith

cluster based on its energy budget constraint. Using (14) in
(4c) leads to

P(err) ≤
M∑
j=1

(nj − kj) exp(−Tqβj
( M∏
r=1

(1− qβr)kr
)

)

≤
M∑
j=1

(nj − kj) exp(−Tqβje−q
∑M

r=1 βrkr )

(15)

Note that since finding a closed form solution for q∗i ’s from
(4c) seems infeasible for large values of M , we used the
inequality (1 − x)N ≤ e−Nx when 0 ≤ x ≤ 1. The
upper bound on probability of error indicated in (15) can be
minimized to obtain the optimal q as below:

q∗i =
βi

β1k1 + β2k2 + . . .+ βMkM
(16)

.
Note that for massive access scenarios where n is suffi-

ciently large, the derived q∗i ’s closely satisfy the constraint in
(13). Also, in the simple case where there is only one cluster,
say c1, characterized by the parameters (n1, k1), we can see
that (13) reduces to q1 = 1

k1
which is in close agreement with

the existing results in literature [12].
As an example, consider a 2-cluster case with parameters

(n1, k1) = (300, 3) and (n2, k2) = (200, 2). Assume that the
base station assigned β1 = 1 and β2 = 0.5 indicating cluster-
2 is having a 50% lesser energy budget compared to cluster-
1. The sampling probabilities are q∗1 = 1

4 and q∗2 = 1
8 . It

should be understood that though these sampling probabilities
provide certain performance guarantees, they are obtained by
minimizing an upper bound on probability of error and not
the exact probability of error. We performed several empirical
analysis to determine how close the parameter values we
obtained from optimizing the union bound are to the best
sampling probabilities. The utility of our derived sampling
probabilities from a practical system design perspective is
illustrated in Fig.1 and Fig.2 . Clearly, the total number of
probes required to achieve a given success probability using
the derived sampling probabilities q1 = 1

4 and q2 = 1
8 are

close to the true minimum leading to significant reduction in
resource utilization.

2) Random Activity Pattern: Now, we proceed to an-
alyze the case with random activity pattern. i.e., ~pa =
[p1, p2, ..., pM ] defines the probability of activities for the
sensors within each of the M classes.

The inclusion of sensors in a test vector can be thought of as
a collection of Bernoulli sampling processes. Each sensor in
class ci is made part of the test group with probability qi. Since
the sensor can be active with probability pi, and inactive with
probability 1− pi, under independence assumption, an active
sensor from ci is in a group test with probability piqi while
an inactive sensor from ci is in a group test with probability
(1− pi)qi.

Using Boole’s inequality in (3), we can write the following:



Fig. 1: Fixed activity pattern: Performance of the sampling probabil-
ities derived for the 2-cluster case with parameters n1 = 300, n2 =
200, k1 = 3, k2 = 2, β1 = 1, β2 = 0.5 The derived optimal
sampling probabilities are q∗1 = 1

4
and q∗2 = 1

8
(blue curve).

Fig. 2: Fixed activity pattern: The number of probes required versus
the sampling probability to achieve a given P(Succ) in a 2-cluster
case with parameters n1 = 300, n2 = 200, k1 = 3, k2 = 2, β1 =
1, β2 = 0.5. The derived sampling probabilities q∗1 = 1

4
and q∗2 = 1

8
are close to the true minimum.

P(err) ≤
∑
∀si

P({si is shadowed} | si ∈ IS)P(si ∈ IS)

(17a)

=

M∑
j=1

∑
si∈cj

P({si shadowed} | si ∈ ISj)P(si ∈ ISj)

(17b)

=

M∑
j=1

( ∑
si∈cj

(
1− qj × γ(~q)

1− pjqj

))
(1− pj)

(17c)

=

M∑
j=1

(nj)(1− pj)×

(
1− qj × γ(~q)

1− pjqj

)T
(17d)

where
γ(~q) =

M∏
k=1

(1− pkqk)nk . (18)

In (17b), ISj denotes the set of inactive sensors in cluster cj .
Eqn.(17c) uses the fact that shadowing for an inactive sensor
means that there are no negative probes (tests with yt = 0) in
which the sensor si is a part of. The term γ(~q)

1−pjqj denotes the
joint probability that each of the remaining nj − 1 sensors in
cluster cj as well as all the sensors from the remaining M−1
clusters are either inactive or not selected.

For brevity, we will use γ to denote γ(~q). Similar to the
fixed activity pattern, we proceed to minimize the upper bound
in (17d) by using the method of Lagrange multipliers with (18)
as the equality constraint. The Lagrange function is given by

L(~q) =

M∑
j=1

nj(1− pj)

(
1− qj

(1− pjqj)
γ

)T
+

λ
( M∏
k=1

(1− pkqk)nk − γ
)
. (19)

Taking the derivative of (19) w.r.t γ and qi,∀i ∈
{1, 2, . . . ,M}, leads to a system of equations which can
be solved to obtain the following constraint on the optimal
sampling probabilities (q∗i ’s).

M∑
i=1

nipiqi = 1 (20)

Clearly, for the single cluster case with parameters
(n1, p1),the optimal sampling probability is q∗1 = 1

n1p1
. Also,

if all the M clusters are constrained to use the same sampling
probability, i.e., if q∗i = q∗,∀i, then q∗ = 1∑M

i=1 nipi
.

To study the energy constrained case, we invoke the con-
straint on sampling probabilities defined in (14) and using the
inequality (1− x)N ≤ e−Nx when 0 ≤ x ≤ 1, (17d) reduces
to

P(err) ≤
M∑
j=1

(nj)(1− pj) exp(
−Tqβj

1− pjqβj

M∏
k=1

(1− qpkβk)nk)

(21a)

≤
M∑
j=1

(nj)(1− pj) exp
(
− Tqβje−q

∑M

k=1
nkpkβk

)
(21b)

The error in this approximation will be small for a sparse-
massive random access scenario once the number of probing
instances (T ) is sufficiently high. The upper bound on proba-
bility of error indicated in (21b) can be minimized to obtain
the optimal q as below:

q∗i =
βi

β1n1p1 + β2n2p2 + . . .+ βMnMpM
(22)



Fig. 3: Random activity pattern: Performance of the sampling
probabilities derived for the 2-cluster case with parameters n1 =
200, n2 = 400, p1 = 0.02, p2 = 0.01, β1 = 1, β2 = 0.5. The
derived optimal parameters are q∗1 = 1

6
and q∗2 = 1

12
(blue curve).

Fig. 4: Random activity pattern: The number of probes required
versus the sampling probability to achieve a given P(Succ) in a 2-
cluster case with parameters n1 = 200, n2 = 400, p1 = 0.02, p2 =
0.01, β1 = 1, β2 = 0.5. The derived optimal sampling probabilities
q∗1 = 1

6
and q∗2 = 1

12
are close to the true minimum.

Simulation results demonstrating the performance of the
derived sampling parameters for a 2-cluster case is shown
in Fig.3 and Fig.4. Clearly, once the number of probes
reaches the usable regime where probability of success is
considerably high, derived sampling probabilities guarantee
good performance.

V. CONCLUSION AND DISCUSSION

In this paper, we have proposed and analyzed an active
device discovery scheme for multi-cluster networks where
each cluster of sensors is characterized by its own activity
pattern and energy budget constraint. We have presented a
modification to the original non-adaptive Bernoulli design
based group testing strategy to account for the energy budget
constraint on different clusters. Constraints on the optimal

sampling probabilities (~q) have been derived for the fixed and
random activity patterns respectively.

In our approach, the energy budget (or, equivalently, energy
efficiency) constraints for each cluster have been translated
to a constraint on the corresponding sampling probabilities.
Specifically, we assumed qi = βi × q, where βi indicates
the relative energy efficiency of the ith cluster and derived
the optimal qi’s. Through simulations, we have verified that
our derived sampling probabilities can significantly reduce the
resource utilization by bringing down the number of probes
required to achieve a given probability of success.

In a practical IoT setting, the energy-conserving group
testing scheme we have proposed can extend the battery life
of low-powered sensors without compromising its network
accessibility. This has significant impact in environments
where batteries are difficult to replace or recharge periodically.

Throughout this paper, we did not account for any possible
sources of noise. Extensions to various noise models are part
of future research.
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