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Abstract—Synaptic communication is a natural Molecular
Communication (MC) system which may serve as a blueprint
for the design of synthetic MC systems. In particular, it features
highly specialized mechanisms to enable inter-symbol interfer-
ence (ISI)-free and energy efficient communication. The under-
standing of synaptic MC is furthermore critical for disruptive
innovations in the context of brain-machine interfaces. However,
the physical modeling of synaptic MC is complicated by the
possible saturation of the molecular receiver arising from the
competition of postsynaptic receptors for neurotransmitters. Sat-
uration renders the system behavior nonlinear and is commonly
neglected in existing analytical models. In this work, we propose
a novel model for receptor saturation in terms of a nonlin-
ear, state-dependent boundary condition for Fick’s diffusion
equation. We solve the resulting boundary-value problem using
an eigenfunction expansion of the Laplace operator and the
incorporation of the receiver memory as feedback system into the
corresponding state-space description. The presented solution is
numerically stable and computationally efficient. Furthermore,
the proposed model is validated with particle-based stochastic
computer simulations.

I. INTRODUCTION

Molecular Communication (MC) is a bio-inspired commu-
nication paradigm in which information is transmitted by
molecules. It has gained significant attention as potential
enabler of novel applications in the context of the internet
of Bio-nano things [1]. In particular, MC is considered as
promising candidate for novel intra-body applications due
to its inherent bio-compatibility and the fact that traditional
electromagnetic wave-based wireless communication is not
feasible at the nano-scale [2]. Natural MC systems evolved
over millions of years to cope with the challenges faced in
intra-body nano-scale communication and might hence serve
as blueprints for synthetic MC systems. Among the different
natural types of MC, Diffusive Molecular Communication
(DMC), i.e., communication via diffusing molecules, is a
promising candidate for synthetic MC as it requires neither
dedicated communication infrastructure nor external energy
sources for molecule propagation [2].

DMCs can be found in the human body for example in
chemical synapses formed between adjacent nerve cells or
between neurons and muscle fibers. The synaptic communica-
tion system comprises in its simplest form the presynaptic
cell (transmitter), the postsynaptic cell (receiver), and the
synaptic cleft (channel) [3], cf. Fig. 1. The message carrying
molecules in this highly specialized DMC system are termed
neurotransmitters (NTs). To convey information, NTs are
released from vesicular containers at the presynaptic cell,
diffuse across the synaptic cleft and bind to postsynaptic
receptors [2]. The signal is terminated by molecule uptake
or enzymatic degradation [2].

One of the challenges for modeling the synaptic DMC system
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is that a finite number of postsynaptic receptors compete for
NTs rendering the system under consideration nonlinear in
the number of released NTs. This effect is called receptor
saturation and significantly impacts synaptic transmission at
some types of synapses [4]. Hence, in particular for the design
of synthetic DMC systems, it is desirable to understand how
and under which conditions receptor saturation impacts signal
transmission in synaptic DMC.

Synaptic communication has been studied in the MC
literature before and we refer the reader to [5], [6] for
recent literature overviews. In most models, e.g. in [7]–[10],
postsynaptic receptor saturation is neglected. In [11], a finite
number of postsynaptic receptors is assumed, but the impact
of NT buffering at postsynaptic receptors on the concentration
of solute NTs is not taken into account. This approach leads
potentially to an underestimation of the synaptic inter-symbol
interference (ISI) caused by residual NTs in the synaptic cleft.
Receptor saturation and its impact on the concentration of
solute NTs in the presence of presynaptic NT transporters
is modeled in [12]. The resulting nonlinear model is solved
by dicretizing the diffusion equation in space and time and
employing an iterative numerical algorithm. In [13], a non-
linear model for ligand-receptor binding based on the chemical
master equation is analyzed using Volterra series. The spatial
distribution of molecules is, however, not considered in [13].

Saturation at the molecular receiver has been considered
in the MC literature also in the context of targeted drug
delivery [14]–[16] and experimental studies [17]–[19]. In none
of these works, however, the impact of receptor saturation on
the spatial distribution of solute molecules is modeled explicitly.
Finally, in [20], receptor saturation is studied in an unbounded
environment using particle-based simulations (PBS).

In this work, we present a novel model for synaptic DMC
incorporating receptor saturation and enzymatic molecule
degradation. The proposed model is based on the diffusion
equation and incorporates an analytical model of the reversible
binding of NTs to a finite number of postsynaptic receptors
in terms of a saturation boundary condition. In contrast to
previous works, our model encompasses a spatial model of the
synaptic cleft and a finite number of postsynaptic receptors
without decoupling the concentrations of solute and bound
molecules (as e.g. in [11]) or the need for spatial discretization
(as e.g. in [12]). Our approach exploits the modeling of the
diffusion equation in terms of a state-space description (SSD)
[21]. It is based on a functional transformation of the diffusion
equation adapted to the synaptic geometry and allows the
modular incorporation of the nonlinear receptor saturation
effect by a feedback structure [22]. Compared to particle-based
Monte Carlo methods, the approach presented in this paper is
computationally extremely efficient as the computational cost
scales neither with the number of released particles nor with
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Fig. 1. Model synapse. Neurotransmitters (green) enclosed in vesicles are
released at the presynaptic cell, propagate by Brownian motion, and activate
receptors at the postsynaptic cell. Binding to postsynaptic receptors is reversible.
Solute neurotransmitters are degraded by enzymes (blue) [23].

the number of receptors. Furthermore, it yields the expected
received signal without diffusion noise. The proposed model is
to the best of the authors’ knowledge the first spatial analytical
model to simultaneously consider enzymatic degradation and
receptor saturation. Results from PBS validate the accuracy of
our model.

The remainder of this paper is organized as follows: In
Section II, the system model is introduced. In Sections III
and IV, we develop the proposed transfer function model and
the resulting SSD, respectively. The results are presented and
compared with PBS in Section V, and the main findings are
summarized in Section VI.

II. SYSTEM MODEL

A. Assumptions

The shapes of natural synapses are highly variable [3]. In
this work, we adopt the cuboid model for the synaptic cleft
proposed previously in [10]. Formally, it is defined in Cartesian
coordinates as follows [10]

Ω = {(x, y, z)|xmin ≤ x ≤ xmax,

ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax}. (1)

In this model, the faces x = xmin and x = xmax represent
the membranes of the presynaptic and postsynaptic neuron,
respectively, and the faces in y and z are reflective and
constrain the synaptic cleft. After NTs are released from
presynaptic vesicles [23], they are in nature either uptaken by
the presynaptic neuron or surrounding glial cells or degraded by
enzymes to terminate synaptic signaling [2]. While presynaptic
and glial cell uptake has been considered previously by the
authors (without receptor saturation) [6], [10], in this work,
we focus on enzymatic degradation as clearance mechanism.

We define the postsynaptic signal as the number of bound
(postsynaptic) receptors at time t, î(t). In the following, we
are interested in the impact of receptor saturation on î(t) in
response to a single release or multiple releases of NTs.

Before we state the system model, we introduce the following
assumptions:
A1) The diffusion coefficient and the total number of postsy-

naptic receptors are time-invariant over the time frame
under consideration.

A2) The diffusive propagation of molecules is fast relative to
the binding to postsynaptic receptors.

A3) Enzymatic degradation can be modeled as first-order
reaction and the enzymes are uniformly distributed in
space.

A4) Reversible adsorption to individual, uniformly distributed
receptors with intrinsic association coefficient κa0 in
µm µs−1 and intrinsic dissociation rate κd in µs−1 can
be treated equivalently as reversible adsorption to a
homogeneous surface with effective association coefficient
κa in µm µs−1 and dissociation rate κd.

A1 is justified if the time frame under consideration is
sufficiently small as the insertion and removal of postsynaptic
receptors constitutes a long-term adaptation process [24].

A2 is plausible given experimentally observed values for
the diffusion coefficient of the common NT glutamate [25]
and postsynaptic receptor binding rates [26]. A2 guarantees
that the NTs are approximately uniformly distributed in y and
z and, hence, the NT concentration in Ω can be equivalently
characterized by the one-dimensional NT concentration in Ωx =
[xmin;xmax]. We note that, because of the reflective boundaries
in y and z, Ω would in fact be equivalent to Ωx in terms of
î(t), if receptors did not saturate [10]. The validity of this
assumption is further investigated in Section V by comparing
the results of three-dimensional PBS with the proposed one-
dimensional model.

The first part of A3 is justified in [27] under the assumption
that the degradation of molecules bound to enzymes is
sufficiently fast. The latter part is reasonable given that the
enzymes exist long enough such that their concentration reaches
equilibrium. As a consequence of A3, the time constant of
enzymatic degradation is given as κeCE , where CE denotes
the constant concentration of degrading enzymes in µm−1 and
κe denotes the degradation rate in µm µs−1 [27].

A4 is referred to as boundary homogenization and has been
investigated in [10]. The validity of A4 is further confirmed
by the results presented in Section V.

With these assumptions, we now formulate the analytical
system model.

B. Synaptic Neurotransmitter Concentration

Using assumption A2 from Section II-A and setting xmin = 0
and xmax = a, the concentration of NTs in the synaptic cleft
is governed by the inhomogeneous reaction-diffusion equation

∂tc(x, t) = D∂xxc(x, t)−κeCEc(x, t)+q(x, t), 0 < x < a,
(2)

where c(x, t) denotes the NT concentration in µm−1, D is
the diffusion coefficient in µm2 µs−1, and ∂t and ∂xx denote
the first derivative with respect to (w.r.t.) time and the second
derivative w.r.t. space, respectively. The term q(x, t) in (2) is
independent of c(x, t) and models the release of NTs into the
synaptic cleft (in µm−1 µs−1).

The boundary condition at the presynaptic membrane, x = 0,
is given by the no-flux boundary condition

−D∂xc(x, t)
∣∣
x=0

= i(0, t) = 0, (3)



where ∂x denote the first derivative w.r.t. space and i(x, t)
denotes the particle flux in µs−1.

If the receptors did not saturate, the binding of NTs
to postsynaptic receptors could be modeled as reversible
adsorption to a homogeneous, partially absorbing boundary
[10]. The corresponding boundary condition would then be
[10]

i(a, t) = κac(a, t)− κdî(t), (4)

where κa denotes the effective adsorption coefficient in
µm µs−1 resulting from homogenizing the postsynaptic bound-
ary, κd denotes the dissociation rate in µs−1,

î(t) =

∫ t

0

i(a, τ)dτ, (5)

and we have assumed that î(0) = 0.
Now, the saturation of postsynaptic receptors introduces

memory to the adsorption process in the sense that the rate of
adsorption at time t = t1 depends on how many receptors are
occupied at time t1, i.e., î(t1), which in turn depends on the
entire history of binding and unbinding of NTs to receptors.

Using (5), we propose to incorporate saturation into (4) as
follows

i(a, t) = κa
(
1− î(t)/C∗

)
c(a, t)− κdî(t), (6)

where C∗ denotes the total number of postsynaptic receptors.
Considering the term

(
1− î(t)/C∗

)
in (6), molecules bind with

the full rate κa if no receptors are occupied, i.e., î(t) = 0,
and binding drops to zero, if all receptors are occupied, i.e.,
î(t) = C∗. As î(t) depends on the current and all past values of
c(a, t), (6) is a nonlinear, state-dependent boundary condition
which we term saturation boundary condition.

To complete the formulation of the model, we require that
the initial concentration of NTs in the synaptic cleft is zero at
t = 0, i.e., c(x, 0) = 0.

III. TRANSFER FUNCTION MODEL

In this section, we formulate the boundary-value problem
from Section II-B in terms of transfer functions. We first
consider the special case κa = κd = κeCE = 0. This model is
then extended in Section IV to the general case κa, κd, κeCE ≥
0.

A. Vector Representation
Assuming κeCE = 0, (2) is decomposed into two equations

and arranged into vector form as follows [22, Eq. (12)]

[∂tD − L]y(x, t) = f(x, t), (7)

where

D =

[
0 0

1 0

]
, L =

[
−∂x −1/D

0 −∂x

]
, (8)

y(x, t) =
[
c(x, t) i(x, t)

]T
, f(x, t) =

[
0 q(x, t)

]T
, (9)

and (·)T denotes transposition. Eqs. (3), (6) are represented
with the boundary operator F T

b ∈ R2×2 acting on y(x, t) as

F T

b y(x, t) = φ(x, t), x = 0, a, (10)

where R denotes the set of real numbers, and F T

b and the
vectorized boundary values φ(0, t) and φ(a, t) are defined as
follows

F T

b =

[
0 0

0 1

]
, φ(0, t) = 0, φ(a, t) =

[
0

p(t)

]
. (11)

The time-variant boundary value p(t) in (11) is used as
placeholder for the right-hand side of (6) and we assume
for the moment that it is independent of y(x, t). Eqs. (7), (10)
describe a one-dimensional diffusion process with Neumann
boundary conditions.

B. Functional Transformations
The solution of (7), (10), y(x, t), is expanded into the

infinite set of bi-orthogonal eigenfunctions Kµ(x) ∈ R2×1

and K̃µ(x) ∈ R2×1 of the spatial differentiation operator L.
The corresponding eigenvalues sµ define the discrete spectrum
of L [28]. Both, eigenvalues and eigenfunctions are indexed
with µ ∈ N0, where N0 denotes the set of non-negative integers.
Due to space constraints, the spatial transformations required
for the expansion of (7) are not presented here and we refer the
reader to [21, Secs. III, IV] for a detailed exposition. Instead,
only the parts necessary for the construction of the solution of
(7) are provided.

The eigenfunctions Kµ(x) and K̃µ(x) are derived using the
procedure in [29, Sec. III] as

Kµ(x)=

[
cos(γµx)

Dγµ sin(γµx)

]
, K̃µ(x)=

[
−Dγµ sin(γµx)

cos(γµx)

]
.

(12)

The eigenvalues sµ and wavenumbers γµ can be derived
from (10) as sµ = −Dγ2µ, γµ = µπa [29, Sec. IV]. The
eigenfunctions in (12) have to be bi-orthogonal to ensure the
existence of an inverse transformation [28], yielding the factor

Nµ =

∫ a

0

K̃T

µ(x)DKµ(x) dx =

{
a µ = 0
a/2 µ 6= 0

. (13)

Finally, y(x, t) is given by the following series expansion

y(x, t) =

∞∑
µ=0

1

Nµ
ȳµ(t)Kµ(x), (14)

with the expansion coefficients

ȳµ(t) = esµt
t∗
(
f̄µ(t)− φ̄µ(t)

)
. (15)

Here,
t∗ denotes the convolution w.r.t. time, and f̄µ(t) and φ̄µ(t)

follow from f(x, t) in (9) and φ(x, t) in (11) as

f̄µ(t)=

∫ a

0

K̃T

µ(x)f(x, t) dx, φ̄µ(t)=
[
K̃T

µ(x)φ(x, t)
]a
0
,

(16)

where [f(x)]ba = f(b) − f(a). For the numerical evaluation,
the infinite sum in (14) is truncated to µ = 0, . . . , Q− 1. The
accuracy of the computed solution hence depends on Q.



IV. STATE-SPACE DESCRIPTION

In this section, we consider the general case κa, κd, κeCE ≥
0. To this end, the model in (14) is first transformed into the
discrete-time using an impulse invariant transform [22]. This
yields the following discrete-time SSD [21]

ȳ[k + 1] = eAT ȳ[k] + T f̄ [k + 1]− T φ̄[k + 1], (17)
y[x, k] = C(x)ȳ[k], (18)

with discrete-time index k and sampling interval T , i.e., t =
kT . Consequently, y[x, k], c[x, k], and i[x, k] are given by
y(x, kT ), c(x, kT ), and i(x, kT ), respectively. T should be
adapted to the smoothness of y(x, t) to ensure that y(x, t) is
accurately reproduced by y[x, k]; i.e., the smaller D, κa0 , κd,
and κeCE are, the smoother signal y(x, t) is and the larger may
T be chosen. For a numerical example, please see Table I. Here,
state equation (17) is the vector-valued discrete-time equivalent
of (15), where vector ȳ ∈ RQ×1 contains Q coefficients ȳµ
and diagonal matrix A ∈ RQ×Q contains Q eigenvalues sµ
on its main diagonal, i.e., ȳ[k] = [ȳ0(kT ), . . . , ȳQ−1(kT )]T =

(ȳµ(kT ))
Q−1
µ=0 and A = diag {s0, . . . , sQ−1}. Vectors f̄ [k] ∈

RQ×1 and φ̄[k] ∈ RQ×1 are defined as f̄ [k] =
(
f̄µ(kT )

)Q−1
µ=0

and φ̄[k] =
(
φ̄µ(kT )

)Q−1
µ=0

, respectively. Output equation (18)
is the discrete-time equivalent of (14), where the summation
is replaced by a multiplication with matrix C(x) ∈ R2×Q,

C(x) = [1/N0K0(x), . . . , 1/NQ−1KQ−1(x)] . (19)

For the following steps, we further define matrix C̃(x) ∈ R2×Q,

C̃(x) =
[
K̃0(x), . . . , K̃Q−1(x)

]
. (20)

A. Incorporation of Receptor Saturation
Now, we expand the placeholder boundary value p(t)

introduced in (11) in the discrete-time domain as

p[k + 1] = κ̂a[k] c[a, k]− κ̂d[k], (21)

where

κ̂a[k] = κa
(
1− î[k]/C∗

)
, κ̂d[k] = κd î[k], (22)

and the discrete-time accumulated net flux, î[k], is defined as

î[k] = T

k∑
n=0

i[a, n]. (23)

In (21), the value of p in time slot k + 1 depends on the
values of the concentration c and flux î in time slot k. Hence,
(21) introduces a delay of T in the computation of the flux
compared to the right-hand side of (6). However, if T is chosen
small enough relative to the velocity of the binding kinetics
defined by κa and κd, this simplification is justified because
î and c will be approximately constant in two subsequent
sampling intervals. We verify the accuracy of this assumption
in Section V with PBS.

Now, vector φ̄ in (17) can be evaluated using the vector-
valued discrete-time version of (16)

φ̄[k + 1] =
[
C̃T

(x)φ(x, (k + 1)T )
]a
0
. (24)

Exploiting the structure of φ(x, t) in (11), C̃(x) in (20), and
the definition of p in (21), we can write (24) as

φ̄[k + 1] = c̃2(a)p[k + 1]

= c̃2(a)κ̂a[k] c[a, k]− c̃2(a)κ̂d[k], (25)

where c̃2(x) ∈ RQ×1 is the second column of C̃T

(x) containing
the second entries of K̃ in (12). Furthermore, concentration c
can be expressed as follows

c[a, k] = cT

1 (a)ȳ[k], (26)

where cT
1 (x) ∈ R1×Q is the first row of matrix C(x) in (19).

Inserting (26) into (25) leads to

φ̄[k + 1] = κ̂a[k]K̃aȳ[k]− κ̂d[k]K̃d, (27)

where K̃a = c̃2(a)c1(a), K̃d = c̃2(a). Inserting (27) into (17),
we obtain the state equation for κa, κd ≥ 0 as

ȳ[k + 1] =
(

eAT − T κ̂a[k]K̃a

)
ȳ[k]

+ T κ̂d[k]K̃d + T f̄ [k + 1]. (28)

B. Incorporation of Degradation
To complete the model, the enzymatic degradation in (2) has

to be reincorporated into (28). As the degradation reaction is
modeled as first-order reaction, it can be incorporated into (14)
by a decaying exponential function e−κeCEt [27], yielding the
following discrete-time model

ȳ[k + 1] =
(

e−κeCET eAT − T κ̂a[k]K̃a

)
ȳ[k]

+ T κ̂d[k]K̃d + T f̄ [k + 1]. (29)

This modified state equation accounts for saturation and
desorption at x = a according to (6) and enzymatic degradation,
while the output equation (18) to calculate the NT concentration
and flux remains unchanged. We note that (29) collapses to
(17) if κa = κd = κeCE = 0.

V. RESULTS

A. Particle-based Simulation
To verify the accuracy of the state-space model derived in

Section IV, three-dimensional PBS were conducted. To this end,
the simulator design previously presented in [10] was extended
to account for receptor saturation and enzymatic degradation.
Receptor saturation was incorporated into the simulator by
setting the binding probability for a receptor to zero when a
molecule was bound to this receptor, and back to its original
value when the molecule unbound. Enzymatic degradation was
incorporated by introducing a first-order degradation step for
all solute molecules with probability [30] 1− exp(−κeCE∆t),
where ∆t denotes the simulation time step in µs. The results
presented in the following subsections were obtained for ∆t =
10−2 µs and averaged over 50 simulation runs.

The computational cost of the PBS scales with the simulation
time step as well as with the number of released particles, the
number of receptors, and the number of simulation runs. The
runtime of the proposed SSD model, in contrast, scales only
with the sampling interval and the number of eigenfunctions.
Consequently, for the parameter values considered in this paper,



TABLE I
SIMULATION PARAMETERS FOR PARTICLE-BASED SIMULATION [6].

Parameter Default Value Description
D 3.3× 10−4 µm2 µs−1 Diffusion coefficient
N 1000 Number of released particles
a 2× 10−2 µm Channel width in x
{y, z}max −
{y, z}min

0.15 µm Channel widths in y and z

κa0 1.02× 10−4 µm µs−1 Intrinsic binding rate
κd 8.5× 10−3 µs−1 Intrinsic unbinding rate
κeCE 10−3 µs−1 Degradation rate
r 2.3× 10−3 µm Receptor radius
C∗ 203 Number of uniformly distribu-

ted receptors (15% coverage)
∆t 10−2 µs Simulation time step
Q 100 Number of eigenfunctions
T 3× 10−1 µs Sampling interval

the computation of the SSD model required far less (by more
than a factor of 100) CPU time than the PBS.

In Sections V-B and V-C, we set q(x, t) = Nδ(x)δ(t), where
N denotes the number of released molecules and δ(·) denotes
the Dirac delta function. In Section V-D, we set q(x, t) =
Nδ(x)(δ(t) + δ(t − 1 ms) + δ(t − 2 ms)). If not indicated
otherwise, the parameter values listed in Table I were used.

B. Impact of Receptor Saturation on Steady-State
First, we consider the instantaneous release of NTs in the

absence of enzymatic degradation, i.e., κeCE = 0. In this case,
there is no clearance mechanism in the synapse and, hence,
the steady-state concentration of NTs in the synaptic cleft
following a single release is non-zero. The expected number of
bound molecules without receptor saturation in the steady-state
is [10, Eq. (17)]

Nκa
κa + aκd

. (30)

The results from the SSD model from Section IV, i.e., (18),
and from the PBS are shown in Fig. 2 for different numbers of
postsynaptic receptors C∗ and different intrinsic binding rates
κa0 (keeping the effective adsorption rate κa constant). In the
absence of saturation, we observe from Fig. 2 that both, SSD
and PBS, agree with (30), hence confirming the accuracy of
the proposed model in the absence of saturation. The small
discrepancy between SSD and PBS is attributed to the use of
boundary homogenization, cf. A4 in Section II-A.

Further, we observe from Fig. 2 that, in the presence of
saturation, the steady-state number of bound molecules depends
also on the number of available receptors. Furthermore, we
observe that the proposed SSD and the PBS agree very well
also in the presence of saturation.

C. Impact of Receptor Saturation on Single Release
Next, we investigate the impact of receptor saturation for

one single instantaneous release of NTs when enzymes are
present. The results from the SSD presented in Section IV
and from PBS are shown in Fig. 3 for different numbers of
postsynaptic receptors C∗ and constant individual binding rates
κa0 . In the presence of enzymatic degradation, all released
molecules are eventually degraded. We observe from Fig. 3
that receptor saturation significantly reduces the peak of the
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postsynaptic signal as compared to the configuration without
receptor saturation. Moreover, we also observe that the peak
values in both cases, with and without receptor saturation,
scale approximately linearly with the number of postsynaptic
receptors in the considered regime. Furthermore, we note that
the effect of receptor saturation is most prominent around the
peak occupancy at t ≈ 0.3 ms. When fewer receptors are
occupied, i.e., for t > 1.5 ms, the impact of receptor saturation
on the postsynaptic signal is almost negligible.

D. Impact of Receptor Saturation on Multiple Releases
Finally, we investigate the impact of receptor saturation

on the postsynaptic signal for multiple NT releases when
enzymes are present. The results for the SSD presented
in Section IV and PBS are shown in Fig. 4 for different
numbers of released molecules N . First, we observe that with
receptor saturation, the peaks of the postsynaptic signals do
not scale linearly with N . Next, we observe that the impact
of receptor saturation in terms of the peak values becomes
more pronounced compared to the system without saturation
as N increases. Finally, we note that, due to ISI, for each
N the peak value following the second release of NTs (at
t ≈ 1.2 ms) is larger than the peak value following the
first release. Now, interestingly, this effect is significantly
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less pronounced in the presence of saturation. In fact, this
observation is consistent with experimental observations [4]
and has two reasons. First, limiting the number of receptors
naturally damps the signal because fewer receptors are available.
Second, as the number of receptors decreases, fewer molecules
are bound simultaneously and, consequently, molecules become
more exposed to degradation and the channel is cleared faster.

VI. CONCLUSIONS

In this work, we have presented a novel model for synaptic
MC in the presence of enzymatic degradation and receptor sat-
uration. We have shown that the proposed deterministic model
is consistent with stochastic PBS and produces biologically
plausible results. The proposed state-space description allows
for the numerically stable and efficient computation of the
solution of the proposed model.

While the presented model incorporates enzymatic degra-
dation, it would be interesting to also consider other channel
clearance mechanisms such as presynaptic uptake or molecule
uptake at glial cells. However, due to space constraints, this is
left for future work.
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