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Abstract—We address the mobility management of an au-
tonomous UAV-mounted base station (UAV-BS) that provides
communication services to a cluster of users on the ground while
the geographical characteristics (e.g., location and boundary)
of the cluster, the geographical locations of the users, and the
characteristics of the radio environment are unknown. UAV-
BS solely exploits the received signal strengths (RSS) from the
users and accordingly chooses its (continuous) 3-D speed to
constructively navigate, i.e., improving the transmitted data rate.
To compensate for the lack of a model, we adopt policy gradient
deep reinforcement learning. As our approach does not rely on
any particular information about the users as well as the radio
environment, it is flexible and respects the privacy concerns.
Our experiments indicate that despite the minimum available
information the UAV-BS is able to distinguish between high-rise
(often non-line-of-sight dominant) and sub-urban (mainly line-
of-sight dominant) environments such that in the former (resp.
latter) it tends to reduce (resp. increase) its height and stays close
(resp. far) to the cluster. We further observe that the choice of the
reward function affects the speed and the ability of the agent to
adhere to the problem constraints without affecting the delivered
data rate.

I. INTRODUCTION

Using unmanned aerial vehicles (UAVs), also known as
drones, benefits many applications including package delivery,
search and rescue, infrastructure monitoring, law enforcement,
and the like [1], [2], [3]. Due to growing popularity and
low cost, UAVs are getting an increased attention in the
telecommunications sector to address on-demand data delivery,
flexible backhauling, data harvesting, IoT applications, and
caching [2], [4]. For example, due to their maneuverability,
UAVs are exploited to enhance the performance of wireless
communications via optimally deploying them as aerial (fly-
ing) base stations (UAV-BSs). This technique is shown to
be particularly effective for those scenarios involving high
(temporarily-lived) localized traffic surges, e.g. caused by
crowded events, as well as network failure.

Our focus in this paper is to maximize the transmission
capacity of UAV-BS to serve a cluster of users on the ground.
This is a challenging problem given that the 3-D location of
UAV-BS and geographical location of users on the ground af-
fect signal propagation, and thus the transmission data rate, in
a compound manner. Conventionally, to solve this optimization
problem it is assumed that 1) users are located in a cluster that
has particular mathematical features (for example a circular
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disk), which its boundaries are known, 2) accurate knowledge
of the channel is available, and 3) the geographical locations
of users are known, see, e.g., [5], [6], and [1]. In fact, often the
optimal placement of UAV-BS assumes that the channel can be
predicted using a (relatively) straightforward model that, in the
core, exploits the users’ locations along with the knowledge
of the radio environment (sub-urban vs. urban areas). Such a
knowledge is used to fine-tune the path-loss and the shadowing
parameters, and consequently to convert the original problem
into an equivalent optimization problem which its objective
function as well as constraints are functions of the location
of UAV-BS. In reality, the information regarding the users’
locations may not be available due to privacy issues or simply
the lack of such knowledge. Given that the solutions that are
not intrusive regarding to the private information of the users is
practically valuable, we, therefor, promote solutions based on
deep reinforcement learning (DRL) [7] to learn the navigation
of UAV-BS in order to optimize the capacity.

In [8], deep Q-learning network (DQN) is used to design
the trajectory of an autonomous UAV-BS without any explicit
information about the environment. In order to increase the
service time the use of landing spots is also promoted. As-
suming a fixed altitude of the UAV-BS during the navigation,
the action space of the UAV-BS is reduced to 8 movement
directions. To minimize the mission completion time subject
to maintaining good connectivity with the cellular network a
temporal difference based DRL solution is suggested in [9].
The algorithm relies only on the raw signal strength as input.
It is assumed that the UAV flies with fixed speed, therefore the
agent needs only to adjust the direction of the UAV. Note that
in all of these works its also assumed that the destinations are
known to UAV prior to the start of the mission, which may
not be the case for many scenarios.

To address the lack of geographical information of users,
work of [10] discusses the use of UAV for search and rescue
applications. Authors use UAV for locating a user merely
by receiving the received signal strength (RSS) in an indoor
environment using DQN. It is shown that DQN solution
is competitive with the location-based solution, emphasizing
the power of model-free DRL. In [11], DQN is used to
provide connectivity via proper UAV placement in an urban
environment when the location of the end user is unknown.
The algorithm uses the signal-to-interference-and-noise ratio
measurements and exploits 3D map of the topology in order
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to account for the scatterers and blockages. In both papers, the
action dimension of the UAV is limited to 4—up, down, left,
right—and the speed is kept fixed. In reality, the mobility of
the UAV-BS is in a continuous 3-D space, which requires a
more sophisticated solutions. Also extracting information from
a 3-D map via reconstruction of the environment can be costly
(although very effective). We hence use only RSS values to
navigate the UAV-BS.

In particular, we adopt trust region policy optimization
(TRPO) algorithm which is a policy gradient DRL to learn the
navigation in continuous 3-D space. Our experiments indicate
that UAV-BS differentiates high-rise (often non-line-of-sight
dominant) from sub-urban (mainly line-of-sight dominant)
environments. In effect, while in the former it tends to reduce
its height and stays closer to the cluster, in the latter it attempts
to increase its height and keeps distance to the cluster. We also
demonstrate that the choice of the reward function can affect
the speed and the ability of the agent to adhere to the problem
constraints without affecting the delivered data rate. Last, as
our approach does not rely on any particular information about
the users as well as the radio environment, it is flexible and
respects the privacy concerns.

II. PROBLEM FORMULATION

Our main focus is on 3-D navigation of the UAV-BS
for providing communication services to a number of users
that are geographically clustered (a.k.a. the area of interest).
The UAV-BS receives RSS information from the users and
accordingly adjusts its location via modifying its speed v ∈ R3

where ‖v‖ = v ∈ [vmin, vmax] m/s. The final goal is to
improve the transmitted data rate. The UAV-BS should stay in
the search area, which is assumed to be a large area with radius
Dsearch, during the service time. The maximum and minimum
allowable height values (in meters) that the agent must respect
is Hmax and Hmin, respectively, which are imposed by the
regulator. We consider a time-slotted model in which at the
start of each time slot t the agent chooses a new speed v and
keeps moving by that speed in the chosen direction unless
otherwise it violate the boundaries. The speed is selected based
on the received RSS information. We assume that the agent
equally divides the time slots into K (the number of users)
equal parts and schedules each user in each of them with
the transmission power P/K, where P is its instantaneous
transmission power budget (per time slot). We also assume
that the uplink channel (between users and UAV-BS that is
dedicated to RSS) and downlink channel (between UAV-BS
and users for data transmission) are frequently multiplexed.
However, further information can be extracted from RSS
information for provisioning a better scheduling and power
allocation schemes, which is left for the future investigation.
The UAV-BS’ antenna is directional with beam-width w, the
main-lobe antenna gain G, and side-lob antenna gain g where
G� g.

Because the signal strength is a function of environmental
factors such as distance between the agent and the users, radio
environment type (sub-urban versus high-rise), and the antenna

beam-width of the UAV-BS, the agent needs to learn how to
navigate in order to improve the quality of received signals as
well as the transmission data rate. In general, it is too complex
to accurately model such a relationship due to complex nature
of the environment and mobility of the UAV-BS. As a remedy,
we adopt model-free DRL solutions to tackle the involved
complexity of the problem and to effectively deal with the
lack of model.

III. POLICY GRADIENT DRL

The action of the UAV-BS is its speed in 3-D space, which
belongs to continuous control. Here, we firstly provide a brief
introduction to DRL. We then elaborate on TRPO to handle
the navigation of the UAV-BS.

A. A Brief Introduction to Continuous DRL

In continuous DRL the agent (UAV-BS), operating in an
uncertain environment with the continuous state and action
spaces, interacts with the environment in a sequential style to
learn an optimal policy (3-D speed) [12]. In each interaction
the agent takes an action at ∈ RB (B is the action dimension)
based on its observation of the environment state st ∈ RS (S
is the dimension of the state space), which leads the agent
to the new state st+1 upon on collecting the bounded reward
rt ∈ R. The policy guides the agent to what action should be
taken in a certain state in order to maximize the reward via
maximizing the aggregate (discounted) expected reward [7]

J(π) = Eπ
∑
t

γtrt(st,at) (1)

by finding an optimal policy πθ(at|st) (or for short πθ) where
θ are the parameters of the associated DNN1. Parameter γ ∈
(0, 1] is the discount factor prioritizing short-term rewards and
the expectation is on the policy π as well as the stochastic
environment dynamics. In this paper, we focus on stochastic
policies by which the DNN deterministically maps the state
to a vector that specifies a distribution over the action space
(i.e., at ∼ πθ). To learn the policy we adopt policy gradient
methods in which the gradient descent with respect to the
average return (1) is adopted [7]

∇θJ(θ) = g = Eπθ

∑
t

∇θ log πθ(at|st)Aθ(st,at). (2)

Here we use the case that the policy gradient is formu-
lated through the advantage function Aθ(st,at), which is
the subtraction of the Q-function and state-value function:
Aπ(st,at) = Qπ(st,at) − Vπ(st). In practice, (2) should
be estimated over a batch of data collected from the current
policy via Monte Carlo technique (sample based estimate
of the policy gradient)2. The agent iteratively collects data

1For given policy π, the state-value function V π(st) measures
the expected discounted reward from state st via V π(st) =

Eat,st+1,...
∑
t′≥t γ

t′−trt′ (st′ ,at′ ). The Q-function is similarly defined
as Qπ(st,at) = Est+1,at+1...

∑
t′≥t γ

t′−trt′ (st′ ,at′ ), which is the
state-value function for a given action.

2In the rest of this paper, we use symbol x̂ as the MC estimation of quantity
x.



(st,at, rt, st+1), estimates the gradient of the policy, updates
the policy, and then discards the data. This is basically the
policy gradient of vanilla policy gradient (VPG). In practice,
VPG algorithm is not sample efficient as it needs the agent
to takes many samples from the environment, is brittle in
convergence, and suffers from high variance. A very effective
way to deal with these issues is via imposing a constraint on
the policy update, which is the core idea of TRPO.

B. Trust Region Policy Optimization (TRPO)

1) Background: To stabilize VPG algorithm, besides learn-
ing the policy it is recommended to learn a value function
[13]—also known as actor-critic technique. In actor-critic
approach a DNN, called the actor or the policy net πθ, updates
the policy while another DNN, called the critic or the value
net Vω(st), updates the value’s parameters denoted by ω. The
state is feed to both policy network and value network. From
the value network the advantage value Aθ(st,at) is estimated.
The policy network provides a distribution over the action in
continuous dimension. It is customary to choose an expressive
distribution such as Gaussian distribution. The output of the
policy network calculates the mean value of this distribution.
Note that we do not need to calculate the standard deviation of
the distribution, as it is calculated form the heads of the policy
network. This approach is shown to stabilize the learning
procedure of the policy network.

Regarding the update of the policy net πθ, it is beneficial to
ensure that the gradient ascent does not fail to take the steepest
ascent direction in the metric of parameter space without
too much divergence from the current policy. The TRPO
algorithm fulfills this goal by imposing Kullback-Leibler (KL)
divergence3 constraint on the size of policy update at each
iteration [14]. Recalling that the policy is stochastic, KL
divergence is a natural choice as it quantifies the closeness of
two probability distributions. In TRPO a surrogate objective
function is considered as an estimate of the average return
J(πθ), so that in each iteration the following optimization
problem needs to be solved:

O : Maximizeθ Eπθk

[
πθ(a|s)
πθk(a|s)

Aθk(s,a)

]
(3)

s.t. Es∼πθk
[DKL(πθk(.|s)||πθ(.|s))] ≤ δKL. (4)

In short, what this optimization problem is targeting is to
update the current policy πθk via finding the new policy πθ
by maximizing an scaled advantage function. The constraint,
which is called trust region constraint, is KL divergence
constraint between the current policy and the new policy. Thus,
under TRPO algorithm the candidate policy should not be
far from the current policy while it improves the surrogate
objective function.

3For probability distributions P and Q over a given random variable the
KL divergence is defined as DKL(P ||Q) = EP [log P

Q
].

In this form the optimization problem O is not computa-
tionally affordable. An approximate version of the original
optimization problem is then used:

Õ : Maximizeθ gT (θ − θk) (5)
s.t. (θ − θk)TFθk(θ − θk) ≤ δKL. (6)

where the objective function is the first-order approximation
of the surrogate objective function and the constraint is the
second-order approximation of the KL divergence constraint
(4). Here g is the policy gradient and Fθk is the Fisher infor-
mation matrix (FIM) associated to the average KL divergence
at the current policy θk [14].

2) Algorithm: Algorithm 1 provides the steps of TRPO
algorithm. TRPO has an outer loop indexed by l = 1, 2, . . . , L.
For each iteration l, the policy is fixed allows the agent
to take actions and collect new bach of data. The iteration
comprises of an inner loop indexed by n with length N (the
number of transitions which also known as batch size), each
of which associated with an episode with length T . Using the
collected transitions the advantage function, gradient, and FIM
are estimated via Monte Carlo technique, which are used to
update the policy network and value network.

Algorithm 1 TRPO
1: Hyper-parameters: KL divergence limit δKL, backtracking coefficient α,

maximum number of backtracking steps nB , behavioral memory sizeM ,
GAE lambda λ ∈ (0, 1], number of transitions N

2: Input: initialize policy parameters θ0, initial value function parameters
ω0

3: for k = 0, 1, 2, . . . L do
4: Collect N transitions (st,at, rt, st+1) by running policy π
5: Set R̂ = 0 and Â = 0
6: for t = N − 1, . . . , 1, 0 do

R̂[t] = rt + γ(1− dt)R̂[t+ 1]

δ̂ = rt + γ(1− dt)Vφ(st+1)− Vφ(st)

Â[t] = δ̂ + γλ(1− dt)Â[t+ 1]

(7)

7: end for
8: Estimate the policy gradient

ĝ =
1

N

N−1∑
t=0

∇θk log πkÂ[t], (8)

9: Use the conjugate gradient algorithm to compute x̂k = F̂−1
k ĝ

10: Update the policy parameters:

θk+1 = θk + αj
√

2δKL

x̂Tk F̂
−1
θk
x̂k
x̂k, j = {0, 1, 2, . . . ,K} (9)

11: Update the value network (via gradient descent)

ωk+1 = argminω
1

N

N−1∑
t=0

(
Vω(st)− R̂[t]

)2
. (10)

12: end for

Updating Policy: Updating policy is based on solving op-
timization problem Õ which is done in several steps (Step
5 to Step 10). First, we need to estimate the rewards-to-go
R̂ and advantages Â. In (7), dt ∈ {0, 1}, where dt = 1
implies that the episode is terminated. As a result, the reward
of the terminated time step of the episode is not included in



calculation of the advantages and rewards-to-go. On the other
hand, in the calculation of the advantages Â we adopt the
generalized advantage estimation (GAE) [13] to improve the
stability, where λ ∈ (0, 1] is a given parameter.

The estimated advantages are then used to estimate the
gradient over the batch in Step 8. Steps 9 and 10 are to take
the maximum step for updating the current policy. First, in
Step 9 we derive a new direction via the conjugate gradient
algorithm. Using conjugate gradient algorithm one is able
to solve F̂θk x̂k = ĝ through several iterations instead of
resorting to the computation of the inverse of FIM, hence
substantially increasing the computation efficiency and mem-
ory usage as the underlying DNN could have millions of
parameters. Step 10 known as line search is a crucial step
in TRPO algorithm as it ensures that the new policy, which
is derived based on the approximation of the objective and
the constraint, guarantees that actual surrogate objective (not
its linear approximation) is improved while the Kl divergence
constraint (not its quadratic approximation) stays satisfied. In
effect, the line search attempts to take possibly the largest
legitimate step toward the next policy. For a given backtracking
coefficient α < 1 the parameters θl are updated up to
maximum backtracking steps J . We terminate the line search
when the smallest value αj (the bigger is j, the smaller will
be the update step) satisfies the KL divergence constraint and
results in a positive surrogate value.

Value Network: The update of the value network Vωk is
done in Step 11. Using the rewards-to-go R̂ the value network
is updated by mean-squared-error regression.

IV. EXPERIMENTS

For the experiments we use the pytorch library [15]. For
each experiment we consider 6 different random seeds and
calculate the average results accordingly.

A. Radio Environment

Now we discuss the communication model of the environ-
ment that are used to produce RSS values and transmitted
data rates. We should emphasize that the provided information
is only used for numerical evaluations and are not known
to the agent. The UAV-BS is equipped with a directional
antenna with beam-width of w = π/3. The main-lobe and
side-lobe antenna gains for UAV are G = 2.6/ω2 and
g = G/100. The locations of each user k = 1, 2, . . . ,K is
denoted by (Xk, Yk) ∈ R2

⋂
BC , where BC stands for the

cluster’s geographical boundaries. The vertical angel between
the receiver k and the UAV-BS is ρk = tan−1(H/‖Xk‖).
The receiver k is within the main-lobe of the antenna, if
ρk > π/2 − ω/2, or equivalently for ‖Xk‖ < H

tan(π/2−ω/2)
[16]. The probability that the channel between UAV-BS and
the receiver is in LOS status is obtained from pL(‖Xk‖) =(

1 + φe
−ψ
(

180
π arc tan( H

‖Xk‖ )−φ
))−1

[4], where φ and ψ are
the channel parameters representing the characteristics of the
communication environment (see Table I). Note that the 3-D
distance between UAV-BS and user k is

√
H2 + ‖Xk‖2. The

log-normal gain is also modelled via χk = 10Uk/10 where

TABLE I
AIR-TO-GROUND PARAMETERS AND THE CORRESPONDING VALUES [4].

High-Rise Dense-Urban Urban Sub-Urban
φ 27.23 12.08 9.61 4.88
ψ 0.08 0.11 0.16 0.43
µL 1.5 1 0.6 0
µN 29 20 17 18
aL 7.37 8.96 10.39 11.25
aN 37.08 35.97 29.6 32.17
cL 0.03 0.04 0.05 0.06
cN 0.03 0.04 0.03 0.03

Uk ∼ N (µl, σlk) in which σlk = ale
−cl 180π arc tan( H

‖Xk‖ ) [5]
al and cl are channel parameters (see Table I). Furthermore,
the fading power gain under the LoS mode is modelled
by Nakagami-m distribution with parameter 10. Under the
NLoS mode the fading is modelled via unit-mean exponential
random variable. The background noise power is −170 dBm
and the transmission power is 1 W. We also set the time
slot duration equals to 1 sec. We here assume that Doppler
effect due to the mobility of the UAV-BS as well as users is
mitigated, however, it is straightforward to include it in the
simulations.

In the experiments, we consider two radio environments:
env = 0 (high-rise) and env = 3 (sub-urban). We consider
a circular search area with radius 2000 meters and locate the
cluster at position (1500, 1500) ∈ R2. We assume the cluster
is circular with radius 100 meters. We then randomly locate 10
users in the cluster. We also set Hmin = 40 m, Hmax = 150
m, vmin = 0 m/s, and vmax = 100 m/s. Note that users may
dislocate in the cluster, but they always stay in the cluster. We
compared the delivered rate with a heuristic approach in which
the agent knows the location of the cluster and the locations
of the users. The agent simply locates itself in the middle of
the cluster and chooses its height such that all the users stay
in the main-lobe of its antenna. We then study the data rate
ratio ∆r that is the transmitted data rate over the data rate
achieved under the heuristic approach.

B. Policy and Value Networks

Policy is modelled stochastically as a multivariate Normal
distribution with diagonal covariance matrix. The mean of this
distribution is a DNN with 3 dens layers. The first and second
layers are with input/output dimensions S/400 and 400/300
respectively, where S is the space dimension. This DNN has
two heads, one for the mean value and the other for the
logarithm of the standard deviation. Each of these are modelled
by its associated dense layer with size 300/B where B is the
action dimension (number of users). Similarly, the value net is
also a DNN with three layers with the difference that the last
layer has dimensions 300/1. The activation functions are Tanh
[17]. The state space is the stacked received RSS values from
all users. Regarding TRPO algorithm, we set δKL = 0.02,
λ = 0.94, N = 10000, L = 4000, γ = 0.99, and T = 500.
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Fig. 1. (a): Average reward, (b): Average speed violation, (c): Average boundary violation of the search area, (d): Average logarithm of
∑
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Fig. 2. (a): Average magnitude of speed v, (b): Average height, (c): Average distance of UAV-BS to the center of the cluster, (d): Average ∆r .

C. Impact of Reward Function

Choosing a right form of the reward in navigation of UAV-
BS is complex given that the action, which carries out the
navigation, should be done based on RSS values while the
actual goal is the maximization of the transmission data rate.
In this case, it is not trivial to figure out how to optimally
combine these components. Yet, we could compose the reward
in the way that it promotes the agent to take constructive
actions while adheres to physical limitations via imposing
suitable penalties. For our experiments we consider two reward
functions: r2 =

∑
k(Rk + 0.01 rsskσ2 )− 5∆a and r1:

r1 =

{
0.1(

∑
k Rk + 0.01

∑
k
rssk
σ2 )− 5∆a ∆a > 0∑

k(Rk + 0.01 rsskσ2 ) ∆a = 0
, (11)

where Rk is the transmitted data rate to user k. In both
formulations the form of the reward function promotes the
movement toward receiving larger values for RSS as well
as delivering higher transmission data rate. As the signal
attenuations are highly affected by the path-loss attenuation,
which is a function of distance, we expect higher RSS values
correlate with higher transmission data rate (but this is not
guaranteed to take place due for instance to the effect of
shadowing and fading in the frequency multiplexed systems).
Here, ∆a is the sum of the penalties associated with the
feasible action (to enforce the constraints associated with the
magnitude of speed [vmin, vmax], and azimuth angel [0, 2π],
and polar angel [0, π]) and the search region boundaries (to
enforce the constraints regarding the altitude [Hmin, Hmax]

and search area (−2000 ≤ x ≤ 2000,−2000 ≤ y ≤ 2000).
As seen, compared to r2, in r1 the actual reward is scaled
depending on whether the agent receives penalty or not. This
could discourage the agent from unacceptable actions. How-
ever, via small rewards assigned to the violating actions the
agent is reminded that the actions were still constructive. In the
formulation of r2 such a distinction is not provisioned, hence
the agent may encounter difficulties to distinguish beneficial
actions out of heavy penalties.

We now investigate which form of reward benefits the agent
better in learning the task. For this experiment, we consider
high-rise environment (env = 0). From Fig. 1-a we observe
that the agent gains higher rewards under r2 initially compared
to r1. However, both of the rewards achieves almost the same
average reward. On the other hand, from Fig. 1-b we note
that the agent is able to learn the action boundaries very fast
under both reward forms. However, as we see from Fig. 1-c,
under the reward function r1 the agent is able to more strictly
adhere to boundary limits of the search region compared to
r2. Finally, Fig. 1-d shows that under both forms of reward
the agent is able to gather almost the same values of RSS.

From Fig. 2-a we see that the choice of reward substantially
affects the average speed of the agent. In effect, under r1 the
agent tends to take higher speed values compared to r2. This
might be due to the fact that the agent attempts to correct its
boundary violating actions (see Fig. 1-c). This is also shown
itself in the the height of the agent under r1. Fig. 2-c shows
the distance of the agent to the center of the cluster ∆x.
We observe that under both reward functions the agent learns



to get closer to the cluster center as a way to improve the
transmission data rate. We should note that the agent learns this
behavior merely based on RSS signals, which is interesting.
Finally, in Fig. 2-d we show the data rate ratio ∆r under
both reward functions. We observe that under both rewards the
agent is able to improve its data rate. Interestingly, the agent
is able to achieve 40% of the heuristic scenario only based
on RSS values. We also note that both rewards are (almost)
equally effective.

Consequently, while the choice of the reward does not have
any substantial impact on the transmitted data rate, distance to
the cluster, and action penalty, it has a profound impact on the
speed profile, the altitude of the agent, and how effectively the
agent is able to adhere to the search region boundaries. We
therefore consider r1 in the rest of our experiments.

D. Impact of Radio Environment

Here, we attempt to demonstrate whether the agent is able
to recognize the impact of radio environment from the RSS
values and how she is responding to such a recognition. We
consider two radio environments env = 0 (high-rise) and
env = 3 (sub-urban). Results are shown in Fig. 1 and Fig.
2. As seen from Fig. 1-a, Fig. 1-d, and 2-d, for an agent in
env = 3 the reward, average RSS values, and the transmission
data rate is much higher than compared to the case of env = 0.
This is because in the former the environment is more LOS
dominant compared to the latter, hence the signals go under
less severe attenuations. The question is then how the agent
incorporates such recognition in its mobility?

From Fig. 2-a we observe that for the agent in env = 3
the magnitude of the speed is higher compared to the one
performing in env = 0. Interestingly, the higher speed is used
for gaining much higher height (see 2-b). As a result, the agent
recognizes that for the radio environment with dominant LOS
component there is no need to get too close to the center of the
cluster if the height is properly adjusted. As seen, this strategy
can result in a decent rate transmission (about 60% of the rate
in the heuristic scenario is achieved). On the other hand, for
env = 0 the agent attempts to get closer to the cluster’s center
(see 2-c) and simultaneously reduces its height (2-b) as an
effective approach to circumvent relatively higher path-loss.

V. CONCLUSIONS

We addressed the mobility management of UAV-BS in a
3-D space to support a cluster of users on the ground while
the geographical characteristics (e.g., location and boundary)
of the cluster as well as the geographical location of the users
are not available. The agent aimed at maximizing the data
rate while the characteristics of the radio environment are not
known and may be extracted merely from the received signal
strength (RSS) from the users. We adopted deep reinforce-
ment learning to deal with the lack of model. In particular,
we adopted TRPO algorithm, which is an on-policy policy
gradient DRL, to adjust the (continuous) speed of UAV-BS
only based on RSS values. Our experiments suggested that
the choice of the reward substantially affects the speed profile

and the ability of the agent to adhere to its physical constraints.
Interestingly, we observed that UAV-BS was able to distinguish
between high-rise (less LoS dominant) and sub-urban (mainly
LoS dominant) environments.

REFERENCES

[1] M. Alzenad, A. El-Keyi, and H. Yanikomeroglu, “3-D placement of an
unmanned aerial vehicle base station for maximum coverage of users
with different QoS requirements,” IEEE Wireless Commun. Lett., vol. 7,
no. 1, pp. 38–41, Feb. 2018.

[2] Y. Zeng, Q. Wu, and R. Zhang, “Accessing from the sky: A tutorial on
UAV communications for 5G and beyond,” Proceedings of the IEEE,
vol. 107, no. 12, pp. 2327–2375, Dec. 2019.

[3] Y. Zeng, R. Zhang, and T. J. Lim, “Wireless communications with
unmanned aerial vehicles: opportunities and challenges,” IEEE Commun.
Mag., vol. 54, no. 5, pp. 36–42, May 2016.

[4] M. G. Khoshkholgh, K. Navaie, H. Yanikomeroglu, V. C. M. Leung,
and K. G. Shin, “Randomized caching in cooperative UAV-enabled fog-
RAN,” in IEEE Wireless Commun. Net. Conf. (WCNC), Apr. 2019, pp.
1–6.

[5] A. Al-Hourani, S. Kandeepan, and S. Lardner, “Optimal lap altitude for
maximum coverage,” IEEE Wireless Commun. Lett., vol. 3, no. 6, pp.
569–572, Dec. 2014.

[6] R. I. Bor-Yaliniz, A. El-Keyi, and H. Yanikomeroglu, “Efficient 3-D
placement of an aerial base station in next generation cellular networks,”
in IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–5.

[7] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
MIT Press, Cambridge, 2017.

[8] J. Bayerlein, R. Gangula, and D. Gesbert, “Learning to rest: a Q-learning
apporach to flying base station trajectory design with landing spots,” in
52nd Asilomar Conference on Signals, Systems, and Computers, Oct.
2018.

[9] Y. Zeng and X. Xu, “Path design for cellular-connected UAV with
reinforcement learning,” in IEEE Global Commun. Conf. (Globecom),
Dec. 2019.

[10] M. M. U. Chowdhury, F. Erden, and I. Guvenc, “RSS-based Q-learning
for indoor UAV navigation,” in IEEE Military Commun. Conf. (MIL-
COM), Nov. 2019.

[11] D. C. E. Krijestorac, S. Hanna, “Uav access point placement for
connectivity to a user with unknown location using deep rl,” in
arXiv:1907.03912, 2020.

[12] T. Lillicrap, J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
International Conference on Learning Representations (ICLR), May
2016.

[13] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
International Conference on Learning Representations (ICLR), May
2016.

[14] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” International Conference on Learning Rep-
resentations (ICLR), May 2015.

[15] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in Workshop on Neural Information Processing Systems (NIPS-
W), 2017.

[16] M. G. Khoshkholgh, K. Navaie, H. Yanikomeroglu, V. C. M. Leung,
and K. G. Shin, “How do non-ideal UAV antennas affect air-to-ground
communications,” in IEEE Int. Conf. Commun. (ICC), May 2019, pp.
1–6.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
Cambridge, 2016.


	I Introduction
	II Problem Formulation
	III Policy Gradient DRL
	III-A A Brief Introduction to Continuous DRL
	III-B Trust Region Policy Optimization (TRPO)
	III-B1 Background
	III-B2 Algorithm


	IV Experiments
	IV-A Radio Environment
	IV-B Policy and Value Networks
	IV-C Impact of Reward Function
	IV-D Impact of Radio Environment

	V Conclusions
	References

