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Abstract

Grant-free non-orthogonal multiple access (GF-NOMA) is a potential multiple access framework for

short-packet internet-of-things (IoT) networks to enhance connectivity. However, the resource allocation

problem in GF-NOMA is challenging due to the absence of closed-loop power control. We design

a prototype of transmit power pool (PP) to provide open-loop power control. IoT users acquire their

transmit power in advance from this prototype PP solely according to their communication distances.

Firstly, a multi-agent deep Q-network (DQN) aided GF-NOMA algorithm is proposed to determine

the optimal transmit power levels for the prototype PP. More specifically, each IoT user acts as an

agent and learns a policy by interacting with the wireless environment that guides them to select

optimal actions. Secondly, to prevent the Q-learning model overestimation problem, double DQN based

GF-NOMA algorithm is proposed. Numerical results confirm that the double DQN based algorithm

finds out the optimal transmit power levels that form the PP. Comparing with the conventional online

learning approach, the proposed algorithm with the prototype PP converges faster under changing

environments due to limiting the action space based on previous learning. The considered GF-NOMA

system outperforms the networks with fixed transmission power, namely all the users have the same

transmit power and the traditional GF with orthogonal multiple access techniques, in terms of throughput.
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I. INTRODUCTION

One of the main challenges to the next generation cellular networks is the provision of

massive connectivity to explosively increased Internet-of-things (IoT) users, especially for uplink

transmission. In current cellular networks, enabling multiple access with limited resources is an

inherent problem. Fortunately, non-orthogonal multiple access (NOMA) with a new degree of

freedom, namely the power domain, has been established as a promising technique for the

solution of this problem [2]. Some latest work investigating NOMA from different aspects can

be found in [3] [4] [5]. Although grant-based (GB) has been widely studied, it fails to provide

sufficient access to IoT users with short packets, since multiple handshakes are required before

the transmission. Therefore, grant-free (GF) NOMA is proposed to enhance this connectivity.

In GF-NOMA, multiple IoT users transmit data in an arrive-and-go manner to the base station

(BS) on the same time-frequency resource block (RB) without waiting for the BS to schedule

and grant [6]. However, the resource allocation problem in GF-NOMA is challenging as BSs

commonly have no/partial information about the active users and their channel state information

(CSI). Additionally, keeping enough power difference for successful successive interference

cancellation (SIC) processes at the NOMA-enabled BS side is a tough practical challenge. As

NOMA is heavily based on the received power difference among users [7], the effectiveness

of such a solution is limited for GF schemes in the absence of a closed-loop power control

[8]. It is worth noting that user clustering and power allocation in NOMA is mainly depended

upon their channel gain, which can be calculated via IoT users’ geographical information and

practical statistic models. Such information can be acquired without information exchanges,

which enables an open loop. Therefore, a prototype of transmit power pool for GF-NOMA

in IoT can be designed, based on geographical information and statistic models, to ensure the

received power level difference.

A. Related Works

To provide massive connectivity for IoT devices, the power domain NOMA is a practical

solution. However, as compared to OMA, NOMA introduces some complications in resource
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allocation design from two aspects: 1) user clustering/grouping; and 2) power allocation. There-

fore, systematic user clustering and an efficient power allocation algorithms are required to

ensure SIC processes at the receiver. Furthermore, within a cluster, each user needs to decode

other users’ information which increases the complexity and energy consumption at the receiver.

Moreover, in uplink transmission, if an error occurs during the SIC process for a single user,

decoding fails for all other users. Therefore, a significant channel gain difference is preferable,

otherwise, the desired functionalities of the power domain concept cannot be achieved. Besides,

each user in the network needs to report its channel gain back to BS, so NOMA is sensitive

to capturing such measurements. Despite the complicated resource allocation design, NOMA

still has tremendous advantages over OMA, especially in terms of connectivity and throughput.

Next, we present a brief overview of existing works investigating NOMA with GF transmission.

Cellular IoT networks commonly use two types of random-access protocols known as GB and

GF access protocols. In GB transmission, users or devices process a four-step random access

protocol before the data transmission [6], [8]. GB-NOMA access leads to high signaling overhead

and long latency, which makes GF-NOMA inevitable. In GF schemes, whenever users wants to

transmit their data, neither explicit grant nor schedule request is needed that significantly reduces

latency and signaling overhead. GF schemes are well suited for one typical IoT use case, named

massive machine-type communications (mMTC) [9], [10]. However, if two or more users select

the same resource for transmission, a collision occurs. Under this scenario, the receiver is unable

to decode the data of users sharing the same RB.

Some GF schemes based on conventional optimization approaches are discussed in [11], [12].

Authors in [11], [12] have split the cell area into partitions while dividing the users and sub-

channels into the same number of partitions. To prevent collisions among MTC users, they used

orthogonal resource in different layers.

Applying partial network observations and uniform resource access probabilities expropriate

the conventional optimization approaches for GF transmission, especially for long-term commu-

nications with time-varying channels. Deep reinforcement learning (DRL) is applied to improve

the GF transmission and to obtain better resource allocation with near-optimal resource access

probability distribution [6]. DRL based resource allocation for GF transmission is given in [6],

[13], [14], [15]. To reduce collisions, authors in [6] designed users and sub-channel clusters

in a region, where the number of users compete in a GF manner for several available sub-

channels in each region. The formulated long-term cluster throughput problem is solved via
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DRL based GF-NOMA algorithm for optimal sub-channel and power allocation. As compared

to slotted ALOHA NOMA, the DRL based GF-NOMA algorithm shows performance gain in the

system throughput. Similarly, a recent work [13] investigates the problem of channel selection

of secondary user, performing channel selection from sensing the history of the secondary user

through DRL. In [14], authors modelled users as cluster heads to maximize capacity and to

ensure delay requirements via multi-agent learning algorithm. Data rate maximization and a

number of long-term successful transmissions problem are investigated in [15] using Q-learning

algorithm.

B. Motivation and Contributions

The conventional GF-NOMA is not suitable for IoT networks because users transmit at fixed

power and to find the optimal transmit power for each user, it needs a closed-loop power control.

Thus, GF-NOMA with fixed power control introduces additional signal overhead and leads to

energy consumption. To enable GF transmission with open-loop power control and less signalling

overhead, a prototype of transmit power pool can be designed based on geographical region. This

prototype power pool can enable IoT users to transmit with low power consumption and reduces

computational complexity by preventing closed-loop power control. The aforementioned research

contributions considered solutions for mitigating the problem of collisions and enhancing GF

transmission by both conventional and machine learning methods. However, in these approaches,

BSs need to collect information about users that include instant users’ rates, the number of active

users in the network and the best grouping policy that BS broadcast to all users. Such prerequisites

increase complexity at the BS side due to massive information exchange between BSs and

IoT users [16]. In resource optimization problems, ML algorithms have several advantages

over conventional optimization approaches. The conventional optimization approaches lead to

complexity and high cost as the number of parameters to be configured increases. Traditional

optimization algorithms are often prone to parameter selection, and heuristics must be run from

scratch every time there is a small change in the system model, such as when new users are

added. In other words, a small change in any system parameter requires the entire algorithm

to be run from scratch each time [17]. Moreover, with conventional methods, the open-loop

power control is difficult to be achieved, and the received power level difference cannot be

guaranteed. It is noteworthy that resource allocation in wireless networks is an NP-hard problem

[18]. In addition, calculating optimal solution is a combinatorial optimization problem, which
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is mathematically intractable with increasing network size due to partial state observations.

However, machine learning (ML) can be used to solve NP-hard optimization problems more

efficient as compared to traditional optimization approaches [8]. ML methods observe the patterns

in data as a substitute for relying on equations and models for near-optimal and best possible

decisions. The ML-based algorithms are desirable in 5G and beyond wireless communications,

especially for mMTC, as the complexity of such processes increase exponentially with the

number of users [19]. Besides, reinforcement learning (RL) has the potential of taking decisions

and perform learning simultaneously, which is one of the ideal characteristics for the applications

of wireless communication [20]. Therefore, we adopt an ML-based algorithm due to its potential

to offer excellent approximate solutions while interacting with a huge state and action spaces.

Furthermore, due to the unavailability of realistic datasets, RL algorithms are able to generate

datasets during simulation (online) to learn hidden patterns for optimal decisions.

Based on the aforementioned issues, we propose a machine-learning based scheme to address

the issue of complexity at BSs by creating a power pool associated with user’s location infor-

mation which is not yet considered in the literature. In this paper, we propose a multi-agent

deep Q network (DQN) and double DQN based GF-NOMA algorithm for prototype power pool

design, where the BS broadcasts this pool to all IoT users so as to avoid acquiring CSI. Each

IoT user can randomly select one power level for transmission that reduces complexity at BS

and avoid massive information exchange between IoT user and the BS. The power selection

from this well-designed prototype power pool guarantees distinct received power levels at the

BS for successful SIC processes and reduces collision probabilities by allowing pilot sequence

reusing. To the best of the author’s knowledge, this is the first work to design a power pool for

GF-NOMA via multi-agent reinforcement learning (MARL). In a nutshell, this work provides

the following four major contributions.

1) Novel Power Pool Framework for GF-NOMA: We consider uplink transmission in IoT

networks with the traffic model of packets following the Poisson distribution. Further, we divide

the cell area into different layers and design a layer-based transmit power pool prototype via

multi-agent reinforcement learning (MARL). In the proposed framework, data transmitting IoT

users select a transmit power based on their communication distance (layer) from the well-

designed prototype power pool for GF-NOMA transmission, without any information exchange

between IoT user and the BS. Based on the proposed framework, we formulate power and sub-

channel selection for throughput optimization in GF-NOMA systems, an optimization problem.
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2) Novel Designs for the MARL: We implement a multi-agent deep Q-network (DQN) aided

GF-NOMA algorithm to acquire the optimal transmit power levels for each layer. In the proposed

multi-agent DQN model, the IoT user acts as a learning agent and interacts with the environment.

After learning from its mistakes, finally, the IoT users in each layer find out the optimal transmit

power level that maximizes network throughput. We adopt a multi-agent double DQN based

GF-NOMA algorithm to prevent the action values overestimation problem encountered by the

conventional Q-learning model.

3) Long-Term Resource Allocation: With the aid of MARL methods, we find the optimal

resource allocation (transmit power and sub-channel) strategy, where multi-agent double DQN

based GF-NOMA algorithm with learning rate α = 0.001 provides better system throughput

and finds the optimal transmit power levels (prototype power pool) for each layer. We show

the advantages of multi-agent double DQN over traditional multi-agent DQN for GF-NOMA

IoT networks. In particular, we demonstrate that, compared to the multi-agent DQN, multi-agent

double DQN converges to a more stable and optimal solution (optimal resource allocation).

Moreover, we showed that the algorithm with the prototype power pool converges with fewer

training episodes as compared to the algorithm with available power levels.

4) Performance Gain of GF-NOMA over GF-OMA: Simulation results verify that multi-agent

double DQN based GF-NOMA outperforms conventional GF-OMA based IoT networks with

55% performance gain on system throughput. Additionally, transmit power allocated to IoT

users from the available power pool achieves 37.7% more throughput as compared to fixed

power allocation strategy.

The rest of the paper is organized as follows. The system model is presented in Section II.

The multi-agent DRL-based GF-NOMA user’s power level and sub-channel selection algorithms

are given in Section III. Numerical results and discussion are shown in Section IV. Conclusions

are drawn in Section V.

II. SYSTEM MODEL

We consider uplink transmission in IoT networks as shown in Fig. 1, where a single BS

is located at the origin of a circle with a radius R and a set of IoT users U = {u1, u2, ...}

uploads messages to the central BS under GF-NOMA principles. More specifically, each IoT user

independently selects its transmit power and NOMA cluster to send arrived data packets without

waiting for any acknowledgement from the BS. The entire cell is divided into L concentric
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TABLE I: Table of Notations

Symbol Definition
U The set of entire IoT users
Nt Number of active IoT users in a time slot t
R Radius of the cell
L Number of layers in cell area
Vl Set of IoT users in layer l
M Number of sub-channel
Bs Sub-channel bandwidth
Pl Transmit power level for set of IoT users in layer l
ri,j Communication distance between IoT user j and the BS
n0 Additive white Gaussian noise
P r
i,j(t) Received power of user j via sub-channel i
γi,j(t) SINR of users j on sub-channel i
Ppool Prototype of transmit power pool
Ep Number of transmit power levels in the designed power pool
PBS Transmit power of BS
Rth Date rate threshold requirement for successful SIC
ki,j(t) Sub-channel selection variable for user j and sub-channel i
Ri,j Data rate of user j on sub-channel i
Pt Matrix for transmit power levels
Np Number of available transmit power levels
Kt Matrix for sub-channel selection
G Set of agents in MARL method

layers with different aiming received powers at the BS. IoT users in different layers are able

to acquire their aiming transmit power in advance for helping NOMA transmission. However,

users in the same layer utilize the same transmit power for GF transmission. Hence, the prior

information about IoT user’s activity is not required that reduces the computational complexity

and information exchange at the BS side. An IoT user j present in layer l, if its communication

distance to the BS is rj and belongs to the set of users Vl ∈ U = {j|Dl−1 < rj ≤ Dl},

where D0 = 0 and Dl = (R/L)l. D0 = 0 and Dl = (R/L)l define the boundaries of each layer.

More specifically, Dl = (R/L)l represents the upper boundary of each layer. The aiming transmit

power for the users in Vl is denoted by Pl. Moreover, the system bandwidth B is equally divided

into M orthogonal sub-channels and thus each sub-channel has Bs = B
M

available bandwidth.

Table I summarizes the notations used in this research work.
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Fig. 1: Illustration of Grant-Free NOMA IoT Networks: The top figure represents a subset of IoT devices Nt active in a time slot t that transmit
in GF manner. The entire cell is divided into L concentric layers with the same radius difference, IoT users in different layers are able to
acquire their aiming transmit power (P1, P2, · · · ) from the transmit power pool in advance for helping GF-NOMA transmission. The bottom
sub-figures shows GF procedure, in which the BS broadcasts a preamble including a well-designed transmit power pool, and IoT user transmit
data without any prior handshake.

A. Traffic Model

In GF NOMA principles, users transmit information in an arrive-and-go manner [21]. When

a data packet arrives at one user, it sends this packet at the next time slot directly. Therefore,

we assume the traffic model of packets in each time slot follows a Poisson distribution with an

average arrival rate λ (we used the Poisson distribution as a probability distribution to analyse

the probability of the number of active users in a time slot, under this case, the probability of

each user being active is the same). At one time slot t, the probability of the number of active

users nt equalling to Nt ≥ 0 is given by

Pr{nt = Nt} =
λNt exp(−Nt)

Nt!
. (1)

This paper considers a general case that all users have the same priority.
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B. Path Loss Model

We utilize a typical path loss model [22] with an intercept CI and path loss exponent α. When

the communication distance between one user and the central BS is r, the path loss law can be

expressed as follows

PL(r) = CIr
−α. (2)

For an arbitrary active user, the probability density function (PDF) of the distance r between

it and the central BS is given by

fr(r) =
2r

R2
. (3)

Therefore, the path loss expression in (2) obeys that Pr{PL(r) = PL(x)} = fr(x).

C. NOMA Transmission

By using power-domain NOMA, BSs are able to serve multiple users with different receive

power levels in the same sub-channel [23]. For the central BS, the received information at the

time slot t is

y(t) =
M∑
i=1

Nt,i∑
j=1

√
Pi,j(t)PL(ri,j(t))hi,j(t)xi,j(t) + n0(t), (4)

where Nt,i is the number of active users in the i-th sub-channel and
∑M

i=1Nt,i = Nt. The∑Ni

j=1 Pi,j(t) ≤ Pmax, ri,j , hi,j , and xi,j are the transmit power with imposed constraint for each

user, communication distance, small-scale Rayleigh fading, and transmitted data for the j-th

user (j ≤ Nt,i) in the i-th sub-channel, respectively. The n0 is the additive white Gaussian noise

(AWGN). We consider a static channel at each time slot, but the values of the aforementioned

parameters are different for different time slots, i.e., these values for each user are constant

during one time slot and change to new independent values for the next time slot. Obviously,

different users can have different values in each time slot. Based on NOMA principles, the BS

first decodes the user with strongest received power and then subtract its data from the received

information via successive interference cancellation (SIC) techniques (we assume perfect SIC

in this paper). After that, the BS turns to decode the user with the second strongest received

power [24]. Therefore, the decoding order at the BS is in sequence to the received power.

However, considering heterogeneous QoS requirements could change this decoding order, but
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this consideration is beyond the scope of this paper. We define the received power for the j-th

user in the i-th sub-channel is given by

P r
i,j(t) = Pi,j(t)PL(ri,j(t))|hi,j(t)|2. (5)

If the receive power obeys P r
i,1(t) ≥ P r

i,2(t) ≥ ... ≥ P r
i,Ni

(t), the decoding order should be

from the 1-st user to the Ni-th user. The signal-to-interference-plus-noise ratio (SINR) for the

j-th user can be expressed as

γi,j(t) =
P r
i,j(t)∑Ni

j′=j+1 P
r
i,j′(t) + n2

0

. (6)

Whereas, the SINR of the last user Ni can be written as

γi,Ni
(t) =

P r
i,Ni

(t)

n2
0

. (7)

To guarantee the SIC process, a desired data rate Rth for all users is required, so the SINR for

the (j − 1)-th user should obeys Bs log2(1 + γi,j−1(t)) ≥ Rth, otherwise the BS cannot decode

information of the j-th user.

D. Layer-based Transmit Power Pool

From the received power equation (5), only the transmit power Pi,j(t) can be controlled at

the user side. Therefore, this paper focuses on designing a prototype of transmit power pool

Ppool = {P1, P2, ..., PEp} as shown in Fig. 2(a), where Ppool ⊂ Pt and Pt = {P1, P2, ..., PNp},

Np is the number of available transmit power levels for IoT users and Ep is the number of power

levels in prototype power pool. The set of users Vl in the layer l select one transmit power level

from Pt for uplink transmission.

Remark 1. Due to the fact that NOMA is sensitive to distance-dependent path loss, users can

select their transmit power form this prototype power pool solely according to their communi-

cation distances to boost up GF-NOMA connectivity efficiency. Moreover, this prototype can be

finished offline based on practical stochastic models. To increase the power pool accuracy for

any certain application, a further online learning can be employed with the aid of a small load

of information exchange.

Without a closed-loop power control, a global resource management in GF-NOMA is a
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(a) Prototype power pool with corresponding layers (b) IoT user’s procedure flow chart

Fig. 2: The designed prototype power pool and working procedure of the BS and IoT users: Sub-figure (a) is the transmit power pool with
different power levels for each layer. Sub-figure (b) shows the procedure flow chart between the BS and IoT users.

challenging task, as BSs commonly have no/partial information about the active users and their

channel state information (CSI). Because, with no/partial information, keeping enough power

difference for successful successive interference cancellation (SIC) processes at the NOMA-

enabled BS side is a tough practical challenge. Moreover, exchanging such information with IoT

users is expensive in terms of energy consumption and increases complexity at the BS. Therefore,

to avoid acquiring the users’ CSI, we assume the BS broadcasts a preamble (which includes

transmit power from the BS PBS , data rate threshold Rth, and the transmit power pool Ppool) to

all users at the beginning of a time slot to synchronize uplink transmissions [25]. The working

procedure is given in Fig. 2(b). In Addition, for offline training (power pool design), we can

obtain the location information via GPS, we only need the location information of all users via

GPS, channel estimation or sensing mechanism. For online training (power pool enhancement),

we may use the traditional channel estimation method to acquire the CSI.

E. Sub-Channel Selection

As NOMA provides the opportunity to multiplexed multiple users on the same resource block

(RB). Let Ni is the set of users sharing the i-th sub-channel. To form a NOMA cluster, the

condition |Ni| > 1 must be satisfied. Furthermore, we assume that each IoT user is permitted to

select at most one sub-channel. For a random IoT user j at time slot t, we define a sub-channel
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selection variable as follows:

ki,j(t) =


1, IoT user j select subchannel i

0, otherwise
(8)

F. Problem Formulation

To determine the optimal transmit power levels for the design of prototype power pool, we

formulate the sum rate maximization as an optimization problem in this section. Therefore,

maximizing the sum rate by optimizing the transmit power and sub-channel selection for each

user can contribute to the design of a transmit power pool that can be further allocated to a

geographically distributed region. More specifically, two matrices Pt and Kt need to be optimized

to maximize the long-term sum rate. In each time slot t, the data rate of an IoT user j over

sub-channel i can be written as

Ri,j(t) = Bs log2(1 + γi,j(t)) (9)

Therefore, the optimization problem can be formulated as

max
pi,j∈Pt,ki,j∈Kt

T∑
t=1

M∑
i=1

Ni∑
j=1

Ri,j(t), (10)

s.t. P r
i,1(t) ≥ P r

i,2(t) ≥ ... ≥ P r
i,Ni

(t), ∀i,∀t, (10a)

Ni∑
j=1

Pi,j(t) ≤ Pmax, ∀i, ∀t, (10b)

M∑
i=1

ki,j(t) ≤ 1, ∀j,∀t, (10c)

Ni(t) ≥ 2, ∀i, ∀t, (10d)

M∑
i=1

Ri,j(t) ≥ Rmin(t), ∀j,∀t, (10e)

Ep < Np, (10f)

Ep = L, (10g)

where (10a) is to ensure SIC decoding order, (10b) represents the maximum power limit Pmax

of each sub-channel, in (10c) the variable ki,j indicates that at each time slot a user j is able to
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select only one sub-channel, (10d) represents the number of users on each sub-channel, (10e)

guaranteeing the minimum required data rate Rmin of each IoT user, (10f) represents the number

of power levels in the prototype power pool Ppool (optimal power level for each layer), and (10g)

represents power levels in the pool should be equal to the number of layers in cell area.

III. MULTI-AGENT DRL BASED POWER POOL DESIGN

A. Overview of Multi-Agent Deep Reinforcement Learning

MARL is the extension of single agent RL which involves a set of agents, G = {1, 2, 3 · · · · · · , N},

where the whole team of agents acting autonomously and concurrently in a shared environment.

MARL can be classified into two cases: MARLs with centralized or decentralized reward. In

MARL with centralized rewards, all agents receive a common (central) reward, on the other hand

in MARL with decentralized, every agent obtains a distinct reward [26]. However, in multi-agent

environment, all agents under decentralized way may compete with each other, i.e., agents may

act in a selfish behaviour for requiring the highest reward which may effect the global network

performance. To convert this selfishness into a cooperative behaviour, the same reward may

be assign to all agents [27]. In next section, we apply MARL with centralized reward only to

prevent selfish behaviour of agents.

In MARL with centralized reward setting, a multi-agent Markov decision process (MDP) can

be represented by a tuple of ({Sj}Nj=1, {Aj}Nj=1, P, r). Each agent j observes a state sj from the

environment and executes an independent action aj from its own set of actions Aj on the basis

of its local policy πj : Sj → Aj . Agents perform joint action a (a = a1, a2, · · · , aN ∈ A), where

A = (A1×A2×· · ·×AN), the environment moves from state s(t)j ∈ Sj to a new state s(t+1)
j ∈ Sj

with probability of Pr(s(t)j |s
(t+1)
j , aj), then the agent j ∈ G receives a common reward r(t+1).

Every agent forms an experience e(t+1)
j = (s

(t)
j , a

(t)
j , r

(t+1), s
(t+1)
j ) at time (t+ 1), which defines

an interaction with the environment [28]. The goal of each agent is to learn a local optimal

policy π∗j that forms a central optimal policy π∗ i.e. (π∗1, π
∗
2, · · · , π∗N) =: π∗ for maximizing long

term reward [27].

We model the selection of transmit power levels and sub-channels in GF-NOMA IoT networks

as MDP problem consisting of states s(t)j ∈ Sj , actions a(t)j ∈ Aj , and reward r(t) following a

policy πj . The main elements of the multi-agent DRL based GF-NOMA transmit power pool

design are given as follows:
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• State space S: To explore environment feature, each IoT user j acts as an agent and

simultaneously interacts with unknown environment. We define data rate of IoT users as

the current state s(t)j ∈ Sj , where

Sj = {R(t)
1,1, R

(t)
2,1,· · ·R

(t)
i,j ,· · · , R

(t)
M,N}, (11)

and Ri,j is the data rate of user j on sub-channel i in time slot t. Moreover, the state size

is equal to the number of active IoT users Nt in a time slot t.

• Action space A: Action a(t)j ∈ Aj of agent j ∈ G is the selection of power level p ∈ P and

sub-channel m ∈M . The transmission power is discretized into Np power levels, hence the

dimension of action space is Np×M , where M is the number of sub-channels. The action

space is given by

A = (A1 × A2 × · · · × Aj · · · × AN), (12)

where Aj = {1, 2, · · ·pm, · · ·, PNpM}. (13)

If an agent (IoT user) j transmits with power level p on sub-channel m in TS t, then

the corresponding action is a(t)j ∈ Aj = pm, i.e., each action corresponds to a particular

combination of power level and sub-channel selection.

• Reward Re: The system performance depends on reward function flexibility and its corre-

lation with the objective function [27]. To enhance system performance we represent sum

throughput of GF-NOMA system as a reward signal, which is strongly correlates with the

objective function. An agent j receives a returned reward r(t) ∈ Re after choosing action

a
(t)
j in state s(t)j in a TS t determined by

r(t) =
M∑
i=1

Nt,i∑
j=1

Ri,j. (14)

In our proposed model the short term reward of an agent j depends on the following

conditions

r
(t)
j =


r(t), if Rcurrent ≥ Rprevious and satisfying constraints given in (10a)-(10e),

0, otherwise.

(15)
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This reward or penalty can help agents to find optimal actions that can maximize cumulative

reward for all interactions with the environment.

Classic Q-Learning algorithm [29], aims to compute an optimal policy π∗ by maximizing

expected reward. The long term discounted cumulative reward at time slot t is given by

Re(t) =
∞∑
k=0

γkr(t+k+1), (16)

where γ ∈ [0, 1] is the discount factor. Q-Learning is based on action-value function, the Q-

function for IoT agent j which is defined as the expected reward after taking action aj in state

sj following a certain policy π [30], can be expressed as

Qπ
j (sj, aj) = Eπ

[
Re(t)

∣∣∣s(t)j = s, a
(t)
j = a

]
, (17)

where corresponding values of (17) is known as action values or Q-values and satisfies a Bellman

equation,

Qπ
j (sj, aj) = R(sj, aj) + γ

∑
s′j∈Sj

P a
sj→s′j

( ∑
aj∈Aj

π(s′j, a
′
j)Q

π(s′j, a
′
j)

)
, (18)

Where R(sj, aj) is the immediate reward by taking action aj in state sj and P
aj
sj→s′j

is the

transition probability from state sj to new state s′j by selecting action aj . By solving MDP each

IoT agent is able to find the optimal policy π∗ to obtain maximal reward. The optimal Q-function

for IoT agent j associated with policy π∗ can be expressed as

Qπ∗

j (sj, aj) = R(sj, aj) + γ
∑
s′j∈Sj

P
aj
sj→s′j

max
a′j

Q∗(s′j, a
′
j). (19)

The quality of a given action in a state can be measured by its corresponding Q-value. To

maximize its reward and improve policy π, agent j decides its action from

aj = argmax
aj∈Aj

Q(sj, aj). (20)

In Q-learning algorithm, to store Q-values of all possible state-action pairs, every agent needs to

maintain a lookup table (Q-table), q(sj, aj) as a substitute of optimal Q-function. After random

initialization of the Q-table, for each time step all the agents take actions according to the

ε-greedy policy. With probability ε, all agents decides actions randomly to avoid sticking in
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non-optimal policy, whereas with probability of 1− ε, agents select actions that gives maximum

Q-values for the given state [28]. After taking action aj in a given state sj , the agents acquire

a new experience, and Q-learning algorithm updates its corresponding Q-value in the Q-table.

During the decision process in a time slot t, if an agent j, given a state s(t)j , selecting action

a
(t)
j , receiving a reward r(t) and the next state s(t+1)

j , then its associated Q-value is updated as

Q(s
(t)
j , a

(t)
j )← r(t) + γ max

aj∈Aj

Q(s
(t+1)
j , aj). (21)

However, for IoT scenario, the size of Q-table increases with the increasing number of state-

action spaces (an increase of IoT users) that makes Q-learning expensive in terms of memory

and computation because of the following two reasons..

1) Several states are infrequently visited, and

2) Q-table storage in (21) becomes unrealistic.

In addition, Deep reinforcement learning (DRL) is one of the RL algorithms, which tends to

obtain more rewards as per its efficient learning behaviour, in comparison with the traditional

Q-learning algorithm which are prone to negative rewards [19].

Fig. 3: The MARL framework for GF-IoT Networks, where IoT agents takes joint actions and receives a common reward during the training
process to learn the optimal policy.

To overcome the above problems, DRL (e.g. Deep Q Network algorithm) is proposed, [28],
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in which the Q learning is combined with Deep Neural Network (DNN) for Q function approx-

imation Q(s, a; θ), where θ represents its parameters (weights). Hence keeping a large storage

space for state-actions pair (Q-values), DRL agent only memorize θ weights in its local memory

that reduces the memory and computation complexity.

In MARL based DRL setting, each agent j has a DQN that takes the current state s(t)j as input

and output Q-value function of all actions. IoT agents explore the environment by state-action

pair following ε greedy policy. Every agent collects and stores the experiences in the form of a

tuple
(
s
(t)
j , a

(t)
j , r

(t), s
(t+1)
j

)
in replay memory. In each iteration, a mini-batch of data is sampled

uniformly from the memory and is used to update network weights θ. The target value produced

by target Q network from randomly sampled tuple
(
s
(t)
j , a

(t)
j , r

(t), s
(t+1)
j

)
is given by

y
(t)
j = r(t) + γ argmax

a
(t+1)
j ∈Aj

Q(s
(t+1)
j , a

(t+1)
j ; θ̄), (22)

where, θ̄ represents the weights of the target Q-network, which are set equal to the weights θ of

the online training network after every TU steps. The Q network can be trained by minimizing

the loss function by using variant of stochastic gradient decent,

L(θ) = (y
(t)
j −Q

(t)
j (s

(t)
j , a

(t)
j ; θ))2. (23)

The policy π used by each user for selecting power level and sub-channel is random at the start

and gradually improved to the optimal policy π∗ with the updated Q-networks.

B. Proposed Multi-Agent DRL-based Grant-Free NOMA Algorithm

Designing a model-free distributed learning algorithm for solving an optimization problem that

can effectively adapt to topology changes, different objectives, and general complex real-world

environments while overcoming expensive computational requirements due to the large state

space and partial observability of the problem is a challenging task. Another challenge is enabling

a large number of users to share the limited resources in GF transmissions. Where the goal of

users is to maximize a given network utility in a distributed manner without sharing information

or performing online coordination. Our algorithm and problem definition are fundamentally

different from those in Section-I (A). For example, an optimal solution is a combinatorial

optimization problem with partial state observations which is mathematically intractable as

the network size increases. Furthermore, our algorithm differs from the existing DRL-based
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Fig. 4: The proposed end-to-end architecture for training deep MARL agents to optimize the power and sub-channel allocation.

schemes, where the communication is based on closed-loop power control and ACK signals, by

eliminating the process of ACK signals and providing open-loop power control, which reduces

the computational complexity at the BS. Therefore, our proposed algorithm is more suitable and

scalable for IoT based applications regardless of the number of users and their locations in the

network. Next, we describe DQN and its variant Double DQN based GF-NOMA algorithm for

sub-channel and power allocation as

1) Deep Q-Learning: The schemes based on classic Q-learning are able to work well on

small number of states and actions. However, when the states and actions spaces increases, such

approaches incorporates many limitations as described in Section III-A. If the problem size and

number of agents is sufficiently large, convergence rate might be slow and cannot be implemented

in real time scenarios. Deep reinforcement learning promotes and inherits the advantages of deep

learning and reinforcement learning techniques that overcome the problems of classic Q learning.

As depicted in Fig. 3, we proposed an independent learners (IL) based MARL algorithm to

solve the optimization problem mentioned in (10) in-order to design transmit power pool. In the

proposed multi-agent DRL-based GF NOMA algorithm shown in Algorithm 1, each IoT user

runs an independent DQN algorithm and jointly learns an individual optimal strategy for MDP.

Remark 2. In multi-agent system, the Q-function of each agent is based on the joint actions and

joint strategy due to the reason that finding an optimal strategy is difficult [31]. To encounter

this problem, each IoT user acts as an IL and ignores actions and rewards of other users and
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Algorithm 1 Multi-Agent DQN-Based GF-NOMA Algorithm

1: Parameter initialization Phase:
2: Initialize parameters Np,M, γ, α, ε, batch-size Nb, Tu
3: Set replay memory with size D
4: Initialize Q-network weights for all agents (IoT users) and copy primary Q-network weights to Target Q-network
5: Training Phase:
6: for episode = 1, 2, . . . , E do
7: reset the environment
8: for Time step = 1, 2, . . . , F do
9: for each IoT agent j do

10: Input state s(t)
11: Take action a(t) based on (24)
12: end for
13: all agents take joint actions observe new state s(t+ 1) and reward r(t) using (15)
14: for each IoT agent j do
15: Store a tuple of s(t), a(t), r(t), s(t+ 1) in replay memory
16: end for
17: for each IoT agent j do
18: Uniformly select batches from memory D
19: using stochastic gradient to minimize loss between the primary network and target network:[

y
(t)
j −Q

(t)
j (s

(t)
j , a

(t)
j ; θ)

]2
(23)

20: end for
21: if episode% == Tu then
22: Update target Q-network weights
23: end if
24: end for
25: end for

interacts with the environment in such a way that no other IoT user exists [32] [33].

The training procedure of our proposed algorithm is depicted in Fig. 4. The learning parameters

i.e., learning rate α, discount factor γ, memory size D, batch size Nb, and ε are initialized

and configured during initialization phase. While in training phase, through interaction with

environment the agents initially collects training samples. In a TS t each agent j inputs current

state s(t)j into primary Q-network and obtains all the Q-values corresponding to all actions. The

action a(t)j is determined by the following policy,

a
(t)
j =


random action, with probability ε,

argmax
a
(t)
j ∈Aj

Q(s
(t)
j , a

(t)
j ) with probability 1− ε.

(24)

To fully explore the environment and to find the action that returns the best reward for a given

state random action (try and observe) strategy with small probability ε is considered. All agents
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Algorithm 2 Proposed Multi-Agent DDQN-Based GF-NOMA Algorithm

1: Parameter initialization Phase:
2: Initialize parameters Np,M, γ, α, ε, batch-size Nb, Tu
3: Set replay memory with size D
4: Initialize Q-network weights for all agents (IoT users) and copy primary Q-network weights to Target Q-network
5: Training Phase:
6: for episode = 1, 2, . . . , E do
7: reset the environment
8: for Time step = 1, 2, . . . , F do
9: for each IoT agent j do

10: Input state s(t)
11: Take action a(t) based on (24)
12: end for
13: all agents take joint actions observe new state s(t+ 1) and reward r(t) using (15)
14: for each IoT agent j do
15: Store a tuple of s(t), a(t), r(t), s(t+ 1) in replay memory
16: end for
17: for each IoT agent j do
18: Uniformly select batches from memory D
19: using stochastic gradient to minimize loss between the primary network and target network:[

r(t) + γQ(s
(t+1)
j , argmax

a
(t+1)
j ∈Aj

Q(s
(t+1)
j , a

(t+1)
j ))−Q(t)

j (s
(t)
j , a

(t)
j ; θ)

]2
20: end for
21: if episode% == Tu then
22: Update target Q-network weights
23: end if
24: end for
25: end for

perform a joint action based on the above policy, receives a common reward and the environment

transitions to a new state s(t+1)
j . Thus, each agent make a new training sample, and stores in D.

We sample batches of stored transitions from the replay memory and compute target Q-value

of each sample. In each training step, with target Q-value and selected samples, the primary

Q network is trained through minimizing the error with gradient descent method using (23) to

improve policy. After Tu training steps, target Q-network weights are sets as the weights of the

primary Q-network. The training process is finished either after reaching total training steps or

a predefined number of episodes.

2) Double Deep Q-Learning: As traditional DQN tends to significantly overestimate action-

value that leads to poor policy and unstable training. The accuracy of Q values depends on the

actions that agent takes and states explored, however, at the beginning of training the agent don’t

have sufficient information about the optimal action to take. Thus, considering the maximum q

value (may be noisy) as the optimal action to take can lead to maximization bias in learning.
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Instead of best optimal actions, if non-optimal actions are given higher Q values, then learning

will be unstable and complicated. Moreover, in Deep Q-learning, the max operation uses the same

values for both selection and evaluation of an action. This can, therefore, lead to overoptimistic

value estimates [34]. For example, if action a has higher value than action b in some state s,

then agent will choose action a every time for that state s. Now suppose if for some memory

experience action b becomes the better action then since the neural network is trained in a way to

give a much higher value for action a, it is difficult to train the network to learn that action b is

better than action a in some conditions. To bring down the difference between the output values

(actions) and to mitigate the problem of overoptimistic and biased value estimation, double deep

Q-learning is proposed [35]. The idea behind double Q-learning algorithm is to prevent this

bias estimation by decoupling the max operation in the target into action selection and action

evaluation process. More specifically, the agent uses

• DQN network to select the optimal action (action with highest Q value) for the next state.

• The target network to compute the target Q value of the corresponding action in next state.

Remark 3. We use a secondary model that copy the main model from the last episode, because

the difference between values of the secondary model is less than the main model, thus we use

this second model to obtain the Q values.

The target of double deep Q network (DDQN) can be written as:

y
(t)
j = r(t) + γQ(s

(t+1)
j , argmax

a
(t+1)
j ∈Aj

Q(s
(t+1)
j , a

(t+1)
j ; θ); θ̄). (25)

Double DQN updates is the same as traditional DQN, however, replace the y(t)j with (25). Details

of our proposed multi-agent DDQN GF-NOMA algorithm is given in Algorithm 2.

C. Computational Complexity

The number of operations using the DQN with H layers, in which Z is the input layer size

and is proportional to the number of active IoT users Nt in the network, and xh is the number

of neurons in layer h. These parameters obey X , Zx1 +
∑H−1

h=1 xhxh+1. Thus, at each time

step, real-time computational complexity for each IoT user is given by O(X). For a single

sample, the computational complexity of the forward and back propagation is O(X) and the

training complexity for Nt users (agents), one minibatch of E episodes with F time-steps until
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convergence results in computational complexity of order O(EFNtX) in training phase. To

find the optimal solution using exhaustive search, we need to consider all possible combinations

of power and sub-channel selection for all users, which is not feasible due to the large state

and action spaces of our problem. Further, in case of mobile users, there might be a limited

impact on the proposed algorithm. However, when the speed of users is fast, the correlation

between different layers becomes high due to Doppler effects and multi-path delays. Then some

adjustments based on the proposed solution are required.

IV. EXPERIMENTAL RESULTS

A. Simulation Setup and System Parameters

In this section simulation results are presented to demonstrate the proposed algorithm perfor-

mance. We consider a single BS and users are activated following a Poisson distributed traffic.

All active users communicate with the BS in a GF manner with in a radius of 1000m. The entire

area of the cell is divided into 4 layers, each of which is 250m wide. Other simulation parameters

are summarized in Table II. We evaluate the performance of our proposed algorithm on Intel

TABLE II: Network Settings of the Proposed System

Power levels [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9] W
Path loss exponent α = 4 [6]
AWGN(N0) -90dBm [36]
No. of sub-channels [2, 3, 4]
Sub-channel bandwidth Bs = 10 KHz [6]
Carrier frequency 10 MHz [36]
Minimum data rate 10 bps/Hz [37]
Pmax 1 W [37]

core i5-8265 CPU with 1.8 GHz frequency with 8GB of Random Access Memory and 64-bit

operating system (Windows 10). We use a deep neural network for DQN with fully connected

hidden layers and Rectified Linear Unit (ReLU) as the activation function for hidden layers. The

Q-network input layer size (i.e, state size) is equal to the number of users in the network. DQN

output layer size is equal to the number of all possible actions, i.e., Np×M . We utilize the ε-

greedy policy to balance exploration and exploitation phenomena. Other training parameters are

given in Table III. Tuning some of these parameters can improve the performance of deep neural

networks, but the one that could accelerate algorithm converging or exploding is the selection of

optimizer. We choose the Adam optimizer [38], as it restricts the oscillations in vertical direction

and the learning rate can be increased to take larger steps for fast convergence.
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TABLE III: DQN Training Parameters

No. of episodes 500
Layers {Input, hidden layer1, hidden layer2, hidden layer3, output}
Neurons per layer {250, 120, 64}
ε 1.0
ε min 0.01
Learning rate 0.001
Optimizer Adam

B. Multi-Agent DRL-based GF-NOMA Algorithms Performance Analysis

As the convergence of algorithms affects the performance of systems, we analyze and compare

the convergence of both algorithms (multi-agent DQN based GF-NOMA and multi-agent double

DQN based GF-NOMA) given in Fig. 5(a). A clear performance difference between the two

algorithms is evident in terms of convergence and the score achieved by the agents. It can be seen

that after 300 iterations, both algorithms converge to the optimal value. However, it is observable

that multi-agent double DQN based GF-NOMA algorithm obtained a reward (throughput) greater

than the traditional DQN based GF-NOMA algorithm. At the beginning of the training, the

performance of both algorithms is worst due to exploration phenomena (random actions). After

150 episodes approximately, the agents gain a lot of experience and start to exploit better actions.

DQN based GF-NOMA algorithm improves its policy and gradually increases the reward and

converges almost in the next 150 episodes. Similarly, agents in multi-agent double DQN based

GF-NOMA algorithm gets a reward of zero in about the first 220 episodes. However, there is a

sudden surge in reward from zero to 2× 105 in the next few episodes and then a gradual rise in

reward for about 25 episodes. Multi-agent double DQN based GF-NOMA algorithm converges

for the last 200 episodes. It can be seen that learning with the double DQN algorithm is more

stable and performs well as compared to the DQN algorithm. DQN algorithm suffers from the

problem of Q values overestimation which leads a low-quality policy. In Fig. 5(b), the loss

function values of the proposed multi-agent double DQN based GF-NOMA algorithm during

the training are shown. The loss function values of all agents reach its peak in about 200 episodes

and then decreases as the agents exploit better actions. As the reward converges, the loss value of

all agents continuously declines and reaches to its minimum at the end of episodes that justifies

the accurate Q values predication. In our proposed double DQN based MARL algorithm, agents

are ILs who try is to maximize their reward. Every agent takes actions independently which may
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(a) Convergence comparison
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Fig. 5: The convergence of multi-agent DRL based GF-NOMA algorithms and the loss in the training phase: Sub-figure (a) shows the convergence
of the proposed multi-agent DQN based GF-NOMA vs. multi-agent double DQN based GF-NOMA algorithm. Sub-figure (b) represents loss
function value of all agents (Nt = 6) in the training phase. At each time step, the stochastic gradient descent algorithm minimizes the loss
function mentioned in (23) for training the mini-batch.

affect other agents performance, therefore we design the reward function in such a way that all

users receive the same reward which allows the agents to select those actions that increase the

cumulative reward. Hence, every agent updates its policy with the action of other agents.

C. Impact of Learning Rate on Double DQN Performance

We use stochastic gradient descent (SGD), an optimization algorithm, to train the deep neural

networks. SGD evaluates the error gradient of the current state of the model using some samples

from the training data set and then updates the weights of the model using back-propagation. The

amount at which the weights are updated is known as learning rate or step size that has a value

in the range of 0.0 and 1.0. The learning rate is a configurable hyper-parameter that controls

how fast the model adapts to the problem or how quickly DQN learns from the data. The most

important hyper-parameter is the learning rate, if you have time for tuning only one parameter,

tune the learning rate [39]. Selecting the optimal learning rate is a challenging task as a small

learning rate may require large training time due to the smaller changes made to the weights

in each update. Whereas, large learning rate value reduces training time due to rapid changes

in the weights but the model may converge too fast to a suboptimal solution. Fig. 6(a) shows

the throughput (reward) vs. number of episodes with different learning rates. It can be seen that

a large value of learning rate results in fast convergence with large fluctuation in reward value

that may lead to unstable training or even to diverge. On the other hand, the too small value of
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(b) Transmit power constraint impact on system throughput

Fig. 6: The learning rate comparison and impact of transmit power constraint: Sub-figure (a) represents the performance comparison with
different learning rates. Sub-figure (b) shows the impact of transmit power constraint on the system throughput.

learning rate takes a lot of time to find the optimal policy. The moderate learning rate value of

α = 0.001 shows the highest and more stable reward in terms of throughput. Hence, we opted

and set α = 0.001 as the learning rate value for our simulations.

D. Impact of the Power Constraint

Fig. 6(b) shows the system performance in terms of throughput with different transmission

power constraints. It can be seen that the proposed algorithm achieves the highest throughput at

large Pmax compared to the other values. This is because all the users in the network are able

to transmit with large transmit power. In contrast, this constraint with a small value restricts

the users to use a small transmit power for uplink transmission and hence a lower throughput

is reported. Moreover, a small difference of throughput is presented when Pmax = 2.0 and

Pmax = 2.5. It is concluded that a large value of Pmax does not always contribute to high system

performance, since users transmitting at high power increase the inter user interference .

E. Impact of the System Density

The number of sub-channels in a GF system affects the system performance by increasing or

decreasing collision probability. Moreover, to achieve the Quality of Service (QoS) requirements

for each IoT user and to maximize system throughput, the BS needs to find the optimal value of

this parameter. The number of sub-channels is inversely proportional to the collision probability,

but the increase in the number of sub-channel decreases the bandwidth of each sub-channel that
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(a) Spectral efficiency vs. No. of Sub-channels
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(b) No. of Sub-channels vs. No. of users

Fig. 7: Spectral efficiency versus the number of sub-channels M : Sub-figure (a) shows two cases: First, The system bandwidth B is equally
divided into M orthogonal sub-channels and thus each sub-channel has Bs = B

M
available bandwidth and secondly, bandwidth of each

sub-channel Bs = B . Sub-figure (b) represents system throughput w.r.t, increasing number of users and sub-channels.

results in poor spectral efficiency. On the other hand, increasing the number of sub-channels

can enhance spectral efficiency subject to enough bandwidth. Fig. 7(a) shows the impact of

the number of sub-channels on the system throughput. Results are reported for two different

scenarios, where different values of bandwidth is provided: Bs = B
M

and Bs = B. In the first

case where the total bandwidth is equally divided into M orthogonal sub-channels, it is clear

that, with increasing number of sub-channels M , the system throughput decreases. It is worth

noting that when the number of sub-channels is large, e.g., M = 4, the available bandwidth

for each sub-channel is small and IoT users achieve a lower data rate over each sub-channel.

Thus, IoT users in a network with a balanced number of sub-channels can achieve the threshold

data rate (Rth) for successful SIC, and their QoS requirements can be satisfied. However, in the

second case, when the system bandwidth increases, the spectral efficiency also increases. With

limited bandwidth, system performance in terms of spectral efficiency is inversely proportional

to the number of sub-channels. It is directly proportional to the number of sub-channels if the

system bandwidth is high. Similarly, Fig. 7(b) shows the system throughput with increasing

number of sub-channels (sub-channels with the same bandwidth i.e., 10KHz) and GF users. A

continuous increase in system throughput is reported as the number of users and sub-channels

increases. Thus, with enough system bandwidth, system throughput can be increased with the

increase in number of sub-channels.
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Fig. 8: Performance and power allocation comparison with M = 4 and Nt = 6 (active users): Sub-figure (a) shows system performance with
varying sub-channel bandwidth as compared to optimal solution. Sub-figure (b) represents the performance comparison in terms of throughput
achieved by allocating fixed power to IoT users and power allocating from the available power pool.

F. Performance Comparison with Optimal solution

When the number of variables in an optimization problem is small, the optimal solution can be

found by exhaustive search. However, when there are many variables, finding an optimal solution

to the resource allocation problem is extremely computationally expensive since it is known to

be non-deterministic polynomial-time hard (NP-hard). In this case, it is more reasonable to

search for near-optimal solutions to reduce the computational complexity. The optimal resource

allocation policy is based on exhaustive search that needs to explore/visit all network states,

which is enormous in the case of IoT networks without learning policy. The Fig. 8(a) shows the

near optimal solution and the performance gap. In the proposed algorithm, the IoT user learns

by interacting with the wireless environment and extracts the useful information for decision

making (power and sub-channel selection). It is worth mentioning that visiting all the states

of the network is not necessary for an agent (IoT user). The agent learns a strategy through

the method of greedy exploration and exploitation. Therefore, we have achieved a near-optimal

solution at the cost of linear time computational complexity.

G. Fixed Power Allocation VS. Power Allocation from Available Power Pool

A comparison of fixed power and power allocation from available power pool is shown in Fig.

8(b). The network with an available transmit power pool outperforms the network with fixed

power allocation in terms of throughput. Algorithm with fixed transmit power level converges

quickly due to the small number of action space. On the other hand, the algorithm with available
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transmit power pool requires more time to gain the highest throughput because of the large action

dimensions. In fixed power allocation, users transmit with the highest power level resulting

in interference to other users on the same sub-channel that leads to poor throughput gain,

compromise user fairness and wastage of energy. Algorithm with available power pool achieves

35.7% more throughput as compared to the fixed power allocation. This is because the algorithm

dynamically allocates the transmit power to IoT users based on their communication distance.

(a) Multi-agent DQN based transmit power levels for each layer (b) Multi-agent DDQN based transmit power levels for each layer

Fig. 9: Multi-agent DQN based transmit power levels vs. Multi-agent DDQN based transmit power levels for each layer: In Sub-figure (a) IoT
users in layer 2 and 3 use same power level, whereas, in Sub-figure (b) IoT users in different layers select different transmit power levels for
GF transmission that ensure sufficient received power difference at the BS.

H. Multi-agent DRL based Prototype Power Pool

In this section, we show the designed prototype power pool prototype using multi-agent DRL

algorithms under network settings M = 4 and Nt = 8 (active GF users).

1) Multi-Agent DQN Based Prototype Power Pool: Fig. 9(a) shows the layer-based transmit

power levels acquired via multi-agent DQN based GF-NOMA algorithm. It can be seen that

users in layer 2 and layer 3 use the same transmit power levels. It is evident from Fig. 9(a) that

DQN based GF-NOMA algorithm achieves less throughput as compared to double DQN. This

is due to the overestimation of Q-values that converge our proposed algorithm with non-optimal

actions (transmit power level selection). Moreover, in the power domain GF-NOMA, the received

power level difference plays an important role in the decoding process. The transmit power of

one user affects SINR and achievable capacity of other users on the same sub-channel, as users

create interference to other users. In our proposed DQN based GF-NOMA algorithm, users in
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layer 2 and 3 use the same transmit power level that compromises NOMA fairness and achieve

a suboptimal solution to the optimization problem mentioned in (10).

2) Multi-Agent Double DQN Based Prototype Power Pool: To solve the issue of selecting

the same transmit power level by IoT users in different layers, we proposed double DQN based

GF-NOMA algorithm. In Fig. 9(b), it can be observed that users select different power levels in

different layers which is the motivation and objective of this research work. IoT users in layer 1

transmit with the highest power level, as the user with the highest received power at the BS face

interference from users with weak received power levels in the decoding process. Moreover, to

guarantee the SIC process, IoT users need to achieve the required data rate Rth, hence, users in

layer 1 transmit data with the highest power level. Similarly, users in other layers obey the same

process and BS decodes the users in the last layer (layer 4) without interference from other users.

Therefore, users in the last layer can achieve the required data rate for successful SIC with a

low transmit power level. Furthermore, a performance difference in terms of energy consumption

can be seen as users in layer-1 transmits with high power as compared to users in other layers.

We will discuss a typical application scenario in terms of energy and time consumption with

some specific protocols in our future work. In addition, if the offline and online environment

changes significantly, the proposed PP design may not suitable for online updating. Therefore,

the proposed algorithm is suitable for networks with regular behaviours.

I. Network Performance with and without Prototype Power Pool

Fig. 10(a) shows the convergence of the proposed double DQN based GF-NOMA algorithm

with the designed prototype power pool and available transmit power levels. It can be seen that the

double DQN and DQN based GF-NOMA algorithm with prototype power pool converges quickly

with fewer training episodes. However, double DQN algorithm outperforms DQN algorithm in

terms of throughput because DQN algorithm suffers from Q-values overestimation problem and

converges with the non-optimal solution. On the other hand, agents in these algorithms with

available transmit power levels require more training episodes to learn optimal actions due to

an increase in action space.

J. Proposed Multi-Agent DRL Based GF-NOMA VS. GF-OMA

Fig. 10(b) shows the performance gain of the proposed multi-agent GF-NOMA IoT network

over GF-OMA. It is evident that our proposed multi-agent double DQN based GF-NOMA
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Fig. 10: Convergence comparison and performance of the proposed GF-NOMA vs. GF-OMA: Sub-figure (a) shows Comparison of the proposed
multi-agent DRL based GF-NOMA algorithms (multi-agent DQN based GF-NOMA and multi-agent DDQN based GF-NOMA) with and without
the prototype power pool. Sub-figure (b) represents the comparison of proposed multi-agent DRL based GF-NOMA and GF-OMA.

algorithm outperforms GF-OMA with 55% performance gain on system throughput. The reason

behind this performance gain is the splitting of bandwidth resources among the IoT users in

OMA. Since users (agents) in Multi-Agent GF-NOMA select power level and sub-channel

(actions) in such a way that maximizes the throughput (reward). Therefore, an accurate power

allocation and grouping of users with significant channel gain difference in a NOMA cluster

result in performance gain over GF-OMA.Furthermore, the throughput achieved by multi-agent

double DQN based GF-NOMA and multi-agent double DQN based GF-OMA is superior to

multi-agent DQN based GF-NOMA and multi-agent DQN based GF-OMA.

V. CONCLUSION

This paper has generated a layer-based transmit power pool for GF-NOMA IoT networks by

utilizing multi-agent DRL. We have divided the cell area into different layers and calculated the

optimal transmit power level for each layer to ensure sufficient received power difference at the

BS to maximize connectivity. Moreover, numerical results have shown that the multi-agent GF-

NOMA algorithm outperforms conventional GF-OMA in terms of throughput. The prototype

power pool design has been proved to perform better than the fixed power allocation design

and pure online training. Finally, we have identified the transmit power levels for the prototype

power pool. Investigating the proposed algorithm for multi-antenna scenarios and considering

user fairness (in terms of energy consumptions) are some of the promising future directions.
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Additionally, to investigate environmental impact on the considered DRL algorithm is another

possible extension to this work.
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