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Abstract—Recently, commodity Wi-Fi devices have been shown
to be able to construct human pose images, i.e., human skeletons,
as fine-grained as cameras. Existing papers achieve good results
when constructing the images of subjects who are in the prior
training samples. However, the performance drops when it comes
to new subjects, i.e., the subjects who are not in the training
samples. This paper focuses on solving the subject-generalization
problem in human pose image construction. To this end, we define
the subject as the domain. Then we design a Domain-Independent
Neural Network (DINN) to extract subject-independent features
and convert them into fine-grained human pose images. We also
propose a novel training method to train the DINN and it has
no re-training overhead comparing with the domain-adversarial
approach. We build a prototype system and experimental results
demonstrate that our system can construct fine-grained human
pose images of new subjects with commodity Wi-Fi in both the
visible and through-wall scenarios, which shows the effectiveness
and the subject-generalization ability of our model.

Index Terms—human pose image construction, DINN, subject-
generalization, subject-independent, commodity Wi-Fi

I. INTRODUCTION

Human poses can provide useful information for tasks such

as human-computer interaction, medical care, and autonomous

driving [1], so human pose image construction is indispensable

research in the human sensing area. Recently, due to the preva-

lence of Wi-Fi infrastructures, privacy-protection and through-

wall abilities of Wi-Fi signals, human pose image construction

with commodity Wi-Fi has attracted extensive attention in

academia and industry.

Because of being reflected, scattered and diffracted by ob-

jects or human bodies in the ambient environment, Wi-Fi

signals propagate from the transmitter to the receiver through

multipath. Thus, the received superposition signals carry infor-

mation reflecting the characteristics of the propagation space,

including the human pose information. Channel State Informa-

tion (CSI) obtained from commodity Wi-Fi Network Interface

Cards (NICs) by open-source tool [2] mainly represents the

received superposition signal, which provides the possibility

for human pose image construction with Wi-Fi.

Past papers [3]–[5] have achieved fine-grained 2D human

pose construction with commodity Wi-Fi through deep learning

methods. However, when it comes to new subjects, these

models have poor performance, i.e., they do not have subject-

generalization ability. [6] constructs the 3D human poses with

commodity Wi-Fi through regressing the 3D positions of human

joints directly and explores the generalization ability of the

model they proposed. However, the subject performs activities

on a fixed spot in their work. So, it remains to be verified

whether the model can adapt to subjects who move in the entire

perceptual space.

Therefore, to achieve fine-grained and subject-independent

human pose image construction with commodity Wi-Fi is still

challenging: the differences among subjects such as height,

weight, gender and clothing, affect Wi-Fi signals in different

ways, which will sharply decline the generalization ability of

the models.

If we define human subjects as domains, the above dif-

ferences can be considered as domain differences. Then the

domain-adversarial networks can be adopted to solve the above

problem. To recognize human activities in different environ-

ments, [7] proposes an EI framework, which uses the domain-

adversarial training approach to extract the environment-

independent features of human activities, and then they utilize

several types of signals to demonstrate the effectiveness of their

framework. [8] proposes a conditional adversarial architecture

which retains all information relevant to the predictive task

through discarding the information specific to domains.

Nevertheless, the domain-adversarial training approach will

add significant overhead in the model re-training process, which

is not applicable in real life. It is necessary for domain-

adversarial training methods to feed source domain and un-

labeled target domain data into the network for training at the

same time [9]. The network builds feature mappings between

the source and the target domains by doing so.

Given these analyses, we focus on achieving fine-grained

and subject-independent human pose image construction with

commodity Wi-Fi and avoiding overhead in the model re-

training process. The main contributions are listed as follows:

1. We design the Domain-Independent Neural Network

(DINN), a deep learning network which can extract domain-

independent features and construct fine-grained human pose

images. Specifically, the DINN is composed of feature extrac-

tor, generator, and domain discriminator. The feature extractor

is used to extract low-dimensional features related to human

poses. The generator is used to convert the features into human

pose images and the domain discriminator is designed to

distinguish which domain the features belong to. In this paper,

we define the subject as the domain. Actually, the domain

discriminator is used to distinguish which subject the features

belong to. Through training, the DINN can extract subject-

independent features and convert them into fine-grained human

pose images.

2. We propose a novel training method to train the DINN.

It includes two training stages in which only the source

domain data is necessary for training. Therefore, our train-

ing method has no re-training overhead comparing with the

domain-adversarial approach.
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Fig. 1. Overall framework of the DINN

3. We build a prototype system to construct fine-grained

human pose images of new subjects with commodity Wi-

Fi. Comprehensive experiments are conducted in both the

visible and through-wall scenarios. Compared with the state-

of-the-art method proposed in [5], the average performance

increases 37% and 35.7% on the strict match in the visible

and the through-wall scenario, respectively. 65.99% (50.27%)

and 100% (99.82%) human pose images of the new subject

constructed by our system strictly and loosely match the ground

truth in the visible (through-wall) scenario.

The rest of this paper is organized as follows. Preliminaries

and motivation are discussed in Section II and Section III.

Section IV elaborates the DINN and the training method. In

Section V, we conduct a series of experiments in both the visible

and through-wall scenarios to evaluate the performance of our

system. Finally, we conclude the paper in Section VI.

II. PRELIMINARIES

A. Channel State Information

CSI is the equispaced samples of Channel Frequency Re-

sponse (CFR), and it can be presented as follow:

H(f, t) =
L
∑

i=0

Hi(f, t) =
L
∑

i=0

αi(t)e
−j2πfτi(t), (1)

where L represents the number of propagation paths and α(t)
is the attenuation and τ(t) is the propagation delay.

According to [10], CSI can be divided into dynamic paths

and static paths based on whether their lengths are changed

because of human body parts moving. Hence, equation (1) can

be expressed as follow:

H(f, t) = Hs(f, t) +Hd(f, t)

= Hs(f, t) +
∑

i∈Ld

αi(t)e
−j2πfτi(t), (2)

where Hs(f, t) represents the static component which consists

of the direct path and paths reflected by static objects in

the environment. Hd(f, t) represents the dynamic component

which is composed of reflection paths from the moving body,

i.e., dynamic paths. And Ld is the set of dynamic paths.

B. Data Collection and Processing

When different subjects are moving in the sensing space,

we collect CSI samples from commercial Wi-Fi NICs while

we exploit a synchronous camera to record his (or her) video

footage.

We process the amplitude and phase of CSI samples and

combine them to obtain the dynamic component. After signal

processing, we segment dynamic components to form the CSI

images according to the synchronous time information. Besides,

we get human skeleton images of recorded video footage

through OpenPose [11]. For more data processing details,

please refer to the previous work of our team [3].

III. MOTIVATION

Existing 2D human pose image construction models do

not have subject-generalization ability. Because these models

are fed the dynamic components for human pose image con-

struction. However, differences among subjects will lead to

different dynamic paths even if the same pose is performed. In

this situation, different dynamic paths, i.e., different dynamic

components, will lead to different distributions of extracted

features.

Consequently, the extracted features are not only relevant to

human poses but also subjects. The subject-related features will

sharply decline the subject-generalization ability of the models

and result in poor performance when these models are used to

new subjects.

Therefore, to achieve subject-generalization in human pose

image construction, we design the DINN to extract subject-

independent features and convert them into fine-grained human

pose images. Besides, in order to avoid re-training overhead

and enhance the practicability of the DINN, we propose a novel

training method with two stages. Finally, we build a prototype

system to construct fine-grained human pose images of new

subjects with commodity Wi-Fi, which shows the effectiveness

and the subject-generalization ability of our model.

IV. METHODOLOGY

In this paper, we design the DINN with a novel training

method to extract subject-independent features with no re-

training overhead and convert them into fine-grained human

pose images.

We use CSI images as the input of our model and define them

as X . The output is the constructed human skeleton images and

predicted domains, which are defined as y and d, respectively.

We use human skeleton images extracted from synchronous

video footage by OpenPose as annotations for constructed

images, which are defined as Y . One-hot probability vectors

of subjects are used as subject labels which are the supervision

for predicted domains and defined as D. Note that skeleton

images are used as annotations because they are more fault-

tolerant than key points and we use grey-scale skeleton images

for simplifying. The overall framework is shown in Figure

1. The details of our model and the training method will be

elaborated in the rest of this section.

A. Feature Extractor

The feature extractor is used to transform the CSI images

into low-dimensional features Z . It mainly consists of several



convolutional layers, which are widely used to distill low-

dimensional features of human motions [12]. Using θf to

denote the set of parameters in the feature extractor, given the

input data X , we can get the low-dimensional features as:
Z = Gf (X, θf ), (3)

where Gf denotes the feature extractor network.

B. Generator

The generator is designed to convert the learned features,

i.e., Z , into human pose images. It mainly consists of several

resize convolution layers [13] instead of traditional transposed

convolution layers. As they can eliminate the Checkerboard

Artifacts [14] and increase the resolution of constructed images.

Let θg be the set of parameters in the generator and we can

obtain the human pose images:
y = Gg(Z, θg), (4)

where Gg denotes the generator network. Further, the difference

between the constructed pose images and the ground truth is

calculated by the cross-entropy loss function, which denotes as

follow:

Lg(y, Y ) =
1

M

M
∑

m=0

N
∑

n=0

Ymn log
1

ymn

+ (1− Ymn) log
1

1− ymn

,

(5)

where M is the number of human skeleton images in the mini

batch, and N is the number of pixels on each image. Therefore,

our proposed model needs to optimize the feature extractor and

the generator networks by minimizing Lg in order to obtain

fine-grained human pose images.

C. Domain Discriminator

The domain discriminator leverages the learned features Z

as input, and aims at distinguishing which domain the features

belong to. It consists of several fully connected layers, which

are widely used for classification tasks [15]. Let θd be the set

of parameters in the domain discriminator, we can obtain the

predicted domains:
d = Gd(Z, θd), (6)

where Gd denotes the domain discriminator network. Further,

we design the cross-entropy loss function to calculate the

difference between domain predictions and truthful domain

labels, which denotes as follow:

Ld(d,D) =
1

M

M
∑

m=0

K
∑

k=0

Dmk log
1

dmk

+ (1−Dmk) log
1

1− dmk

,

(7)

where K denotes the number of domains. Thus, the domain

discriminator can get the maximum domain discrimination

performance by minimizing Ld.

D. Training Method

We propose a novel training method to train the DINN, which

can be divided into two stages: pre-training and adversarial

training.

During the pre-training stage, we leverage two optimizers to

minimize Lg and Ld, respectively. Thus, the feature extractor

will extract features relevant to human poses while the domain

discriminator will obtain maximum domain discrimination per-

formance. It means that the domain discriminator can recognize

the domain-related features as much as possible. The optimiza-

tion equations are expressed as follows:

(θ̂f , θ̂g) = argmin
θf ,θg

Lg(θf , θg), (8)

(θ̂d) = argmin
θd

Ld(θ̂f , θd), (9)

where θ̂f , θ̂g and θ̂d are saddle points of the model parameters

that we are seeking [9]. And they can be obtained by the

following gradient updates:

θf ← θf − µ1
∂Lg

∂θf
, (10)

θg ← θg − µ1
∂Lg

∂θg
, (11)

θd ← θd − µ2
∂Ld

∂θd
, (12)

where µ1, µ2 are the learning rates.

However, getting the maximum domain discrimination per-

formance exactly contradicts with our goal. Thus, based on

equation (5) and (7), we define the joint loss function L as

follow:

L = Lg − λLd, (13)

where λ is the adversarial parameter, which is a positive number

and used to achieve the trade-off between the feature extractor

and the domain discriminator in the learning process.

At the adversarial training stage, we use one optimizer to

minimize the loss L, which needs to minimize Lg and maximize

Ld. Hence, the performance of human pose image construction

is improved while the feature extractor tries its best to cheat the

domain discriminator. On the other hand, we also use another

optimizer to minimize the loss Ld, which will maximize the

loss L, conversely. So, the domain discriminator also aims

at identifying domain-related features as much as possible.

Compared with the optimization equation (8) and (9) in the

pre-training stage, we only modify (8) here, as follow:

(θ̂f , θ̂g) = argmin
θf ,θg

L(θf , θg, θ̂d). (14)

As for gradient updates, compared with the equation (10),

(11) and (12) in the pre-training stage, only (10) is modified

here, as follow:

θf ← θf − µ1(
∂Lg

∂θf
− λ

∂Ld

∂θf
). (15)

Through this minimax game, the domain discrimination ac-

curacy declines sharply. It means that the domain discriminator

with superior performance cannot identify which domain the

learned features belong to. Intuitively, the learned features are

domain-independent. As mentioned above, the subject repre-

sents the domain. Therefore, the learned features are actually

subject-independent and they are then converted into fine-

grained human pose images in the generator. Note that only

several source domain data are used for training in the above

method. Consequently, our proposed model can significantly

avoid re-training overhead.

V. EXPERIMENTS AND PERFORMANCE

A. Setup

In our experiments, we employ three transceivers equipped

with Intel 5300 NICs (one transmitter and two receivers).

The two pairs of transceivers are placed vertically to improve

the spatial resolution. 1 transmitting antenna are used at the

transmitter to avoid the noise of Cyclic Shift Diversity (CSD)

[16] and 3 receiving antennas are attached to each receiver to

collect more information. We set the Wi-Fi channel in 5GHz

frequency band with 20MHz bandwidth. The experimental

environment is a room about 7m × 8m, where other existing

Wi-Fi networks are operating normally.
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Fig. 2. Subjects differ in heights, genders, weights and clothing in our datasets.

TABLE I
FEATURE EXTRACTOR NETWORK IMPLEMENTATION

Feature

Extractor
Input Size Output Size Kernel Stride

Active

Function

layer1 30 × 20 × 4 15× 10 × 8 3× 3 2× 2 ReLU

layer2 15 × 10 × 8 15× 10 × 8 1× 1 1× 1 ReLU

layer3 15 × 10 × 8 8× 5× 32 3× 3 2× 2 ReLU

layer4 8× 5× 32 8× 5× 32 1× 1 1× 1 ReLU

layer5 8× 5× 32 4× 3× 128 3× 3 2× 2 ReLU

layer6 4× 3× 128 4× 3× 128 1× 1 1× 1 ReLU

SEa 4× 3× 128 4× 3× 128 − − −
aSE represents the Squeeze-and-Excitation (SE) block.

TABLE II
GENERATOR NETWORK IMPLEMENTATION

Generator Input Size Output Size Kernel Stride
Active

Function

FCa 4× 3× 128 8× 10 × 128 − − ReLU

layer1 8× 10 × 128 15× 20× 64 1× 1 1× 1 LReLU

layer2 15× 20× 64 15× 20× 64 1× 1 1× 1 LReLU

layer3 15× 20× 64 30× 40× 32 3× 3 1× 1 LReLU

layer4 30× 40× 32 30× 40× 32 3× 3 1× 1 LReLU

layer5 30× 40× 32 60× 80 × 8 3× 3 1× 1 LReLU

layer6 60 × 80 × 8 60× 80 × 8 3× 3 1× 1 LReLU

layer7 60 × 80 × 8 120 × 160 × 1 3× 3 1× 1 LReLU
aFC is the fully connected layer.

TABLE III
DOMAIN DISCRIMINATOR NETWORK IMPLEMENTATION

Domain

Discriminator
Input Size Output Size

Active

Function

layer1 4× 3× 128 1024 LReLU

layer2 1024 1024 LReLU

layer3 1024 128 LReLU

layer4 128 4 Softmax

The Network Time Protocol (NTP) is used to synchronize the

two receivers. We use a camera attached to a receiver to record

video footage. We collect CSI at 150Hz and videos at 30Hz

so every 5 CSI samples at each receiver are synchronized with

one video frame. For more details about the synchronization

method of the video footage and CSI samples, please refer to

our previous work [3], [5].

B. Dataset

We collect 10 hours of data which contain 5,400,000 CSI

samples of each receiver. Note that we collect data on 5

subjects of different heights, genders, weights and clothing in

each scenario and only one subject performs continuous poses

in the perceptual area at a time, as shown in Figure 2. In

order to evaluate the performance of subject-generalization,

we use subject (a) as the target domain and the remaining

four subjects (b-e) as the source domains. Specifically, we use

75% of samples of each subject in the source domain to train

the model, and the remaining 25% of samples in the source

domain as well as 25% of samples in the target domain to

test the performance. In addition, we leverage skeleton images

on synchronized video footage as annotations of constructed

images while we manually generate one-hot vectors as subject

labels for CSI images.

C. Domain-Independent Neural Network

1) Feature Extractor Network: The feature extractor net-

work uses 6 convolutional layers, followed by a SE block

[17] which is adopted to extract high-level features. Table I

illustrates the implementation details.

2) Generator Network: As shown in Table II, a fully

connected layer and 7-layer resize convolutions with nearest

neighbor interpolation operation are used to convert features

into images.

3) Domain Discriminator Network: We utilize 4 fully con-

nected layers to identify domain-related features and perform

domain discrimination. In the first three layers, we use Leaky

Rectified Linear Unit (LReLU) for recognizing domain-related

features better. After the last layer, we adopt the Softmax

to calculate the probability distribution of domains. Table III

illustrates the implementation details.

D. Baseline

Wi-Pose is the state-of-the-art system that can use Wi-Fi

signals to construct fine-grained human pose images of the

subject who moves in the entire perceptual space. In this paper,

we leverage Wi-Pose as our baseline. We note that the training

and test data used by the baseline and our system are the same.

The baseline and our system are different only in the deep

learning model and the training method. More details about

Wi-Pose please refer to our previous work [3], [5].

E. Training Details

Considering the temporal correlation of human poses, we

combine 20 CSI samples which include 5 synchronized samples

and 15 preceding samples into one CSI image, corresponding to

one video frame and domain label. We utilize TensorFlow [18]

to implement the DINN which includes two Adam optimizers.

One optimizes the feature extractor and generator networks with

an initial 0.001 learning rate while another one optimizes the

discriminator network with an initial 0.0001 learning rate. λ

in equation (13) is set to 0 at pre-training stage. The sum of

pre-training and adversarial training epochs are 26. In addition,

we adopt the learning rate decay method which multiplies the

learning rate by 0.95 per 5 epochs.

F. Performance

In this subsection, we evaluate the performance of our system

by comparing with the baseline in both the visible and through-

wall scenarios. Figure 3 illustrates a test example of a new

subject on the baseline and our system in both the visible and

through-wall scenarios. In both scenarios, the baseline performs

poorly in some positions, and our system significantly improves

and constructs fine-grained pose images in these positions.

These demonstrate that our system can construct fine-grained

human pose images of subjects even if their samples do not

undergo any training.

As mentioned above, both constructed images and annota-

tions are grey-scale maps in our system and the baseline. For

quantitatively evaluating the performance, we binarize them

in order to simplify the calculation. We convert the non-zero

pixels into ones and then calculate the Euclidean distance

between constructed images and annotations to measure the

difference. Thereby, according to our previous work [3], [5],

we leverage Percentage of Correct Skeletons (PCS) to evaluate



Fig. 3. The upper part is in the visible scenario and the bottom part is in the through-wall scenario. In each part, the first pipeline shows the new subject’s
images recorded by the camera for visual reference here. The second pipeline shows the new subject’s skeleton images extracted by OpenPose for the ground
truth here. The third and last lines are human pose images constructed by the baseline and our system only using Wi-Fi signals.

the performance. It represents the percentage of Euclidean

distances less than a certain threshold and is defined as:

PCS ◦ θ =
1

S

S
∑

s=1

I
(

‖ psi,j − g
s
i,j ‖≤ θ

)

, (16)

where S is the number of test frames. I is a logical operation

which outputs 1 if True and outputs 0 if False. pi,j and gi,j
represent the value for the (i, j) − th pixel of the constructed

image and corresponding ground truth, respectively, where i =
1, 2, ..., 120 and j = 1, 2, ..., 160. θ refers to the threshold.

According to [3], [5], different thresholds represent different

performance of the constructed images. Specifically, PCS ◦ 25
implies that the human pose is accurate, complete, and high-

contrast and human position is right in the constructed image.

PCS ◦ 30 implies that the human pose is accurate, complete,

lower-contrast and human position is right in the constructed

image. However, PCS ◦ 40 refers to human position is right

but some limbs are a little inaccurate or incomplete or fuzzy in

the constructed image. PCS ◦ 50 represents human position is

right but more limbs are more inaccurate or more incomplete or

fuzzier in the constructed image. We define PCS◦30 as a strict

match which means the whole pose is matched and PCS◦50 as

a loose match which means only the body is matched. Note that

above values are empirical and obtained through experiments.

Table IV and Table V show the performance in the visible

scenario and the through-wall scenario, respectively. Different

letters indicate different subjects, and lowercase and uppercase

letters indicate subjects are tested by the baseline and our

system, respectively. More importantly, a(A) is a new subject

who is used to verify the effectiveness of subject-generalization.

1) Overall Performance: Compared with the baseline, the

average percentages of our system significantly improve about

15% and 37% in the visible scenario and about 14.7% and

35.7% in the through-wall scenario on PCS◦25 and PCS◦30.

These imply that our system can construct more fine-grained

pose images than the baseline in both scenarios. Our system

achieves 66.5% on average PCS ◦ 30 as well as 100% on

average PCS◦50 in the visible scenario and 57.83% on average

PCS ◦ 30 as well as 99.93% on average PCS ◦ 50 in the

through-wall scenario. These illustrate that 66.5% and 57.83%

of the constructed pose images strictly match the ground truth in

the visible scenario and the through-wall scenario, respectively.

Almost all constructed images loosely match the ground truth in

both scenarios. In addition, compared with the visible scenario,

the overall performance slightly decreases in the through-wall

scenario. Because some details are lost when the Wi-Fi signals

pass through the wall.

2) Subject-generalization Performance: In our system,

65.99% and 100% constructed human pose images of the

subject A strictly and loosely match the ground truth in the

visible scenario. And 50.27% and 99.82% constructed human

pose images of the subject A strictly and loosely match the

ground truth in the through-wall scenario. These illustrate that

our system can construct fine-grained pose images of new

subjects in both scenarios, which shows the DINN has high

subject-generalization ability. In the two scenarios, PCS ◦ 25
of the subject A are both slightly lower than other subjects’

in our system. Because there is no information about him in



TABLE IV
RESULTS ON PCS IN THE VISIBLE SCENARIO

PCS ◦ θ (a) (A) (b) (B) (c) (C) (d) (D) (e) (E) Averagea

PCS ◦ 25 3.51% 13.49% 5.62% 23.82% 5.78% 22.59% 6.24% 20.66% 7.95% 25.31% 5.82% 21.17%

PCS ◦ 30 28.65% 65.99% 25.72% 65.45% 27.85% 75.13% 27.10% 57.31% 35.95% 68.62% 29.06% 66.50%

PCS ◦ 40 71.53% 100% 71.38% 100% 77.41% 100% 87.72% 98.44% 73.64% 100% 76.34% 99.69%

PCS ◦ 50 87.25% 100% 90.94% 100% 93.87% 100% 92.98% 100% 90.38% 100% 91.08% 100%

Averageb 39.54 28.87 36.63 28.03 35.67 27.76 37.79 29.21 39.41 27.82 37.80 28.34
aThis is the average PCS ◦ θ. The left and the right columns belong to the baseline and our system, respectively.

bThis is the average Euclidean distance of all test samples belong to a subject or all subjects. The penultimate number and the last number are the average of
all subjects using the baseline and our system, respectively.

TABLE V
RESULTS ON PCS IN THE THROUGH-WALL SCENARIO

PCS ◦ θ (a) (A) (b) (B) (c) (C) (d) (D) (e) (E) Averagea

PCS ◦ 25 4.92% 13.3% 7.69% 24.35% 1.36% 25.78% 1.89% 13.96% 1.78% 14.03% 3.53% 18.28%

PCS ◦ 30 20.77% 50.27% 28.89% 58.55% 22.72% 66.86% 14.91% 50.18% 23.27% 63.31% 22.11% 57.83%

PCS ◦ 40 67.58% 98.18% 68.11% 98.71% 59.81% 99.61% 61.51% 97.0% 63.77% 99.82% 64.15% 98.66%

PCS ◦ 50 74.86% 99.82% 78.80% 100% 70.49% 100% 79.43% 99.82% 81.53% 100% 77.02% 99.93%

Averageb 46.92 30.06 47.46 28.90 54.56 27.93 48.44 30.17 52.70 28.83 50.01 29.18
aThis is the average PCS ◦ θ. The left and the right columns belong to the baseline and our system, respectively.

bThis is the average Euclidean distance of all test samples belong to a subject or all subjects. The penultimate number and the last number are the average of
all subjects using the baseline and our system, respectively.

training samples so that it is difficult to construct accurate,

complete and high-contrast human pose images of him.

VI. CONCLUSION

In this paper, we design the DINN to extract subject-

independent features and construct fine-grained human pose

images. We also propose a novel training method to train the

DINN. It includes two training stages and has no re-training

overhead comparing with the domain-adversarial approach.

Then, we build a prototype system which can construct fine-

grained human pose images of new subjects with commodity

Wi-Fi in both the visible and through-wall scenarios. Exper-

imental results show that comparing with the baseline, the

average performance of our system increases 37% and 35.7%

on the strict match in the visible scenario and the through-wall

scenario, respectively. 65.99% (50.27%) and 100% (99.82%)

human pose images of the new subject constructed by our

system strictly and loosely match the ground truth in the visible

(through-wall) scenario. These demonstrate the effectiveness

and subject-generalization ability of our model in both scenar-

ios. In the future, we will prove that our model can extract

environment-independent features and construct human pose

images of new subjects in new environments.
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