
ar
X

iv
:2

01
1.

03
32

5v
1 

 [
ee

ss
.S

P]
  5

 N
ov

 2
02

0

DNN-based Detectors for Massive MIMO Systems

with Low-Resolution ADCs

Ly V. Nguyen∗, Duy H. N. Nguyen∗,†, and A. Lee Swindlehurst‡

∗Computational Science Research Center, San Diego State University, CA, USA
†Department of Electrical and Computer Engineering, San Diego State University, CA, USA

‡Department of Electrical Engineering and Computer Science, University of California, Irvine, CA, USA.

Email: vnguyen6@sdsu.edu, duy.nguyen@sdsu.edu, swindle@uci.edu

Abstract—Low-resolution analog-to-digital converters (ADCs)
have been considered as a practical and promising solution for
reducing cost and power consumption in massive Multiple-Input-
Multiple-Output (MIMO) systems. Unfortunately, low-resolution
ADCs significantly distort the received signals, and thus make
data detection much more challenging. In this paper, we develop
a new deep neural network (DNN) framework for efficient and
low-complexity data detection in low-resolution massive MIMO
systems. Based on reformulated maximum likelihood detection
problems, we propose two model-driven DNN-based detectors,
namely OBMNet and FBMNet, for one-bit and few-bit massive
MIMO systems, respectively. The proposed OBMNet and FBM-
Net detectors have unique and simple structures designed for low-
resolution MIMO receivers and thus can be efficiently trained
and implemented. Numerical results also show that OBMNet and
FBMNet significantly outperform existing detection methods.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is con-

sidered to be a disruptive technology for 5G-and-beyond

networks [1]–[3]. Massive MIMO is capable of boosting the

throughput and energy efficiency by several orders of magni-

tude over conventional MIMO systems [4], [5]. A massive

MIMO system is equipped with a large number (tens to

hundreds) of antennas at the base station and thus requires

a large number of radio-frequency (RF) chains, resulting in

significant increases in the power consumption and hardware

complexity. A practical and promising solution for reducing

the power consumption and hardware complexity of such

systems is to use low-resolution analog-to-digital converters

(ADCs). This is due to the simple structure and low-power

consumption of low-resolution ADCs. For example, the sim-

plest architecture involving one-bit ADCs requires only one

comparator and does not require an automatic gain control

(AGC). Unfortunately, low-resolution ADCs make the system

severely nonlinear since the received signals are significantly

distorted. The data detection task with low-resolution ADCs

therefore becomes even much more challenging compared to

conventional full-resolution ADC systems.

There have been a lot of interest and numerous efforts

in addressing the data detection problem in massive MIMO

systems with low-resolution ADCs, e.g., [6]–[15]. Maximum-

likelihood (ML) detectors for one-bit and few-bit ADCs were

derived in [6] and [7], respectively. The authors of [6] also

proposed a so-called near-ML (nML) detection method for

large-scale one-bit systems where ML detection is impractical.

The ML and nML methods are however non-robust at high

signal-to-noise ratios (SNRs) when the channel state informa-

tion (CSI) is not perfectly known. A one-bit sphere decoding

(OSD) technique was proposed in [8]. However, the OSD

technique requires a preprocessing stage whose computational

complexity is exponentially proportional to both the number

of receive and transmit antennas. The exponential computa-

tional complexity of OSD makes it difficult to implement in

large-scale MIMO systems. Generalized approximate message

passing (GAMP) and Bayes inference were exploited in [9],

but the resulting method is sophisticated and expensive to

implement. Different linear receivers based on the Bussgang

decomposition were proposed in [10] and [11] for one-

bit and few-bit ADCs, respectively. These linear receivers

have lower computational complexity, but often suffer from

high detection-error floors, especially with high-dimensional

constellations such as 16-QAM. Several other data detection

approaches have also been proposed in [12]–[15], but they are

only applicable in systems where either a cyclic redundancy

check (CRC) [12]–[14] or an error correcting code such as a

low-density parity-check (LDPC) code [15] is available.

Recently, machine learning for MIMO detection has also

gained a lot of attention and interest among engineers and

researchers. While the deep learning-based detectors in [16]–

[19] are designed for MIMO systems with full-resolution

ADCs, the learning-based detectors in [20]–[22] are dedicated

to systems with low-resolution ADCs and are “blind” in the

sense that CSI is not required. However, these blind detection

methods are restricted to MIMO systems with a small number

of transmit antennas and only low-dimensional constellations.

More recently, support vector machines (SVM) were exploited

for one-bit MIMO data detection and were shown to achieve

better performance than the linear and learning-based receivers

[23].

Contributions: Motivated by the above discussion, in this

paper, we propose novel, efficient, and low-complexity de-

tectors based on deep neural networks (DNNs) for massive

MIMO systems with low-resolution ADCs. The proposed

DNN-based detectors are also applicable to large-scale systems

without the need for CRC or error correcting codes. We first

reformulate the ML detection problems by approximating the

cumulative distribution function (cdf) of a Gaussian random
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Fig. 1: Block diagram of a massive MIMO system with K single-
antenna users and an N -antenna base station equipped with 2N low-
resolution ADCs.

variable with a Sigmoid activation function, which is a well-

known and widely-used activation function in machine learn-

ing. Numerical results confirm that the optimal solutions to

the reformulated ML detection problems achieve performance

that is nearly identical to the original ML detection problems.

Based on the reformulated ML detection problems, we then

propose model-driven DNN-based detectors, namely OBMNet

and FBMNet for one-bit and few-bit massive MIMO systems,

respectively. The proposed OBMNet and FBMNet detectors

have simple structures that can be implemented in an efficient

manner. While each layer of OBMNet has two weight matrices

and no bias vector, each layer of FBMNet has two weight

matrices and two bias vectors. These weight matrices and

bias vectors are adaptive to the channel and the received

signal, respectively. In other words, they do not need to be

trained and thus result in a much easier training process

with much fewer trainable parameters. Once trained, both

FMBNet and OBMNet can perform data detection with any

new channel realization. Numerical results also show that

the proposed OBMNet and FBMNet detectors significantly

outperform existing detection methods.

II. SYSTEM MODEL

We consider an uplink massive MIMO system as illustrated

in Fig. 1 with K single-antenna users and an N -antenna

base station, where it is assumed that N ≥ K . Let x̄ =
[x̄1, x̄2, . . . , x̄K ]T ∈ CK denote the transmitted signal vector,

where x̄k is the signal transmitted from the kth user under the

power constraint E[|x̄k|2] = 1. The signal x̄k is drawn from

a constellation M̄, e.g, QPSK or 16-QAM. Let H̄ ∈ CN×K

denote the channel, which is assumed to be block flat fading

and perfectly known. Let r̄ = [r̄1, r̄2, . . . , r̄N ]T ∈ C
N be the

unquantized received signal vector at the base station, which

is given by

r̄ = H̄x̄+ z̄, (1)

where z̄ = [z̄1, z̄2, . . . , z̄N ]T ∈ C
N is a noise vector whose

elements are assumed to be independent and identically dis-

tributed (i.i.d.) as CN (0, N0), and N0 is the noise power. Each

analog received signal is then quantized by a pair of b-bit

ADCs. Hence, we have the received signal

ȳ = Qb(r̄) = Qb (ℜ{r̄}) + jQb (ℑ{r̄}) . (2)
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Fig. 2: Overall structure of the proposed OBMNet and FBMNet.

The operator Qb(·) is applied separately to every element of its

matrix or vector argument. The SNR is defined as ρ = 1/N0.

The considered system employs an ADC that performs

b-bit uniform scalar quantization. The b-bit ADC model is

characterized by a set of 2b − 1 thresholds denoted as

{τ1, . . . , τ2b−1}. Without loss of generality, we can assume

−∞ = τ0 < τ1 < . . . < τ2b−1 < τ2b = ∞. Let ∆ be the step

size, so the thresholds of the uniform quantizer are given by

τl = (−2b−1 + l)∆, for l ∈ L = {1, . . . , 2b − 1}. (3)

The quantization output is defined as

Qb(r) =

{

τl − ∆
2 if r ∈ (τl−1, τl] with l ∈ L

(2b − 1)∆2 if r ∈ (τ2b−1, τ2b ].
(4)

III. PROPOSED DNN-BASED DETECTORS

A. FBMNet Detector

In this section, we propose a DNN-based detector referred

to as FBMNet for few-bit (b > 1) massive MIMO systems.

The extreme case of 1-bit ADCs will be considered later, and

special DNN-based detector for this case, referred to as OBM-

Net, will be proposed. For convenience in later derivations, we

convert (1) and (2) into the real domain as follows:

y = Qb (Hx+ z) , (5)

where

y =

[
ℜ{ȳ}
ℑ{ȳ}

]

, x =

[
ℜ{x̄}
ℑ{x̄}

]

, z =

[
ℜ{z̄}
ℑ{z̄}

]

, and

H =

[
ℜ{H̄} −ℑ{H̄}
ℑ{H̄} ℜ{H̄}

]

.

Note that y ∈ R2N , x ∈ R2K , z ∈ R2N , and H ∈ R2N×2K .

We also denote y = [y1, . . . , y2N ]T and H = [h1, . . . ,h2N ]T .

Let tupi =
√
2ρ(qupi − hT

i x) and tlowi =
√
2ρ(qlowi − hT

i x),
where

qupi =

{

yi +
∆
2 if yi < τ2b−1

∞ otherwise,

qlowi =

{

yi − ∆
2 if yi > τ1

−∞ otherwise.
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Fig. 3: Specific structure of layer ℓ of FBMNet. The weight matrices and the bias vectors are defined by the channel and the received signal,
respectively.

Hence, qupi and qlowi are the upper and lower quantization

thresholds of the bin to which yi belongs. The likelihood

function of x given the received signal y can be written as [7]

P(x) =

2N∏

i=1

(

Φ (tupi )− Φ
(
tlowi

) )

(6)

where Φ(t) =
∫ t

−∞
1√
2π

e−
τ
2

2 dτ is the cdf of the standard

Gaussian random variable. The ML detection problem based

on the log-likelihood function is defined as follows:

x̂ML = argmax
x̄∈M̄K

2N∑

i=1

log
[
Φ (tupi )− Φ

(
tlowi

)]
. (7)

We note that an optimal solution for ML detection requires

an exhaustive search over M̄K . In addition, there is no closed-

form expression for Φ(·), which complicates the evaluation in

(7). Thus, we first exploit a result in [24], which shows that the

function Φ(t) can be accurately approximated by the Sigmoid

function σ(t) = 1/(1 + e−t). More specifically,

Φ(t) ≈ σ(ct) =
1

1 + e−ct
, (8)

where c = 1.702 is a constant. It was shown in [24] that

|Φ(t) − σ(ct)| ≤ 0.0095, ∀t ∈ R. Then an approximate

version of the log-likelihood function of P(x) can be written

as follows:

P̃(x) ≈
2N∑

i=1

log

[
1

1 + e−ct
up

i

− 1

1 + e−ctlow
i

]

(9)

=

2N∑

i=1

[

log
(

e−ctlow
i − e−ct

up

i

)

−

log
(

1 + e−ct
up

i

)

− log
(

1 + e−ctlow
i

) ]

. (10)

The reformulated ML detection problem is thus

x̂ML = argmax
x̄∈M̄K

P̃(x). (11)

Note that an optimal solution to problem (11) still requires

an exhaustive search over M̄K . Thus, we relax the constraint

x̄ ∈ M̄K in (11) to x̄ ∈ CK and solve the following

optimization problem:

maximize
x̄∈CK

P̃(x). (12)

The gradient of P̃(x) is

∇P(x) =

2N∑

i=1

c
√

2ρhi

(

1− 1

1 + ect
up

i

− 1

1 + ect
low
i

)

(13)

= c
√

2ρHT
[

1− σ
(

c
√

2ρ (Hx− qup)
)

−

σ
(

c
√

2ρ
(
Hx− qlow

)) ]

, (14)

where qup = [qup1 , . . . , qup2N ]T and qlow = [qlow1 , . . . , qlow2N ]T .

Thus, an iterative gradient decent method for solving (12) can

be written as

x(ℓ) = x(ℓ−1) + αℓ∇P(x(ℓ−1)), (15)

where αℓ is the step size of layer ℓ.
In order to optimize the step sizes {αℓ}, we use the deep

unfolding technique [25] to unfold each iteration in (15) as

a layer of a deep neural network. The overall structure of

the proposed FBMNet is illustrated in Fig. 2, where there

are L layers and each layer takes a vector of 2K elements

as the input and generates an output vector of the same

size. The specific structure for each layer ℓ of FBMNet is

illustrated in Fig. 3. It can be seen that the proposed layer

structure in Fig. 3 is different from that of conventional DNNs,

since it exploits the specific structure of the reformulated ML

detection problem. In particular, each layer of a conventional
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Fig. 4: Specific structure of layer ℓ of OBMNet. The weight matrices are defined by the channel and the received signal. There is no bias
vector.

DNN often contains a weight matrix and a bias vector to be

trained. However, due to the structure of the reformulated ML

detection problem, each layer of the proposed FBMNet has

two weight matrices H and HT , and two bias vectors qup

and qlow. These weight matrices and bias vectors are defined

by the channel and the received signal, respectively. Thus, they

do not need to be trained. The trainable parameters in FBMNet

are the L step sizes {α1, α2, . . . , αL} and a parameter β,

which acts as a scaling factor for the Sigmoid function. It

should be noted that the coefficient c
√
2ρ is omitted in the

proposed layer structure of FBMNet since it is a constant

through all layers of the network. The trainable parameters

take over the role of this coefficient. Our experiments have

shown that the omission of c
√
2ρ not only helps improve the

detection performance but also helps stabilize the convergence

during training.

Since H ∈ R
2N×2K , the learning process for each layer

can be interpreted as first up-converting the signal x(ℓ−1) from

dimension 2K to dimension 2N using the weight matrix H to

obtain s(ℓ−1) = Hx(ℓ−1), then applying nonlinear activation

functions before down-converting the signal back to dimension

2K using the weight matrix HT . The activation function in

FBMNet is the Sigmoid function, which is also widely used

in conventional DNNs. Note that the use of the Sigmoid

activation function in FBMNet is not arbitrary but results from

the use of the approximation in (8) and the structure of the

reformulated ML detection problem. The objective function

for training FBMNet is ‖x(L) − x‖2, where x is the target

signal, i.e., the transmitted signal.

B. OBMNet Detector

In this section, we propose OBMNet for one-bit massive

MIMO systems. For the special case of 1-bit ADCs, the system

model can be written as

y = sign(Hx+ z) (16)

where sign(·) represents the 1-bit ADC with sign(r) = +1 if

r ≥ 0 and sign(r) = −1 if r < 0. The ML detection problem

of (16) is given by [6]

x̂ML = argmax
x̄∈M̄K

2N∑

i=1

logΦ(
√

2ρyih
T
i x), (17)

where hT
i is the i-th row of the channel matrix H. Let G =

[g1, . . . ,g2N ]T = diag(y1, . . . , y2N)H and using the same

approximation in (8), the ML detection problem (17) can be

reformulated as

x̂ML = argmin
x̄∈M̄K

2N∑

i=1

log
(

1 + e−c
√
2ρgT

i
x

)

︸ ︷︷ ︸

P̃1bit(x)

. (18)

It is interesting to note that log(1 + et) is referred to as the

SoftPlus activation function in the machine learning literature.

Hence, the reformulated ML detection problem in (18) can be

interpreted as a minimization problem whose objective is a

sum of SoftPlus activation functions.

The gradient of P̃1bit(x) is

∇P̃1bit(x) =

2N∑

i=1

−c
√
2ρgi

1 + ec
√
2ρ g

T

i
x

= −c
√

2ρGTσ
(
− c

√

2ρGx
)
. (19)

An iterative gradient decent method for solving (18) can also

be written as

x(ℓ) = x(ℓ−1) − αℓ∇P1bit(x
(ℓ−1)). (20)

Our proposed OBMNet approach for 1-bit massive MIMO

systems uses the same unfolding approach as FBMNet. The

overall structure of OBMNet is similar to that of FBMNet as

illustrated in Fig. 2. The specific layer structure of OBMNet

given in Fig. 4 is however simpler than the layer structure

of FBMNet. In particular, each layer of OBMNet contains

two adaptive weight matrices, but no bias vectors. Information



about the received signal is integrated directly into the weight

matrices. The number of Sigmoid functions in each layer of

OBMNet is only half of that in each layer of FBMNet. The

set of trainable parameters in OBMNet is similar to that of

FBMNet, i.e., L step sizes {αℓ} and a scaling parameter β.

The objective function for training OBMNet is ‖x̃−x‖2, where

x̃ =

√
K

‖x(L)‖x
(L),

and x is the target signal. Unlike the objective function in

FBMNet, the objective function of OBMNet involves the

normalization of the output of the last layer. Our simulations

have shown that this normalization step significantly improves

the performance of OBMNet.

C. Computational Complexity Analysis

The number of real multiplications for each layer of OBM-

Net and FBMNet are 8KN+2N+2K and 8KN+4N+2K ,

respectively. Therefore, the computational complexity of both

OBMNet and FBMNet is of order O(KNL), and thus scales

linearly with the number of users, the number of receive

antennas, and the number of network layers.

IV. NUMERICAL RESULTS

This section presents numerical results to show the perfor-

mance of the proposed OBMNet and FBMNet detectors. The

channel elements are assumed to be i.i.d. and drawn from

the normal distribution CN (0, 1). The training process for

both OBMNet and FBMNet is first accomplished offline. A

training sample can be obtained by randomly generating a

channel matrix H, a transmitted signal x, and a noise vector

z. The channel matrix H and the received signal y are used

to define the weight matrices in OBMNet, and the weight

matrices and the bias vectors in FBMNet. The transmitted

signal x is used as the target. After the offline training process,

the trained step sizes {αℓ} and the trained scaling parameter

β are used for the online detection phase. Similar to DetNet

for unquantized MIMO detection [16], the proposed OBMNet

and FBMNet networks do not need to be retrained for a new

channel realization H. We use TensorFlow [26] and the Adam

optimizer [27] with a learning rate of 10−2. The size of each

training batch is set to 1000. The input signal is set to x0 = 0.

First, we compare the performance of the original ML

detection approaches (7) and (17) with the reformulated ML

detection approaches (11) and (18). The BER performance is

calculated via an exhaustive search for the optimal solutions

and is shown in Fig. 5. It can be clearly seen that the

reformulated ML detection problems attain nearly identical

performance to the original ML detection problems. It is also

observed that there is a significant performance improvement

as the ADC resolution increases from 1-bit to 2-bits.

Fig. 6 provides a performance comparison between the

proposed OBMNet detector and the existing detection methods

BMMSE and BZF from [10], and the SVM-based method

in [23]. The performance of OSD is comparable to that of the

SVM-based approach but with a much higher computational
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Fig. 5: Performance comparison between the original ML and the
reformulated ML detection problems.
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Fig. 6: Performance comparison between the proposed OBMNet
detector and existing methods. The number of layers L in OBMNet is
set to be 10 and 15 for the case of QPSK and 16-QAM, respectively.

complexity. Since the SVM-based method also outperforms

other prior methods, we use it as a benchmark for OBMNet.

The results in Fig. 6 show that OBMNet and the SVM-based

method outperform the Bussgang-based linear receivers. At

high SNRs, the BER floor of OBMNet is slightly lower than

that of the SVM-based method. The complexity of the SVM-

based method is O(KNκ(N)), where κ(N) is empirically

reported to be a super-linear function of N [28]. Hence,

OBMNet has lower complexity compared to the SVM-based

method.

Fig. 7 and Fig. 8 compare the proposed FBMNet detector

with a recent detection method referred to as BWZF [11].

Since BWZF is reported to outperform other existing meth-

ods [11], we use BWZF as a comparative benchmark for

FBMNet. The results in Fig. 7 and Fig. 8 show that FBM-

Net significantly outperforms BWZF, especially with a high-

dimensional constellation like 16-QAM.
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(a) b = 2 bits, K = 8, L = 10.
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(b) b = 3 bits, K = 16, L = 18.

Fig. 7: Performance comparison between BWZF [11] and the pro-
posed FBMNet with QPSK modulation and N = 32.
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(a) b = 2 bits, K = 16, L = 8.
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(b) b = 3 bits, K = 32, L = 15.

Fig. 8: Performance comparison between BWZF [11] and the pro-
posed FBMNet with 16-QAM modulation and N = 128.

V. CONCLUSION

In this paper, we have proposed the novel, efficient, and

low-complexity DNN-based detectors OBMNet and FBMNet

for one-bit and few-bit massive MIMO systems, respectively.

These proposed DNN-based detectors are model-driven and

based on reformulated ML detection problems. The layered

structure of OBMNet and FBMNet is simple, unique, and

adaptive to the CSI and the received signals. Numerical results

show that the proposed networks significantly outperform

existing detection approaches.
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