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Abstract—Federated learning (FL) has prevailed as an efficient
and privacy-preserved scheme for distributed learning. In this
work, we mainly focus on the optimization of computation and
communication in FL from a view of pruning. By adopting
layer-wise pruning in local training and federated updating, we
formulate an explicit FL pruning framework, FedLP (Federated
Layer-wise Pruning), which is model-agnostic and universal for
different types of deep learning models. Two specific schemes of
FedLP are designed for scenarios with homogeneous local models
and heterogeneous ones. Both theoretical and experimental eval-
uations are developed to verify that FedLP relieves the system
bottlenecks of communication and computation with marginal
performance decay. To the best of our knowledge, FedLP is the
first framework that formally introduces the layer-wise pruning
into FL. Within the scope of federated learning, more variants
and combinations can be further designed based on FedLP.

Index Terms—federated learning, model pruning, layer-wise
aggregation, communication-computation efficiency.

I. INTRODUCTION

A. Backgrounds

By locally training the distributed models and periodically
updating the global model, federated learning (FL), first con-
ceptualized in [1], provides an explicit paradigm for coop-
erative learning without sharing the privacy data. Instead of
transmitting the data or intermediate outputs in the networks,
only the model parameters are interacted, which significantly
improves the communication efficiency.

With the continuous growth of the communication systems
and the intelligent devices, it is possible to adopt FL schemes
in numerous promising applications such as mobile edge
computing (MEC), artificial intelligence of things (AIoT), and
autonomous driving [2]. Since leveraging AI in networks is
envisioned as a core characteristic of 6G systems, FL has
shown its powerful potentials on combinations with deep
learning models [3], [4]. On the one hand, FL naturally fits
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the structure of multi-user networks with distributed data and
can be easily deployed for machine learning tasks [5]. On
the other hand, FL schemes are able to achieve the intelligent
collaboration for multiagent systems [6].

Though FL has received rapid developments in terms of
methods, models and applications, such distributed learning
scheme still suffers from challenges in several aspects. This
work addresses two key issues, the heterogeneity and the
communication-computation efficiency. Firstly, as summarized
in [7], the heterogeneity of FL systems mainly comes from
local data and the client devices. The heterogeneous local
data, also referred to as non-iid data, occurs commonly in real-
world distributed scenarios and usually cause the degradation
in terms of model performance, convergence and stability.
Meanwhile, due to the diversity in computation platforms,
communication capabilities and the battery level of the de-
vices, clients may meet different constraints in model scales
and local processing. For example, some weak clients are
not able to support sufficient local training, which leads to
bad model performance and time delay for synchronized
aggregation. In contrast, some strong clients may not fully
utilize its devices’ capability to get better service quality,
leading to unfairness of the whole system. Thus, how to design
heterogeneous models suitable for various clients is still an
open problem.

Besides, communication is also a critical bottleneck for FL
networks, especially those with massive number of clients.
Since communication and computation are tightly coupled
in FL systems, the interplay of these progresses impacts the
model quality as well as the system efficiency. Therefore, in
recent studies of FL, more attention is paid to optimizing FL
schemes through communication compression and computing
reduction [8].

B. Motivations & Related Works

As model pruning has been verified to be an efficient
approach to reduce the model scales with the cost of marginal
loss in accuracy, related technique has also been employed
in the context of FL. In this work, we mainly focus on the
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pruning mechanism in FL to relieve the communication and
computation restrictions.

In the literature, the combination of model compression
and FL has already been investigated. Aiming to reduce the
client resource requirements in FL systems, Caldas et al.
proposed Federated Dropout in [9], where the global model
is compressed into sub-models for communication. Such
schemes were extended in [10], where the authors proposed
the dataset-aware dynamic pruning approach to accelerate the
inference on edge devices. Jiang et al. in [11] and Kumar
et al. in [12] formulated an adaptive pruning strategies based
on gradient information and neuron importance, respectively.
An efficient private update scheme of federated sub-model
learning was also discussed in [13]. Further, authors of [14],
[15] theoretically concerned about the pruning configurations
and the communication resource allocation in wireless FL.

However, negative findings in a critical paper [16] argued
that dropout-based FL schemes may perform worse than
simple ensemble methods. Actually, such pruning schemes in
FL are borrowed from dropout in single machine learning.
Locally training sub-models and aggregating them to the
corresponding parts of the global model lacks explainability.
The authors in [17] also pointed out that the order of the
parameters cannot be neglected in pruned aggregation. Be-
sides, most existing dropout-based schemes in FL employed
the intra-layer pruning, which results in increment of system
complexity, e.g., different operations for different functional
layers. Chen et al. in [18] introduced the block dropout for
large-scale neural network training. Inspired by the layer-wise
aggregation in [19], we first propose to explore layer-wise
pruning mechanism to relieve above quagmires in this work.

C. Contributions & Paper Organization

The main contributions of this work can be summarized as
follows:
• We first put forward a universal FL pruning framework,

FedLP1, employing the layer-wise pruning mechanism.
FedLP can relieve restrictions of communication as well
as computation in FL systems, and also potentially pre-
vents model attacks in some degrees.

• We sketch two basic pruning schemes and the theoretical
principle of FedLP for both homogeneous and heteroge-
neous cases. In particular, the heterogeneous scheme fits
the scenarios where the clients vary from device types
and computation capabilities, and thus, the local models
shall be set adaptively.

• We develop experiments to evaluate the communication-
computation efficiency of FedLP1. The outcomes suggest
that such layer-wise pruning mechanism significantly re-
duces the communication loads and computational com-
plexity with controllable performance loss.

The remaining of this article is organized as follows.
In Section II we introduce the preliminaries of this work
and illustrate how the basic idea of layer-wise pruning is

1The codes in this work are available at https://github.com/Zhuzzq/FedLP

formulated through a simple experiment. In Section III, we
present two typical schemes of FedLP for homogeneous and
heterogeneous scenarios. The corresponding algorithms and
a theoretical principle will also be developed. The detailed
experimental results and more discussions are presented in
Section IV. Finally, in Section V, we conclude this work and
point out several potential research directions.

II. PRELIMINARIES AND LAYER-WISE PRUNING

In this section, we first briefly introduce the preliminaries
of this work. Then, we illustrate the key idea of layer-wise
pruning, which inspires us to sketch FedLP framework.

A. Federated Learning

Recapping a classical horizontal federated learning (HFL)
system, there exists N distributed clients with their own local
datasets, {D1, · · · ,DN}, and local models, {θ1, · · · ,θN}. For
privacy preserving and communication efficiency, FL carries
out procedures of local training and periodic model aggre-
gation. A federated period processes as follows: 1) Clients
train local models with local data; 2) Parameter server collects
local models uploaded by K clients and aggregates them as
the global model θ̄; 3) Clients download the updated global
model for further training.

As for federated updating, at each global epoch t, HFL
selects a set of participators with K clients as Pt, and proceeds
the parameter aggregation:

θ̄t ←
∑
k∈Pt

ωk∑
m∈Pt

ωm
θk,t, (1)

where {ωk} is the aggregation weights and θk,t is the local
model of client k after the local training in t-th global epoch.
In particular, it reduces to the most popular scheme, FedAvg,
when the weights are set as ωk = |Dk|∑

|Dm| .

B. A Simple Test and Layer-wise Pruning

To further optimize the communication and computation
progresses, pruning is a simple but efficient method. However,
as mentioned above, existing pruning methods in FL are
migrated from the traditional machine learning fields. Namely,
the connections between neurons in MLP (multi-layer percep-
tron) or the filters in CNN (convolutional neural network) are
dropped in order to reduce the model scales for training locally
or the parameter quantities for transmitting. As shown in the
left of Fig. 1(a), we rethink such pruning mechanism as a
vertical cut since some inner-layer neurons are detached and
the intermediate features of middle layers might be down-
scaled. Then, it is natural to consider horizontal scheme,
which conducts a layer-wise cut. In single machine learning,
detaching a whole layer leads to a completely different model.
Thus, such schemes are not termed as a pruning technique.
Nevertheless, within the context of FL, clients shall also
horizontally cut their model and contribute to the global model
together, as shown in the right of Fig. 1(a). Briefly, vertical
cut keeps all layers and drops some neurons in each layer,
while horizontal cut drops some layers and keeps all neurons
for preserved layers.

https://github.com/Zhuzzq/FedLP


𝑥

ො𝑦

𝑥

ො𝑦

Vertical Cut Horizontal Cut
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(b) Global model performance.

Fig. 1. A simple comparison for vertical/horizontal pruning in FL.

Inspired by such intuition, we develop a simple experiment
to check the performance of horizontal cut. The experiment is
implemented on a FL system with 100 clients, 0.5 participation
rate and non-i.i.d. data divided from Fashion-MNIST dataset.
For better model performance, we only consider the pruned
aggregation, which means that clients train the full model
locally and only upload the pruned model. For vertical cut,
the parameters within every layer is uniformly divided into
2/5 partitions and each client only upload one partition for
model aggregation. Same for horizontal cut, the full whole
layers are splitted into 2/5 partitions and each client upload
one partitions. The comparison results are presented in Fig.
1(b). One can find that for same partition count, horizontal cut
reaps higher accuracy as well as better stability. Especially, the
vertical cut with 5 partition seems not to converge after quite
more global epochs.

Based on the above illustration, we deem that the horizontal
cut strategies in FL have advantages over the vertical cut.
Therefore, we further extend such schemes to layer-wise prun-
ing mechanism and formulate the compressed FL framework,
named as FedLP. Apart from the possible outperform beyond
traditional pruning mechanism, layer-wise pruning is easier
to be applied to different models. For example, clients do
not have to figure out whether the model consists of fully-
connected (FC) layers or convolutional (Conv) layers before
pruning. This is because the whole layer is treated as the
smallest pruning unit and the inner-layer structure can be
neglected. Thus, we also regard the layer-wise pruning as a
model-agnostic mechanism.

III. FEDLP: FRAMEWORKS AND ALGORITHMS

In this section, we will formally propose the basic frame-
work of FedLP. Then, two specific schemes and their cor-
responding algorithms for homogeneous and heterogeneous
models will be designed respectively.

The key idea of FedLP is that the layer-wise pruning
mechanism is adopted in the phases of local training and model
aggregation. After finishing the local training of every global
epoch: 1) Each client only uploads some layers to parameter
server; 2) The parameter server aggregates the pruned sub-
models and obtains the updated global model; 3) Clients
download either the corresponding sub-models or full models
to update local models. More specifically, we rewrite a full
model θ with L layers as: θ :=

[
θ1,θ2, · · · ,θL

]
, where

θl represents the parameters of l-th layer. Assume that each
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(b) Heterogeneity scheme.
Fig. 2. Two typical FedLP schemes based on different settings of local model.
The inactive layers (in gray) are removed from the sub-models for uploading.
client k upload layers of index in Lk after pruning. The pruned
model of each client can be represented by:

θ̃k =
[
θlk

]
, l ∈ Lk. (2)

Under FedLP aggregation, each layer is operated indepen-
dently. Let the indicator function 1lk ∈ {0, 1} denotes whether
layer l is included in the pruned local model of client k. With
the pruning information, the layer-wise aggregation rule shall
be modified as:

θ̄
l
t ←

∑
k∈Pt

1
l
k · ωk∑

m∈Pt
1lm · ωm

θlk,t. (3)

Furthermore, we naturally consider the details of the im-
plementation with the homogeneous clients and the hetero-
geneous clients. The corresponding two FedLP schemes are
displayed in Fig. 2.

A. Homogeneity scenario

All clients possess the full global model, which is also a
basic assumption in traditional FL. As shown in Fig. 2(a),
each client trains its local model according to local settings.
Before uploading the parameters, clients carry out a layer-wise
pruning to form the models for aggregation. As presented in
Algorithm 1, we formulate a probabilistic rule for homogeneity
FedLP, where layer l of client k contributes to aggregation
with probability plk, termed as layer-preserving-rate (LPR).
Before uploading, each client forms the layer-wise pruned
model through the layer preserving indicators

{
ζlk
}

, which
is a binary variable following Bernoulli(plk), i.e.,

ζlk =

{
1 with probability plk,

0 with probability 1− plk.
(4)

With all pruned local models, parameter server carries out the
layer-wise pruned aggregation for each layer according to (3)
and obtains the updated global model θ̄t. While parameter
download, clients receive the full global model and update
their local models. Besides, guaranteed by Law of large
numbers, all layers contribute to the aggregation with the
proportion {plk}.

B. Heterogeneity scenario

Clients train local models of different scales, which is more
practical in real-world applications and extends the original
FL. For example, in some scenarios, clients may include the



Algorithm 1 FedLP For homogeneous model setting.

Initialization: local models
{
θk,0

}
, LPRs

{
plk
}

, system con-
figures, etc.

1: for t← 1 to max epoch do
2: Select K clients as participator set, Pt;
3: for client k in Pt, parallelly do . participator side
4: Update θk,t ← Local Train(θk,t−1;Dk);
5: Generate the indicator variables:

{
ζlk
}
∼
{
plk
}

;
6: Form the pruned local model θ̃k,t through

{
ζlk
}

;
7: Upload θ̃k,t to parameter server;
8: end for
9: Aggregate each layer θ̄lt by (3); . server side

10: Update each local model: θk,t ← θ̄t; . client side
11: end for
Output: global model: θ̄t.

mobile devices which has more restrictions on the computation
capability, communication bandwidth, energy consumption,
etc. Thus, both the local training and the uploading traffic
shall be adaptively optimized. Model heterogeneity is always
acknowledged as a major challenge in FL because it is hard
to design aggregation strategies for various local models.
Nevertheless, by adopting the layer-wise pruning mechanism,
we can easily build the FedLP schemes for heterogeneous
cases. As shown in Fig. 2(b), clients train sub-models with
part of layers and upload them for aggregation. We measure
the model complexity of client k using the layer count (LC),
Lk, which can be determined by the device capability. The
local model assigned to client k consists of first Lk layers. To
match the data dimensions, the clients with pruned models
personalize θOk as their last output layers (in gray). The
pruning assignment rule can be formulated as:

θ̃k =


[
θ1
k, · · · ,θ

Lk

k ,θOk

]
if Lk < L,[

θ1
k, · · · ,θ

L
k

]
if Lk = L.

(5)

Then we develop the FedLP algorithm for heterogeneous
scenarios as Algorithm 2. Note that the personalized layers,{
θOk

}
, if exists, are only trained locally and will neither be

uploaded for aggregation nor updated by downloaded model.

C. Theoretical Result

Due to the page limitation, the detailed theoretical analysis
on convergence are skipped and will be presented in our future
works. Here, we only give a proposition to show the impact
on global gradient caused by FedLP.

Proposition 1. Assume that local training is independent with
pruning operations. In fairness case where ωk ≡ 1/K and
plk ≡ p for all k = 1, · · · ,K, FedLP gets (1−p)K convergence
rate decay compared to non-pruned FL.

Proof. Let {glk} denote the accumulated local gradients of
{θlk} after local training. We use ζlk in (4) to represent the
participation indicator of θlk. By (3), the global aggregated
gradient of l-th layer is ĝl =

∑
k

ζlk∑
m ζlm

glk. The aggregated

Algorithm 2 FedLP For heterogeneous model setting.

Initialization: model LCs
{
Lk
}

, system configures, etc.
1: for each client k ← 1 to N do . pruning initialization
2: Assign local model θ̃k,0 ←

[
θ1
k,0, · · · ,θ

Lk

k,0,
(
θOk,0

)]
;

3: end for
4: for t← 1 to max epoch do
5: Select K clients as participator set, Pt;
6: for client k in Pt, parallelly do . participator side
7: Update θ̃k,t ← Local Train(θ̃k,t−1;Dk);
8: Upload θ̃k,t[1 : Lk] to parameter server;
9: end for

10: Aggregate each layer θ̄lt by (3); . server side
11: Update each local model: θk,t ← θ̄t; . client side
12: end for
Output: global model: θ̄t.

gradient of non-pruned FL is ḡl = 1
K

∑
k g

l
k. Then the

expectation of the pruned gradients can be obtained by:

Eĝl = E

{
K∑
k=1

ζlk∑
m ζ

l
m

glk

}
=

K∑
k=1

E
{

ζlk∑
m ζ

l
m

glk

}
(6)

=

K∑
k=1

E
{
E
{ ζlk∑

m ζ
l
m

glk

∣∣∣ζlk}} (7)

=

K∑
k=1

p · E

{
1

1 +
∑
m 6=k ζ

l
m

· glk

}
(8)

=

K∑
k=1

p

[
K∑
m=1

1

m

(
K − 1

m− 1

)
pm−1(1− p)K−m

]
Eglk (9)

1©
=

K∑
k=1

[
K∑
m=1

1

K

(
K

m

)
pm(1− p)K−m

]
Eglk (10)

=
[
1− (1− p)K

] K∑
k=1

Eglk
K

=
[
1− (1− p)K

]
Eḡl (11)

where 1© holds because 1
m

(
K−1
m−1

)
= (K−1)!

(K−m)!m! = 1
K

(
K
m

)
. (11)

means that the aggregated gradient scale of FedLP decreases
compared to the non-pruned one, which implies (1 − p)K

convergence rate decay. �

This theoretical result is significant and shows that the im-
pacts of FedLP on convergence can be mitigated by increasing
the participation clients or the LPRs {plk}.

Overall, we give a brief summary for these two FedLP
schemes: Homogeneous scheme mainly focuses on the com-
munication progress and concerns less about the local training;
On the contrary, for the heterogeneous scheme, both local
computation and parameter communication are reduced. It is
notable that such a random pruning processing will protect
the FL model from attacks in some degrees and strengthen
the system robustness as well as security since the attackers
are unaware of the exact layer indexes.

IV. EVALUATIONS

In this section, we carry out several experiments to evaluate
the performance of FedLP under two mentioned scenarios.



A. Experiment Setups

We develop the experiments in an image classification FL
task under CIFAR-10 dataset. For basic configuration, we build
up a FL system with 100 clients in total. The participation rate
is set as 0.1, which means that 10 clients are randomly selected
for aggregation in every global round. Before aggregation,
clients proceed 5 epochs to train the local models.

1) Global Model: A CNN based model with 6 Conv layers
is adopted as the global model. Batch normalization (BN)
and maxpooling operations are also conducted following each
Conv layer. At the end, a FC layer is placed to assemble the
features, followed by another FC as the output layer.

2) Data Split: We conduct the experiments under three
popular data settings of FL, iid, mixed non-iid and Dirichlet
non-iid. For iid split, the training samples are randomly
assigned to 100 clients, which means that each client possesses
500 images of uniform categories. Under mixed non-iid (M-
niid) split, the training samples are sorted into shards and
partitioned to clients. We set the size of each shard as 250
with 5% uniformly sampled from all categories and each
client takes 2 shards. Dirichlet non-iid (D-niid) split is also
a widely mentioned data partition rule [20]. The samples of
each category are divided into N parts according to a Dirichlet
distribution with parameter α = 1, so that the clients own
training data of different volumes.

3) Pruning Strategies: We adopt FedAvg as the baseline
and two proposed layer-wise pruning schemes are imple-
mented. For homogeneous cases, we employ the consistent
LPRs, plk ≡ p, abbreviated as FedLP-Homo(p). For hetero-
geneous cases, we prune the global model into 5 ordered
layer-sequences with different LCs. These 5 sub-models are
assigned to clients according to LC distributions. Specifically,
the parameter l of FedLP-Hetero(l) represents the case where
sub-models with l LC are mostly assigned with probability 0.6
and other sub-models takes 0.1 respectively. In particular, the
parameter ’u’ means that all sub-models are chosen uniformly.

TABLE I
A numerical comparison on accuracy, communication and computation costs.

Schemes Test accuracy (%)
iid / D-niid / M-niid

Comm.
#param (k)

Comp.
MFLOPs

FedAvg 77.94 / 77.67 / 67.57 1102.93 36.36

FedLP-Homo(0.1) 75.32 / 71.30 / 44.21 606.61 36.36
FedLP-Homo(0.3) 78.20 / 74.92 / 63.24 716.91 36.36
FedLP-Homo(0.5) 77.60 / 77.13 / 66.01 827.20 36.36
FedLP-Homo(0.7) 78.47 / 77.71 / 70.29 937.49 36.36

FedLP-Hetero(1) 66.00 / 67.66 / 37.30 169.60 17.73
FedLP-Hetero(3) 68.82 / 68.29 / 39.54 225.28 24.62
FedLP-Hetero(u) 72.42 / 64.65 / 57.51 318.66 23.83
FedLP-Hetero(5) 76.28 / 76.34 / 65.69 710.80 30.10

B. Accuracy Performance

We evaluate the performance of the proposed layer-wise
pruning schemes under three FL data settings. The test accu-
racy curves of global models are plotted in Fig. 3 and the aver-
age numerical results are listed in Table I. One can observe that
for higher LPRs (0.7), FedLP-Homo performs even better than
original FedAvg under iid and non-iid settings, but saves 30%
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Fig. 3. Comparisons under different FL data splits based on CIFAR-10.

communication loads for model upload. Such improvement on
generalization capability is also a result of the random LP pro-
cessing. For intermediate LPRs, FedLP-Homo(0.5) achieves
similar accuracy, convergence and stability as communication
round increases. The convergence performance of large LPR
also fits the Proposition 1. With 0.3 LPR, the performance
under iid data keeps the same. The accuracy drops by 3%
and 4% under two non-iid settings, compared to non-pruned
schemes. In particular, when LPR is set extremely low (0.1),
the global models under iid and Dirichlet-niid data only lose
3% and 6% classification accuracy, which is still acceptable.
Large performance gap occurs under mixed-niid data training.

For heterogeneous cases, both the local training and the
transmission models are pruned. As shown in Fig. 3(a) and
3(b), FedLP schemes still reach high accuracy under iid and
Dirichlet-niid data. However, the model accuracy as well as
the convergence evidently degrade under mixed-niid data. We
explain these phenomena as the result of the non-iid degree
and the heterogeneous local models. For severely non-iid data
in Fig. 3(c), vanilla FedAvg based approaches cannot handle
the imbalanced training data and the divergent local models.
Besides, FedLP-Hetero assigns models of different complexity
and the personalized output layers are absent for aggregation,
which also causes the unstability of the global model. There-
fore, one can treat such scheme as an alternative solution
for the scenarios where the clients are strictly constrained
on communication-computation resources and the devices are
of variant capability. To further improve the accuracy, the
techniques against severely non-iid data shall be added.

C. Communication-Computation Efficiency
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0
20

40
60

80 Com
pu

tat
ion

 sa
vin

g (
%)

0

10

20

30

40

50

Te
st

 a
cc

ur
ac

y 
(%

)

0
10

20

30

40

50

60

70

80

FedAvg FedLP-Homo FedLP-Hetero
0.9

0.7
0.5

0.3
0.1

5 u

3
4

2
1

Data split
iid
Dirichlet non-iid
mixed non-iid

Scheme
FedAvg
FedLP-Homo
FedLP-Hetero

Fig. 4. Trade-offs: accuracy vs. communication-computation efficiency.
Homo: p = {0.1, 0.3, 0.5, 0.7, 0.9}; Hetero: {uniform, 1, 2, 3, 4, 5}.



We also evaluate the communication-computation efficiency
of FedLP. The communication loads are measured by the
average parameter count in a global epoch, containing the
local model upload and the global model download. The
computation complexity is represented by the million floating
point of operations (MFLOPs) per local model. These two
measures are also listed in Table I. Specifically, FedLP-Homos
schemes reduce the data clients transmit to parameter server in
different degree and execute the same local training as FedAvg.
Meanwhile, under FedLP-Hetero, both local training and the
model aggregation are pruned. Thus, both communication
and computation costs decrease. Besides, since the traffics of
uplinks and downlinks are optimized together, the excessive
communication can be further eliminated. For example, the
uniform FedLP-Hetero schemes requires only half the com-
munication rates of FedLP-Homo with 0.1 LPR.

Moreover, we sketch a 3D plot of several schemes to
visualize the model accuracy and the system efficiency. The
x-y axis represents the percentage of communication and
computation savings respectively. And the height is the test
accuracy of global model. The farther a projection on x-y plane
locates towards 0-point, the lower communication/computation
capabilities are required, which increases the system efficiency.
Fig. 4 intuitively reflects such trade-offs between model per-
formance and system costs which provide guidance for the
system designs and layer-wise pruning settings.

Above results suggest that it is not necessary either for
clients to possess the full global model or for parameter
server to collect all layers of local models. While the data
is not highly non-iid, clients are allowed to prune some layers
with acceptable accuracy decay, which significantly reduces
the communication loads as well as the local computation
complexity. In other words, FedLP relaxes the restrictions on
communication and computation for practical FL systems.

V. CONCLUSION

In this work, we rethought the pruning strategies in the
context of FL and proposed a layer-wise pruning mecha-
nism, FedLP. Instead of dropping the intra-layer parameters
vertically, FedLP operates pruning horizontally on each layer
to improve the communication-computation efficiency of FL
systems. We drew a basic sketch of layer-wise pruning by
developing two probabilistic FedLP schemes for homogeneous
and heterogeneous scenarios. Theoretical guarantees were also
derived to interpret the convergence of FedLP. The experimen-
tal outcomes verified that FedLP reduces both communication
and computation costs with the controllable loss of model
performance. Moreover, FedLP is model-agnostic and can be
easily deployed in different FL schemes regardless of the
neural network structures and the layer types. Such an explicit
pruning mechanism provides alternative ways to implement FL
tasks on edge devices with variant capabilities.

Based on FedLP, more works of several aspects can be
investigated in the future. Firstly, layer-wise pruning schemes
such as the dynamic pruning with adaptive layer weights
shall be explored to fit the changeable environments and the

non-iid data. Secondly, the theoretical analysis on learning
convergence and system configuration will be presented in
our future works. In additional, FedLP’s potentials on system
robustness and model security can be further discussed.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for
wireless communications: Motivation, opportunities, and challenges,”
IEEE Communications Magazine, vol. 58, no. 6, pp. 46–51, 2020.

[3] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, “The
roadmap to 6g: Ai empowered wireless networks,” IEEE communica-
tions magazine, vol. 57, no. 8, pp. 84–90, 2019.

[4] Z. Yang, M. Chen, K.-K. Wong, H. V. Poor, and S. Cui, “Federated
learning for 6g: Applications, challenges, and opportunities,” Engineer-
ing, 2021.

[5] S. Wan, J. Lu, P. Fan, Y. Shao, C. Peng, J. Chuai et al., “How global
observation works in federated learning: Integrating vertical training into
horizontal federated learning,” IEEE Internet of Things Journal, 2023.

[6] Z. Zhu, S. Wan, P. Fan, and K. B. Letaief, “Federated multiagent actor–
critic learning for age sensitive mobile-edge computing,” IEEE Internet
of Things Journal, vol. 9, no. 2, pp. 1053–1067, 2021.

[7] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[8] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.
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