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Abstract—The fifth generation of the Radio Access Network
(RAN) has brought new services, technologies, and paradigms
with the corresponding societal benefits. However, the energy
consumption of 5G networks is today a concern. In recent
years, the design of new methods for decreasing the RAN
power consumption has attracted interest from both the research
community and standardization bodies, and many energy savings
solutions have been proposed. However, there is still a need
to understand the power consumption behavior of state-of-
the-art base station architectures, such as multi-carrier active
antenna units (AAUs), as well as the impact of different network
parameters. In this paper, we present a power consumption model
for 5G AAUs based on artificial neural networks. We demonstrate
that this model achieves good estimation performance, and it
is able to capture the benefits of energy saving when dealing
with the complexity of multi-carrier base stations architectures.
Importantly, multiple experiments are carried out to show the
advantage of designing a general model able to capture the power
consumption behaviors of different types of AAUs. Finally, we
provide an analysis of the model scalability and the training data
requirements.

I. INTRODUCTION

Recent studies indicate that, by 2030, the number of con-
nected devices is expected to increase to 100 billion, and that
fifth generation (5G) mobile networks may be supporting up to
1,000× more data traffic than the fourth generation (4G) ones
in 2018. However, the energy consumption of future networks
is concerning. Deployed 5G networks have been estimated
to be approximately four times more energy efficient than
4G ones. Nevertheless, their energy consumption is around
three times higher, due to the larger number of cells required
to provide the same coverage at higher frequencies, and
the increased processing required by their larger bandwidths
and more antennas [1]. It should be noted that, on average,
the network operational expenditure (OPEX) accounts for
approximately 25% of the total costs incurred by a mobile
network operator (MNO), and that 90% of it is spent on large
energy bills [2]. Importantly, more than 70% of this energy has
been estimated to be consumed by the radio access network
(RAN), and in more details, by the base stations (BSs) [3].

The energy challenge of MNOs is thus to meet the up-
coming more challenging traffic demands and requirements
with significantly less energy consumption and greenhouse
gas (GHG) emissions than today to reduce the environmental
impact of mobile networks, and in turn, costs.

Third generation partnership project (3GPP) new radio (NR)
Release 15 specified intra-NR network energy saving solutions

–similar to those developed for 3GPP long-term evolution
(LTE)– to decrease RAN energy consumption. Moreover,
3GPP NR Release 17 has recently specified inter-system net-
work energy saving solutions, and is currently taking network
energy saving as an artificial intelligence use case. However,
data collected from 3GPP LTE and NR networks have shown
that these solutions are still not sufficient to fundamentally
address the challenge of reducing energy consumption [4]. For
this reason, 3GPP NR Release 18 has recently approached a
study item, which attempts to develop a set of flexible and
dynamic network energy saving solutions [4]. Importantly,
this study item indicates that new 5G power consumption
models are needed to accurately develop and optimize new
energy saving solutions, while also considering the complexity
emerging from the implementation of state-of-the-art base
station architectures.

In recent years, many models for base station power con-
sumption have been proposed in the literature. The work in [5]
proposed a widely used power consumption model, which
explicitly shows the linear relationship between the power
transmitted by the BS and its consumed power. This model was
extended in [6], taking into account the massive multiple-input
multiple-output (mMIMO) architecture and energy saving
methods. However, the power consumption estimate discussed
in that paper seems to be inaccurate [7] with an optimistic
40.5 W per mMIMO BS. The work in [8] further extended the
model in [5] by considering a linear increase of the power con-
sumption with the number of mMIMO transceivers. A more
complete and detailed description of the power consumption
components was introduced in [9], where the authors provided
a model that considers the mMIMO architecture, downlink and
uplink communication phases, as well as the number of mul-
tiplexed users per physical resource block (PRB), and a large
number of mMIMO components. The power consumption of
a system that uses multiple carriers was modeled in [10] by
considering a linerar model. Finally, the work in [11] jointly
considered mMIMO and multi-carrier capabilities, such as
carrier aggregation and its different aggregation capabilities.

Aiming at providing more accurate estimations, validated in
the field, in our most recent work [12], we introduced a new
analytical power consumption model for 5G active antenna
units (AAUs) – the highest power-consuming component of
today’s mobile networks, based on a machine learning (ML)
framework, which builds on a large data collection campaign.
In this paper, we present in detail our ML framework providing
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Figure 1: Architecture of an AAU with MCPAs handling 2 carriers in 2
different bands, which transmit over the same wideband antenna panel.

a detailed technical analysis of its accuracy performance, its
scalability, and generalization capabilities.

II. 5G AAU ARCHITECTURE

The hardware architecture of a 5G AAU is shown in Fig. 1.
In particular, in our AAU architecture, we assume that:

• The AAU has a multi-carrier structure, and uses multi-
carrier power amplifier (MCPA) technology;

• The AAU manages C carriers deployed in T different
frequency bands;

• The AAU comprises T transceivers, each operating a
different frequency band, and M MCPAs, one for each
antenna port;

• A transceiver includes M radio frequency (RF) chains,
one per antenna port, which comprise a cascade of
hardware components for analog signal processing, such
as filters and digital-to-analog converters;

• Antenna elements are passive. For example, one wide-
band panel or T antenna panels may be used per AAU;

• Deep dormancy, carrier shutdown, channel shutdown, and
symbol shutdown are implemented, each switching off
distinct components of the AAU (as shown in Fig. 1).

Importantly, it should be noted that the implementation
of MCPAs leads to increased energy efficiency compared to
single carriers power amplifiers (PAs), as the management of
multiple carriers through one ‘wider’ PA allows to manage
a larger amount of transmit power, in turn, permitting the
MCPAs to operate at higher energy efficiency areas. Moreover,
the static power consumption of the MCPAs increases sub-
linearly with the number of carriers, since part of the hardware
components can be shared among them. However, it should be
noted that the implementation of MCPAs involves increased
complexity in the management of the network energy saving
methods and in the estimation of the power consumption
when such methods are activated. In fact, the deactivation
of one carrier may not bring the expected energy savings, if
the MCPAs need to remain active to operate the co-deployed
carriers.

III. ANN MODEL ARCHITECTURE

In this section, we describe the data collected during our
measurement campaign, and we provide a description of the
ANN architecture designed for modeling and estimating the

Figure 2: Example of SHAP analysis performed on 4 of the available features
is the collected measurements data.

power consumption. Moreover, we describe the identified loss
function and the training of the ANN model parameters.

A. Dataset

The dataset used for training and testing the artificial neural
network (ANN) model is composed of hourly measurements
collected during 12 days from a deployment of 7500 4G/5G
AAUs. Overall, 24 different types of AAUs are included. The
collected measurements contain 150 different features, which
can be classified into four main categories:

• Engineering parameters: Information related to the con-
figuration of each AAU (e.g., AAU type, number of
transceivers (TRXs), numbers of supported and config-
ured carriers);

• Traffic statistics: Information on the serviced traffic (e.g.,
average number of active user equipments (UEs) per
transmission time interval (TTI), number of used PRBs,
traffic volume serviced);

• Energy saving statistics: Information on activated energy
saving modes [3] (e.g., duration of the carrier-shutdown,
channel-shutdown, symbol shutdown and dormancy acti-
vation);

• Power consumption statistics: Information on the power
consumed by the AAU.

Feature importance analysis has been extensively performed
on the collected features to identify the most relevant for
estimating power consumption. It is worth highlighting that the
features that do not affect power consumption as well as those
highly correlated with the selected ones (i.e., thus providing
limited information) were discarded. The analysis of the
feature importance consisted into two phases: i) a first phase,
in which gradient boosting models including different input
features were trained, and ii) a second phase, in which the
analysis of SHapley Additive exPlanations (SHAP) values [13]
were performed on such models. The SHAP value of each
feature represents the change in the expected model prediction
when conditioning on that feature.

As an example, Fig. 2 shows the SHAP values of four
features, namely the downlink (DL) PRB load, the maximum
transmit power, the number of multiple-input multiple-output
(MIMO) layers per PRB, and the modulation and coding
scheme (MCS). In more details, the figure indicates in which
direction and how much each feature contributes to the model
output as compared to the average model prediction. The y-
axis on the right side indicates the respective feature value



Class Parameter Type

Engineering parameter AAU type Categorical
Engineering parameter Number of TRXs Numerical
Engineering parameter Carrier transmission mode Categorical
Engineering parameter Carrier frequency Numerical
Engineering parameter Carrier bandwidth Numerical
Engineering parameter Carrier maximum transmit power Numerical
Traffic statistics Carrier DL PRB load Numerical
Energy saving statistics Duration of carrier shutdown Numerical
Energy saving statistics Duration of channel shutdown Numerical
Energy saving statistics Duration of symbol shutdown Numerical
Energy saving statistics Duration of deep dormancy Numerical

Table I: ANN model input parameters.

(low values in blue color and high values in red). Each scatter
dot represents one instance in the data.

The analysis highlights that the DL PRB load is the most
important feature, whereas the maximum transmit power is
the second most important. In fact, the knowledge of this two
features allows the model to capture the amount of power
transmitted by the AAU at different DL PRB load levels.
In more detail, the model output is shown to increase when
the DL PRB load and/or the maximum transmit power are
increased.

Importantly, the MCS and the number of MIMO layers per
DL PRB show a large correlation with the DL PRB load,
meaning that the latter feature is sufficient to capture the
energy consumption behavior. The extended analysis of the
importance of the available features allowed us to identify
the inputs needed for our ANN model, which correspond to
the type of AAU and a set of characteristics for each of the
carriers. The complete list of selected features is shown in
Table I.

B. Inputs of the model

Each of the input features listed in Table I was pre-processed
according to its type, and inputted to the neural network. The
numerical features were normalized before being inputted into
the model, whereas the categorical ones were inputted by using
one-hot encoding.

Since a AAU can operate multiple carriers through the
same MCPAs, to make our ANN model the most general
and flexible, it takes input data from CMAX carriers, which
corresponds to the maximum number of carriers that can be
managed by the most capable AAU in the dataset. When
C < CMAX carriers are deployed in an AAU, all the input
neurons related to the remaining CMAX − C carriers are
set to zero. It is worth noting that this approach allows to
implement an ANN model with a fixed number of input
neurons, which can be trained with data from all the AAUs in
the dataset, regardless of their number of configured carriers,
with a minimal loss in terms of accuracy, as we will discussed
in Section IV-B.

C. Outputs of the model

The analysis of the collected data has highlighted that
different power consumption values may be reported for the
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Figure 3: Architecture of the ANN.

same input feature values. This effect have multiple origins:
i) the presence of features slightly impacting the power con-
sumption but currently not captured as input for the model,
ii) errors in the measurements or in the collection of the data,
iii) tolerance of the hardware components which affects their
power consumption behavior.

To embrace such noise, we define the measured power
consumption, ȳ, as ȳ = y + n, where y is the power
consumption for a given input configuration, and n is the
noise due to the mentioned errors. Based on the analysis of
the available data, the noise, n, can be assumed to be normally
distributed with mean 0 and standard deviation σ. It thus
follows that the measured power consumption, ȳ, is normally
distributed with mean µ = E[y] and standard deviation σ.

The designed ANN model estimates and outputs these two
parameters, µ and σ. Furthermore, it is worth highlighting that
the output of these two parameters also allows computing a
confidence interval for each power consumption estimate, thus
increasing the reliability of the whole process.

D. Architecture of the model

Multilayer perceptron is considered as the basic architecture
for the proposed ANN model, consisting of multiple fully
connected layers of neurons [14]. The overall structure of the
proposed ANN model is depicted in Fig. 3.

In general, the input layer is comprised of ni = NAAU +
10 ∗ CMAX neurons, where NAAU is the number of AAU
types available in the dataset, and thus modelled by the AAU,
and CMAX is the maximum number of carriers of the most
capable AAU, as discussed earlier. In our specific scenario,
we collected data for NAAU = 24 different AAU types, and
the maximum number of carriers of the most capable AAU,
CMAX, is equal to 6. Therefore, the input layer consists of
ni = 84 neurons.

The input layer is followed by two hidden layers, which
are composed of 40 and 15 neurons, respectively. These
dimensions were chosen after an optimization process aimed
at maximizing the accuracy of the model.

Finally, the output layer is composed of two neurons,
which capture the mean and standard deviation of the power



consumption, as explained earlier. As both metrics must be
positive, the sigmoid activation function is adopted at the
output layer.

E. Training of the model

The goal of the model optimization process is to minimize
both the prediction error and the uncertainty. More in detail,
the ANN training process is considered successful if the
statistical distribution of the power measurements outputted
by the model for a given input, x, matches the distribution
of the power measurements in the data. Therefore, during the
training phase, the aim is to maximize the probability that the
power consumption estimates, ȳ, belong to —are within— the
distribution N (µ, σ).

Since the power consumption, ȳ, follows a normal distribu-
tion, this probability is computed as

P (ȳ|µ, σ) =
1

σ
√

2π
e−

(ȳ−µ)2

2σ2 . (1)

As most of the optimizers used to train ANNs are designed
to solve minimization problems, we consider the following
loss function to train the ANN model:

l(ȳ, µ, σ) = − log (P (ȳ|µ, σ)) = log(σ) +
(ȳ − µ)2

2σ2
. (2)

It should be noted that this function reflects the goal of
reducing both the prediction error and the related uncertainty.
In fact, the first term is minimized when the standard deviation,
σ, is low, which means that the confidence in the estimation
is high, whereas the second term is minimized when the
prediction error, ȳ − µ, is reduced.

Before the model training was performed, the available data
set was split into two parts: a training set and a testing set.
The training set contains data collected for 10 days from our
7500 AAUs, whereas the testing set contains data collected
for 2 days from the same AAUs. In addition, 80,% of the
training samples are randomly selected to train the AAU
model, whereas the remaining 20 % are used for validating
the model during the training phase.

Model training was carried out by adopting the Adam
version of the gradient descent algorithm [14], and required 75
minutes to perform 1086 iterations when adopting a learning
rate α = 0.001. Note that an early stopping method was
implemented to stop the training after 200 epochs with no
improvements in terms of validation loss.

IV. EXPERIMENTS AND ANALYSIS

In this section, we provide an analysis of the error perfor-
mance achieved by the ANN model. Moreover, we present a
set of experiments carried out to evaluate the generalization ca-
pabilities of the framework and its scalability related to multi-
carrier architectures and AAU types. Finally, we investigate
the impact of data availability to the estimation performance.

0 0.2 0.4 0.6

0

0.2

0.4

0.6

0.8

1

DL PRB load

N
or

m
al

iz
ed

po
w

er
co

ns
um

pt
io

n Groud truth
Estimated

Figure 4: True and estimated normalized power consumption vs DL PRB load
for multiple BSs of a given type.

A. Overall model performance

To assess the performance of the developed framework, we
adopted the ANN model to estimate the power consumption
of all the 7500 AAUs over the two testing days. Then, we
compared the estimated power consumption with the real
measurements available in the data.

In this paper, we adopt the mean absolute error (MAE) as
a metric to measure the absolute error, and the mean absolute
percentage error (MAPE) as a metric to evaluate the relative
error. Overall, the model achieved a MAE of 10.94 W and
a remarkably low MAPE of 5.87 % when estimating the
power consumed by each AAU across all hours of the test
period. As an example, Fig. 4 shows the real and estimated
normalized power consumption for multiple AAUs of the same
type. Note that the power consumption linearly increases with
the DL PRB load and that three different slopes are observed
due to the presence of three different configuration of the
maximum transmit power. Notice that the proposed ANN
model accurately fits the power consumption for each of the
three configurations.

B. Multi-carrier generalization capabilities

As mentioned in Section III-B, to make the ANN model
general and work with any type of AAU, the input layer is
designed to take input data from CMAX carriers. When C <
CMAX carriers are deployed in the AAU, all input neurons
related to the remaining CMAX−C carriers are set to zero. It is
worth noting that the alternative modeling approach consists in
training multiple ANN models, each of them supporting AAUs
with a given number of carriers. In this section, we evaluate
the performance loss due to such a general implementation of
the ANN model. The performance analysis is performed by
considering the following two models:

• Single-carrier ANN model: The model is tailored to
AAUs in which a single-carrier is deployed (i.e., the input
layer is composed of 34 neurons), and is thus exclusively
trained with data collected from such AAUs;



• General ANN model: The model provides power con-
sumption estimation for AAUs with up to CMAX = 6
configured carriers (i.e., the input layer is composed of
84 neurons), and is trained with all available AAUs.

These two models have been tested to estimate the power con-
sumption of all single-carrier AAUs available in the collected
data. In such single-carrier AAUs test, the single-carrier ANN
model achieves MAE 10.11 W, and MAPE 6.42 %, whereas
the general ANN model achieves MAE 10.25 W and MAPE
6.54 %.

It should be noted that this performance is different than
that presented in the previous section as here we estimate
the power consumption only of the single carrier AAUs in
our dataset. Also, we can observe that general ANN model
achieves slightly worse performance (1.38% loss in terms of
MAE and 1.87% loss in terms of MAPE), as it is trained over a
more heterogeneous set of data, while also needing to capture
the complex power consumption behaviors that emerge when
considering multi-carrier architectures. However, these errors
are minimal, and shows that the devised general model can
cope with a wider set of AAUs at the expense of a small cost
in terms of performance loss. Importantly, it is worth stressing
that the general ANN model has the advantage of observing
how power consumption depends on multiple input features
in a wide variety of AAU types, and thus, as we will see in
the next section, it can generalize among them.

C. AAU type generalization capabilities

In this section, we analyze the capability of the ANN power
consumption model of generalizing over multiple types of
AAU. In this way, we want to highlight the advantage of our
modeling approach, in which a single and general model is
used to capture the power consumption of large variety of
AAU type and configurations.

To assess such capability, we select the most popular AAU
type in our data, and we evaluate the generalisation capabilities
of the designed framework by analysing the following models:

• Single-AAU ANN model: The model is trained –and can
provide power estimations– exclusively for the selected
AAU type. Moreover, the training data does not include
any sample in which carrier shutdown is activated.

• General ANN model: The model is trained with data
collected by all the AAUs. As in the previous case, the
training data related to the selected AAU does not in-
clude any sample in which carrier shutdown is activated.
However, training data related to other types of AAUs
includes samples in which the carrier shutdown feature
is activated.

The two models are tested to estimate the power consumption
of the selected AAU over the testing set, in which carrier
shutdown is activated for some periods. The single-AAU
ANN model leads to poor accuracy estimations (i.e., MAE
57.82 W, MAPE 10.04 %), as it is not able to learn how
to characterise the carrier shutdown feature due to the poor
training data. However, the general ANN model provides
improved performance (i.e., MAE 19.32 W, MAPE 3.59 %),
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Figure 5: MAPE achieved by the ANN model when trained/tested over N
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even if there is not training data covering the scenario in which
carrier shutdown is activated for the selected AAU.

We highlight that such improved performance is achieved
thanks to the generalization capability of our ANN model,
which allows capturing knowledge from many different types
of AAU.

D. ANN scalability

The results discussed in the previous sections highlight
that the proposed framework is capable of providing accurate
estimations of power consumption when dealing with the
complexity of multi-carrier AAU architectures. Importantly,
the model is capable of capturing the power consumption
behaviors of each AAU type considering 5G energy saving
features. In this section, we analyze how the dimension of the
ANN architecture should be scaled according to the number
of AAU types included in the data.

As a starting scenario, we consider a dataset that includes
5 different types of AAU. Multiple ANN shapes/sizes were
trained and tested to identify the smallest ANN providing a
good estimation error. The identified ANN is composed of two
hidden layers with, respectively, l1 = 12 and l2 = 4 neurons,
and it reaches MAE 11.02 W and MAPE 5.91%.

The same ANN architecture was trained and tested on
datasets including a larger number of AAU types. Fig. 5 shows
in black the performance achieved when increasing the number
of AAU types in the dataset. It can be seen that the estimation
error deteriorates when increasing the number of AAU types
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Figure 7: MAPE achieved by the ANN model when considering different
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in the data. In particular, the MAPE increases by 3.6%, 9.1%
and 12.4% when increasing the number of AAU types to 10,
15 and 20, respectively. This error performance degradation
is motivated by the fact that, when increasing the number of
AAU types in the data, the dimension of the ANN architecture
(i.e., the parameters of the model) is no longer sufficient to
gather the knowledge of the power consumption behavior of
different AAU types that allow to successfully estimate their
power consumption.

Therefore, the dimension of the ANN must be properly
scaled when increasing the number of AAU types in the
data. To visualize this, we consider a scaling factor for the
ANN architecture, c. In more detail, the first hidden layer has
dimension l1 = 12·c, while the second has dimension l2 = 4·c.

Different values of the scaling factor c were tested when
considering different numbers of AAU types in the data, to
assess how the ANN should be scaled to guarantee the MAPE
of the estimation to be within 1% of the initial error of 5.91%.
Fig. 6 shows the lowest value of the scaling factor c that allows
to meet the requirement for each number of AAU types in the
data. The results indicates that linearly scaling the dimension
of the ANN allows us to preserve the accuracy of the ANN
estimation, while increasing the number of AAU types that
need to be modeled.

E. Training data availability
Collecting measurements from large network deployments

can be challenging and time-consuming. In this section, we
analyze how the amount of available training data affects the
performance achieved by the ANN model. To perform the
analysis, we focus on 11 AAU types for which more than
90 AAUs per type are available in the collected data.

During the training of the ANN model, a varying number
of AAUs was included for each AAU type, while during the
testing phase, all the available AAUs were considered.

Fig. 7 shows the MAPE achieved by the ANN model when
considering a different number of AAUs per AAU type in
the training dataset. The error achieved has a clear decreasing
trend, suggesting that including more AAU in the training
set is beneficial to improve the accuracy of the estimation.
However, after reaching 70 AAU per AAU type, adding more

AAU in the training data provides negligible gains (i.e., lower
than 1%).

V. CONCLUSIONS

In this paper, we presented a power consumption model for
5G AAUs based on an ANN architecture. The ANN model was
trained with data collected from a large deployment, which
includes multiple types of AAU with different configurations.
Feature analysis allowed us to identify a set of input features
for the model. The analysis of the results highlighted that the
model can achieve high accuracy, with a MAPE less than 6%
when tested on all available AAUs in our data. Moreover,
the experiments highlighted the advantage of training a single
general model over all the AAUs in the data, which is able
to capture and generalize the impact of multiple parameters
on the power consumption and the benefit of energy saving
schemes in complex multi-carrier architectures. Importantly,
the results provided good insights into how the ANN archi-
tecture should be scaled when needed to model more AAU
types. Moreover, experiments showed that at least 70 AAUs
per type should be included in the training to guarantee the
achievement of good error performance.
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