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Abstract—Millimeter wave (MmWave) has been regarded as a
promising technology to support high-capacity communications
in 5G era. However, its high-layer performance such as latency
and packet drop rate in the long term highly depends on resource
allocation because mmWave channel suffers significant fluctua-
tion with rotating users due to mmWave sparse channel property
and limited field-of-view (FoV) of antenna arrays. In this paper,
downlink transmission scheduling considering rotation of user
equipments (UE) and limited antenna FoV in an mmWave system
is optimized via a novel approximate Markov decision process
(MDP) method. Specifically, we consider the joint downlink UE
selection and power allocation in a number of frames where fu-
ture orientations of rotating UEs can be predicted via embedded
motion sensors. The problem is formulated as a finite-horizon
MDP with non-stationary state transition probabilities. A novel
low-complexity solution framework is proposed via one iteration
step over a base policy whose average future cost can be predicted
with analytical expressions. It is demonstrated by simulations
that compared with existing benchmarks, the proposed scheme
can schedule the downlink transmission and suppress the packet
drop rate efficiently in non-stationary mmWave links.

I. INTRODUCTION

Millimeter wave (MmWave) communications is one of the
key technologies in 5G and beyond systems [1]. In order
to achieve desired signal-to-noise ratio (SNR) and high data
rate, phased arrays with highly directional beams are adopted
to overcome huge pathloss. However, because of the sparse
propagation paths in mmWave channel between the base
station (BS) and user equipments (UEs), pencil-shaped beams
and limited field-of-view (FoV) of antenna arrays, UE mobility
especially rotation will cause significant SNR fluctuation [2].
Ignorance of such SNR fluctuation may lead to severe high-
layer performance degradation such as large latency, buffer
overflow and packet drop. Fortunately, exploiting statistical
channel model and motion information measured from embed-
ded motion sensors at the UEs makes future SNR fluctuation
predictable. This raises a new design issue of joint schedul-
ing in a large time-scale with non-stationary but predictable
channel statistics caused by UE rotation.

There has been a number of works considering resource
allocation in mmWave MIMO systems either within channel
coherent time [3] or in a larger time-scale with stationary chan-
nel statistics [4]–[7]. Scheduling in the former scenario leads
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to deterministic optimization problems, and infinite-horizon
Markov decision process (MDP) or Lyapunov optimization is
usually applied for the latter scenario. However, both methods
are not applicable for large-time-scale scheduling with non-
stationary channel statistics. Scheduling over non-stationary
channel statistics with prediction of future channel statistics
shall be addressed. For example, the authors in [8] proposed
an adaptive design for beam alignment, data transmission
and handover by exploiting vehicle mobility in mmWave
vehicular networks. In [9], [10], predictive beamforming is
investigated by sensing vehicle mobility with radar to improve
the efficiency of resource allocation. However, these works
focus on vehicles driving along straight lanes considering only
translation while UE rotation may raise more stringent re-
quirement [2]. Moreover, current works investigating temporal
correlations of angle of departure (AoD) and angle of arrival
(AoA) [11] or exploiting motion sensors to capture device
rotation [2], [12] to assist beam alignment neglect the effect
of rapid SNR fluctuation to high-layer performance.

Channel fluctuation due to limited antenna FoV and UE
rotation shall be considered in mmWave scheduling. Fortu-
nately, future UE orientation can be predicted according to
current angular velocity or angular acceleration measured by
motion sensors [13], [14] or integrated sensing and com-
munications (ISAC) techniques [15]. Moreover, due to the
small-scale fading, it might not be efficient to determine
all the transmission parameters in a large time-scale at its
beginning as in [8]–[10]. Instead, dynamic programming might
be a better framework to address the predictive scheduling
algorithm design with random channel fading. In this paper,
we consider the downlink scheduling with UE rotation where
the angular velocity can be measured by motion sensors.

In this paper, we would like to shed some light on the
predictive transmission scheduling in mmWave systems with
channel fluctuation due to UE rotation and limited antenna
FoV. We utilize the motion sensors embedded in UEs to
track the orientation of phased arrays. Moreover, by exploiting
temporal correlations of mmWave channel, the non-stationary
channel statistics can be predicted. We formulate the delay-
aware transmission scheduling with non-stationary mmWave
channel statistics as a finite-horizon MDP. Finally, a low-
complexity approximate MDP solution framework, applying
one iteration step over analytically approximated value func-
tion, is proposed to reduce the computational complexity.
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To the best of our knowledge, this is the first paper on
mmWave queue-aware scheduling in a large time-scale with
consideration of UE rotation.

II. SYSTEM MODEL

A. mmWave System with UE Rotation

We consider the downlink transmission in an mmWave
communication system with one BS and K UEs, where the set
of UEs is denoted by K, {1, 2, . . . ,K}. The analog MIMO
transceiver with a single radio frequency (RF) chain and a
half-wavelength uniform linear phased array (ULA) is adopted
at both the BS and UEs. The linear phased arrays at the BS
and UEs are with NT and NR antenna elements, respectively.
Hence, analog precoder and combiners can be adopted at the
BS and UEs respectively to enhance the receiving SNR. For
elaboration convenience, we consider the mmWave communi-
cation in a two-dimensional plane as illustrated in Fig. 1(a).

We focus on mmWave communication scenarios for UEs
with rotation but no translation, e.g., playing games with
virtual reality (VR) headsets or watching videos when sitting
on a rotating chair. Due to UE rotation and limited antenna
FoVs, channel statistics such as the number of in-FoV signal
scatterers and their directions with respect to the phased arrays
will change over time. Fortunately, embedded motion sensors
such as magnetometers and gyroscopes are able to periodically
detect the orientation and rotation of UEs, respectively [2].
Moreover, future UE orientations can be predicted by current
angular velocity [13]. With the direction knowledge of scat-
terers and phased arrays, the channel statistics in the future
can also be predicted to assist predictive scheduling by jointly
considering current and future transmission costs.

Specifically, the transmission time is organized by frames,
and the wireless channel is assumed to be quasi-static within
one frame. UEs are rotating with predictable angular velocities
in a number of frames. The period during which all the UEs are
rotating with predictable angular velocities is referred to as one
scheduling period consisting of T frames. For the elaboration
convenience, we assume that all UEs are predicted to rotate
with constant angular velocity as in [14], [16] in a scheduling
period. We shall focus on the joint UE selection and power
allocation within one scheduling period.

In the considered scheduling period, the angular velocity
of the k-th UE is denoted as ωk. The boresight direction
of the k-th UE in the 1-st frame of the scheduling period
is denoted as n1,k, and the boresight direction of the BS’s
array is denoted as nBS . Then the rotation angle during the
(t− 1) frames and the boresight direction of the k-th UE
in the t-th frame can be predicted as ∆φt,k , (t−1)ωkTF

and nt,k =

[
cos (∆φt,k) −sin (∆φt,k)
sin (∆φt,k) cos (∆φt,k)

]
n1,k, respectively,

where t≤T and TF denotes the frame duration.

B. Channel Model

The extended Saleh-Valenzuela channel model illustrated
in Fig. 1(b) is adopted. Specifically, there are N cl

k quasi-static
scattering clusters in the propagation channel from the BS to
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Fig. 1. Illustration of (a) system model and (b) channel model.

the k-th UE, and N ray
k,i propagation paths in the i-th cluster.

For the exposition convenience, the i-th cluster in the channel
between the BS and the k-th UE is referred to as the (k, i)-th
cluster, and the `-th path of the (k, i)-th cluster is referred
to as the (k, i, `)-th path. Denoting the AoA and AoD of
the (k, i, `)-th path in the t-th frame as φt,k,i,` and θt,k,i,`
respectively, the channel matrix from the BS to the k-th UE
in the t-th frame Ht,k∈CNR×NT can be represented by

Ht,k =
∑Ncl

k
i=1

∑Nray
k,i

`=1 αt,k,i,`aR(φt,k,i,`)a
H
T(θt,k,i,`)

× ΛR(φt,k,i,`)ΛT(θt,k,i,`), (1)
where αt,k,i,` is the instantaneous complex gain of the
(k, i, `)-th path in the t-th frame, ΛR(φt,k,i,`) and ΛT(θt,k,i,`)
refer to the receiving and transmission antenna gains
at φt,k,i,` and θt,k,i,` respectively, aR and aT repre-
sent the array response vectors of the ULAs at UEs
and the BS, which can be expressed by aR(φ) =

1√
NR

[
1, e−jπ sin(φ), . . . , e−jπ(NR−1) sin(φ)

]T
, and aT(θ) =

1√
NT

[
1, e−jπ sin(θ), . . . , e−jπ(NT−1) sin(θ)

]T
, respectively. The

antenna patterns are modeled as identical and ideal sectored,
hence,

ΛR(φ)=

{
1 φ∈ [φmin, φmax]

0 otherwise
,ΛT(θ)=

{
1 θ∈ [θmin, θmax]

0 otherwise
.

Due to the limited FoVs of receiving antennas, i.e., ΛR, the
phased array can not capture all propagation paths in 360◦

azimuth. Thus, the in-FoV scattering clusters may vary during
UE rotation. For example, the paths via the scattering cluster
represented by black square in Fig. 1(b) may be out of the
FoV in a few frames when the k-th UE is rotating clockwise.

The instantaneous gains {αt,k,i,`}, AoAs {φt,k,i,`} and
AoDs {θt,k,i,`} are drawn from independent distributions in
each frame. Specifically, αt,k,i,` follows the complex Gaussian
distribution with zero mean and variance σ2

α;k,i. The angular
distribution of propagation paths φt,k,i,` and θk,i,` follow the
truncated Laplacian distributions with cluster means φ̄t,k,i and



θ̄k,i, and variances σ2
φ;k,i and σ2

θ;k,i respectively as in [17]. Due
to UE rotation, the boresight directions of their phased arrays
change in each frame. Since the scattering clusters are quasi-
static, the AoA means of the (k, i)-th cluster in one scheduling
period satisfy the following temporal correlation,

φ̄t,k,i = φ̄1,k,i + ∆φt,k,∀t, k, i. (2)
As a result, the channel statistics (distribution of Ht,k) are
non-stationary in one scheduling period, due to the limited
FoVs at the UEs and time-varying AoA cluster means φ̄t,k,i.
However, with the AoA cluster means and the angular velocity
of the k-th UE in the 1-st frame, i.e., {φ̄1,k,i|∀i} and ωk, the
AoA cluster means of all clusters in the t-th frame can be
predicted according to (2).

For the elaboration convenience, we define the statistical
channel state information (SCSI) as the tuple of parameters
sufficiently characterizing the distribution of channel matrix
in (1) as follows.

Definition 1. The SCSI in t-th frame is defined by ISCSI
t ,

(ISCSI
sta ,{φ̄t,k,i|∀k, i}), where ISCSI

sta ,({N cl
k |∀k},{N

ray
k,i |∀k, i},

{σ2
α;k,i|∀k, i},{θ̄k,i|∀k, i},{σ2

θ;k,i|∀k, i},{σ2
φ;k,i|∀k, i}) is the

tuple of quasi-static channel statistical parameters.

With SCSI in the 1-st frame ISCSI
1 and {ωk} measured in

the 1-st frame, the SCSI and thus the distribution of Ht,k of
all the frames within the scheduling period can be predicted
according to the statistical channel model in (1).

C. Sensing-based Beam Alignment

Due to the single RF chain at the BS, one UE is selected
for downlink transmission in each frame. Let wt,k ∈ CNR×1

and ft,k ∈CNT×1 be the analog combiner at the k-th UE and
the analog precoder at the BS in the t-th frame respectively
if the k-th UE is selected. In practice, wt,k and ft,k are
selected from the pre-defined finite codebooks wt,k ∈ W ,{
aR(φq)

∣∣q = 1, 2, . . . , NR

}
and ft,k ∈ F ,

{
aT(θp)

∣∣p =

1, 2, . . . , NT

}
, respectively, where φq = arcsin

( 2(q−1)
NR
− 1
)

and θp = arcsin
( 2(p−1)

NT
− 1
)
. Hence, the spectral efficiency

achieved by the k-th UE in the t-th frame is given by
Rt,k=log2

(
1+

Pt,kYt,k
N0W

)
, where Pt,k is the transmission power

of the BS, Yt,k,
∣∣wH

t,kHt,kft,k
∣∣2 is the channel power gain in

baseband, N0 is the noise power spectral density, and W is
the bandwidth.

Instead of beamforming with instantaneous CSI feedback
which raises significant overhead, we exploit the SCSI pre-
diction and adopt the following statistical beam alignment
scheme, which maximizes the average baseband SNR without
instantaneous CSI feedback.

Scheme 1 (SCSI-Based Beam Alignment). Given ISCSI
1 and

{ωk}, the analog combiner and precoder for the k-th UE in the
t-th frame are selected by wt,k=aR(φq†t

) and ft,k=aT(θp†t
),

respectively, where (q†t , p
†
t) is given by (3).

Since the integrals in (3) depends on SCSI in the t-th
frame ISCSI

t which can be predicted from ISCSI
1 and {ωk},

the precoders and combiners for all the frames within one

scheduling period can be pre-designed in the beginning of 1-
st frame. Note that different from the statistical beamforming
proposed in [18], we consider non-stationary AoA/AoD cluster
means and limited FoVs of ULA. Therefore, beam may switch
towards another cluster in advance when previously steered
cluster becomes out of FoV due to UE rotation. Moreover,
given Scheme 1, the cumulative distribution function (CDF)
of the baseband channel power gain can be derived as follows.

Lemma 1 (CDF of Yt,k). With Scheme 1, when NR and NT

are sufficiently large, the CDF of Yt,k is given by (4), where
Φt,k,i follows the binomial distribution given by (5), and

PR;q =
{
φ
∣∣∣∣ sin(φ)− 2(q−1)−NR

NR

∣∣ ≤ 1
NR

}
, (6)

PT;p =
{
θ
∣∣∣∣ sin(θ)− 2(p−1)−NT

NT

∣∣ ≤ 1
NT

}
. (7)

Proof. Please refer to Appendix A.

D. System Queue Dynamics

There are K queues for downlink transmission at the BS,
each for one UE. The arrival data of each queue is organized
by packets, each with B information bits. It is assumed that
the number of arrival packets at the k-th UE in the t-th frame,
denoted as At,k, follows independent Poisson distribution with
expectation λk across UEs as in [19], i.e., Pr[At,k = n] =
(λnk/n!)e−λk . Let At,{At,k|∀k∈K} represent the aggregated
packet arrivals in the t-th frame. Without loss of generality, it
is assumed that all packets arrive at the end of each frame.

Suppose the dt-th UE is selected in the t-th frame, the
number of departure packets from the dt-th queue in the t-
th frame is given by Dt,dt =bWRt,dtTF/Bc. Denote Qt,k as
the queue length of the k-th queue at the beginning of t-th
frame and Qmax as the buffer size for each queue both in
terms of packets. The queue dynamics can be expressed as
Qt+1,k = min{QD

t,k+At,k, Qmax}, where the arrival packets
will be discarded if the buffer is full. The post-decision queue
length QD

t,k is defined as

QD
t,k =

{
(Qt,k −Dt,k)+ k = dt,

Qt,k k 6= dt,
(8)

where (·)+,max(0, ·).

III. PROBLEM FORMULATION

Given the precoder and combiner design in Scheme 1, we
shall formulate the UE selection and power allocation for all
the frames in one scheduling period as a finite-horizon MDP.
Note that this is because the system adopts the same prediction
for UE rotations in all the frames of one scheduling period.
In order to facilitate the MDP formulation, the system state,
scheduling action and policy, and post-decision scheduling
policy are first elaborated as follows.

Definition 2 (System State). At the beginning of the t-th
frame, the system state is represented by St , (Qt,Yt),
consisting of queuing state information (QSI) of all the UEs
Qt , {Qt,1, Qt,2, . . . , Qt,K}, and baseband channel power
gains to all the UEs Yt,{Yt,1, Yt,2, . . . , Yt,K}.



(q†t , p
†
t) = arg maxq,p EHt,k

[∣∣aHR (φq)Ht,kaT (θp)
∣∣2]

= arg maxq,p
∑Ncl

k
i=1N

ray
k,i σ

2
α;k,i

{ ∫ φmax

φmin

∣∣aHR (φq)aR(φt,k,i,1)
∣∣2 fφ;k,i(φt,k,i,1)dφt,k,i,1

}
×
{ ∫ θmax

θmin

∣∣aHT(θt,k,i,1)aT (θp)
∣∣2 fθ;k,i(θt,k,i,1)dθt,k,i,1

}
. (3)

FYt,k(x) , Pr[Yt,k ≤ x] = E{Φt,k,i|∀i}
{

1− exp(−x/
∑Ncl

k
i=1Φt,k,iσ

2
α;k,i)

}
, x > 0, (4)

Φt,k,i∼Binomial
(
N ray
k,i ,Pr

[
φt,k,i,`∈PR;q†t

∩[φmin, φmax]
]

Pr
[
θt,k,i,`∈PT;p†t

∩[θmin, θmax]
])

(5)

Definition 3 (Scheduling Action and Policy). At the beginning
of the t-th frame, the scheduling actions include the UE
selection for downlink transmission dt ∈K and the downlink
transmission power Pt,Pt,dt , where the following instanta-
neous power constraint at the BS should be satisfied,

Pt ≤ Pmax, ∀t. (9)
Hence, the scheduling policy of the BS, denoted as Ωt, is a
mapping from the system state St to the scheduling actions.
Thus, Ωt(St),(dt, Pt).

Definition 4 (Post-Decision State). At the beginning of the
t-th frame, the post-decision system state is defined by SD

t ,
(QD

t ,Yt), where QD
t , {QD

t,1, Q
D
t,2, . . . , Q

D
t,K} denotes post-

decision QSI of all the UEs.

The post-decision system state is the system state af-
ter packet transmission but before packet arrivals. Given
the above definition of post-decision system state and
scheduling policy, the transition probability is given
by Pr(SD

t+1|SD
t ,Ωt+1) = Pr(QD

t+1|QD
t ,Ωt+1) Pr(Yt+1) =∏K

k=1 Pr(QD
t+1,k|QD

t,k,Ωt+1,k)
∏K
k=1 Pr(Yt+1,k).

In this paper, the scheduling policies are designed to op-
timize the system queuing performance, while saving the
average total energy consumption. Specifically, the transmis-
sion energy, average packet transmission delay and penalty
of packet drop are considered as the costs of scheduling.
According to Little’s law, the sum of queuing packet numbers
of all the frames in the scheduling period can be used as an
equivalent measurement of average transmission delay. Hence,
we define the following weighted sum of the transmission
power consumption, the number of queuing packets for all UE
and full buffer penalty as the system cost in the t-th frame,
gt
(
St,Ωt(St)

)
,wPPt+

∑
k∈K

(
Qt,k+wQI[Qt,k=Qmax]

)
,

where wP and wQ are the weights of power consumption and
full buffer penalty respectively, and I[·] denotes an indicator
function, which is 1 when the event is true and 0 otherwise.

The overall minimization objective of one scheduling period
with the initial system state S1 is then given by
G(S1,Ω),EΩ

A,Y
[∑T

t=1 gt
(
St,Ωt(St)

)
+%
(
QT+1

)∣∣S1

]
,

where A , {At|∀t}, Y , {Yt|∀t}, Ω , {Ωt|∀t}, and
%(QT+1) ,

∑
k∈KQT+1,k counts for the remaining packet

number at the end of one scheduling period. The expectation
is taken with respect to the randomness of packet arrivals
A and baseband channel power gains Y . As a result, the
transmission design in this paper can be formulated as the

following dynamic programming problem.
P1 : Ω? , {Ω?t |∀t} =arg minΩG(S1,Ω)

s.t. 0 ≤ Pt ≤ Pmax, ∀t.
We shall adopt the Bellman’s equations with post-decision

value functions to solve P1. Note that the baseband channel
power gains are independently distributed in different frames,
it can be averaged as in [19], and the Bellman’s equation based
on the post-decision QSI only can be written as
Wt(QD

t ) =minΩt+1(St+1) EAt,Yt+1

[
gt+1

(
St+1,Ωt+1(St+1)

)
+Wt+1

(
QD
t+1

)∣∣QD
t

]
(10)

where Wt(QD
t ) is the post-decision value function of the

optimal policy (referred to as optimal value function for short),
and WT (QD

T ) , EAT %(QT+1|QD
T ) for the notation conve-

nience. The Bellman’s equations with post-decision system
state can avoid complicated calculation of transition matrix
and expectation of value functions [20]. Moreover, the optimal
scheduling policy in the t-th frame (∀t= 1, 2, . . . , T ) for P1
can be obtained by

Ω?t (St) =arg minΩt(St)
{
gt
(
St,Ωt(St)

)
+Wt

(
QD
t

)}
(11)

s.t. 0 ≤ Pt ≤ Pmax, ∀t.

IV. LOW-COMPLEXITY SCHEDULING

It can be observed from (11) that the optimal value function
for the t-th frame Wt(QD

t ) should be calculated before the
derivation of the optimal scheduling policy for the t-th frame
Ωt(St). However, because of the minimization in (11), it is
difficult to derive the closed-form expression for the optimal
value function in each frame {Wt(QD

t )|∀t}. It is also difficult
to calculate the value functions for all possible system states
numerically due to the huge system state space. In this section,
a low-complexity solution framework is proposed. Specifically,
we first adopt the backpressure algorithm [21] as the base
policy and derive the closed-form expressions of its value
functions (referred to as approximate value function for short).
Then the approximate value functions are used to approximate
the optimal value functions to obtain the improved scheduling
policy by one-step policy improvement.

A. Base Policy

As in (10), the base policy provides an approximation of
average future cost to improve current scheduling actions.
It should have a good scheduling performance and a simple
structure for analysis. Hence, as the base policy, we predeter-
mine the transmission powers and UE selection for all frames
at the very beginning of one scheduling period. Particularly,
given the system QSI in the 1-st frame, we use the average



downlink throughput and packet arrival rate to approximate the
queue dynamics, and adopt the backpressure algorithm [21]
to select the downlink UE. Let PBSL be the predetermined
transmission power and Q†t,k be the approximate queue length
of the k-th queue at the beginning of the t-th frame, then the
index of the selected UE is given by

dΠ
t =arg maxk∈K

[
R†t,k(PBSL)Q†t,k

]
, ∀t, (12)

where R†t,k is the predicted average spectral
efficiency of the k-th UE in the t-th frame, i.e.,
R†t,k(PBSL),

∫
log2

(
1+ PBSLx

N0W

)dFYt,k (x)

dx dx, ∀t, k∈K.
Moreover, given UE selection in the t-th frame, the QSI in
the (t+1)-th frame can be approximated by

Q†t+1,k=

{
min{(Q†t,k−D

†
t,k)++λk, Qmax} k=dΠ

t ,

min{Q†t,k+λk, Qmax} k 6=dΠ
t ,

(13)

where Q†1,k=Q1,k and D†t,k,
⌊
WR†t,k(PBSL)NF/B

⌋
, ∀t, k∈

K. By applying (12) and (13) iteratively, the UE selection of
the base policy can be determined. Hence, the base policy can
be summarized as following.

Policy 1 (Base Policy Π). The transmission power to each
selected UE for base policy is fixed, i.e., Pt = PBSL,∀t.
Moreover, the UE selection is determined by applying (12)
and (13) iteratively, which is denoted as {dΠ

1 , d
Π
2 , . . . , d

Π
T }.

Although the base policy is obtained by approximating
queue dynamics with averaging, the approximate value func-
tion should be evaluated with actual distribution of packet
arrivals and departures. Hence, the approximate value function,
which approximately measures the average system cost for all
the UEs from the (t+1)-th frame, can be written as

WΠ
t (QD

t ) = (T − t)wPPBSL +
∑
k∈KW

Π
t,k(QD

t,k), (14)

where the local value function WΠ
t,k(QD

t,k) is defined as the
average queuing cost raised by the k-th UE from the (t+1)-th
frame to the end of the current scheduling period given the
base policy Π and its local post-decision QSI QD

t,k. Thus,
WΠ
t,k(QD

t,k) ,EΠ
A,Y
[∑T

τ=t+1

(
Qτ,k+wQI[Qτ,k=Qmax]

)
+QT+1,k

∣∣QD
t,k

]
, ∀k ∈ K. (15)

In order to derive the analytical expression of WΠ
t,k(QD

t,k),
denote the number of departure packets from the k-th queue
in the t-th frame under the base policy as DΠ

t,k if the k-th UE
is selected, then we have the following lemma.

Lemma 2. With Scheme 1, the probability mass func-
tion (PMF) of DΠ

t,k is given by Pr[DΠ
t,k = n] =

FYt,k
[(

2
(n+1)B
WTF −1

)
N0W
PBSL

]
−FYt,k

[(
2

nB
WTF −1

)
N0W
PBSL

]
.

Proof. The proof is straightforward based on the definition of
Dt,k and Rt,k.

Hence, the local approximate value function WΠ
t,k(QD

t,k)
(∀t, k) is derived in the following lemma.

Lemma 3 (Analytical Expression of WΠ
t,k(QD

t,k)). Let
ut,k, st,τ,k, c

(1), c(2)∈R(Qmax+1)×1, which are defined by ut,k,
1QD

t,k+1, st,τ,k,1Qτ,k+1, [c(1)]i, i−1+wQI[i=Qmax+1], and

[c(2)]i, i−1, respectively. 1i denotes the column vector whose

i-th element is 1 and other elements are 0. Let Pk,Mt,k ∈
R(Qmax+1)×(Qmax+1), whose entries are given by (17) and (18),
respectively. Then WΠ

t,k(QD
t,k) can be represented by

WΠ
t,k(QD

t,k) =
∑T
τ=t+1 s

T
t,τ,kc

(1) + sTt,T+1,kc
(2), (16)

where st,τ,k = XT
k (t, τ)PT

kut,k, and Xk(t, τ) =∏τ−1
n=t+1 M

I(dΠ
n=k)

n,k P
I(dΠ

n 6=k)
k , τ = t+ 1, . . . , T .

Proof. Please refer to Appendix B.

B. Scheduling with Approximate Value Function

In this part, we use approximate value functions
{WΠ

t (QD
t )|∀t,QD

t } to approximate optimal value functions
{Wt(QD

t )|∀t,QD
t }. Because the approximate value function is

analytically expressed, conventional value iteration to evaluate
the value function can be avoided, which can significantly
reduce the computational complexity. With the approximate
value function, the scheduling actions in the t-th (∀t) frame
could be obtained by solving the following problem.

P2 (One-Step Policy Iteration):

Ψt(St) , (dΨ
t , P

Ψ
t )

=arg minΩt(St)
{
gt
(
St,Ωt(St)

)
+WΠ

t

(
QD
t (St,Ωt)

)}
,

s.t. 0 ≤ Pt ≤ Pmax.

Since both the current system cost and approximate value
function in the t-th frame can be decomposed by each UE,
P2 can be decomposed into K sub-problems. The k-th sub-
problem is given by
P2(k) : Pψt,k =arg minPt,k

{
wpPt,k +WΠ

t

(
QD
t (St, πt,k)

)}
,

s.t. 0 ≤ Pt,k ≤ Pmax,

where πt,k , (k, Pt,k) denotes the policy that the k-th UE is
selected. Moreover, denote the minimized objective of P2(k)
as Gψt,k, then the optimal solution of P2 can be derived by
dΨ
t =arg mink∈KG

ψ
t,k and PΨ

t =Pψ
t,dΨ

t
.

The transmission power allocation for P2(k), which is
a discrete optimization problem, can be achieved via the
following one-dimensional search.

Lemma 4 (Local Power Optimization). The optimized trans-
mission power for the k-th UE (solution of P2(k)) is

Pψt,k = arg minPt,k∈Pt,k

{
wPPt,k + ∆zTt,k(Pt,k)Vt,k

}
,

(19)

where Pt,k,
{

0, 2
B

WNF−1
Yt,k

, 2
2B
WNF−1
Yt,k

,. . .,min
(
2
QmaxB
WNF −1
Yt,k

,Pmax

)}
is the feasible power set, ∆zt,k(Pt,k) = 1QD

t,k(Pt,k)+1 −
1Qt,k+1, QD

t,k(Pt,k)=
(
Qt,k−

⌊WRt,k(Pt,k)TF

B

⌋)+
, Vt,k =∑T

τ=t+1 Y
T
τ,kc

(1)+
∑T+1
τ=t+2 Y

T
τ,kc

(2), and

Yτ,k =

{
PT
k τ = t+ 1,

XT
k (t+ 1, τ)Yt+1,k τ = t+ 2, . . . , T.

(20)

Proof. The feasible power set Pt,k is the minimum required
transmission power to transmit an integer number of packets,
thus it will not affect the optimality. Then P2(k) can be
solved by one-dimensional search in Pt,k. ∆zTt,k(Pt,k)Vt,k=

WΠ
t,k

(
QD
t,k(Pt,k)

)
−WΠ

t,k(Qt,k), where WΠ
t,k(Qt,k) is a constant

in P2(k). Thus, the proof is straightforward.



[Pk]i,j =


Pr[At,k = j − i] 1 ≤ i ≤ Qmax and i ≤ j ≤ Qmax,

Pr[At,k ≥ Qmax + 1− i] 1 ≤ i ≤ Qmax and j = Qmax + 1,

1 i = Qmax + 1 and j = Qmax + 1,

0 otherwise

(17)

[Mt,k]i,j =


Pr[DΠ

t,k ≥ i− 1] Pr[At,k = 0] 1 ≤ i ≤ Qmax + 1 and j = 1,

Pr[At,k −min(DΠ
t,k, i− 1) = j − i] 1 ≤ i ≤ Qmax + 1 and 2 ≤ j ≤ Qmax,

Pr[At,k −min(DΠ
t,k, i− 1) ≥ Qmax + 1− i] 1 ≤ i ≤ Qmax + 1 and j = Qmax + 1

(18)

As a summary, the system can be scheduled in a semi-
distributed manner as elaborated below.
• Step 1: At the beginning of one scheduling period, each

UE (say the k-th UE) calculates {Vt,k|∀t} locally based
on SCSI ISCSI

t and the angular velocity ωk.
• Step 2: At the beginning of the t-th frame (∀t), each UE

(say the k-th UE) calculates the optimal power Pψt,k by
assuming it is selected, and reports Gψt,k and Pψt,k to the
BS via uplink signaling channel.

• Step 3: After receiving the reports from all UEs, the BS
determines the improved scheduling policy Ψt.

V. SIMULATIONS AND DISCUSSION

In this part, the performance of the proposed algorithm is
demonstrated via numerical simulations with existing bench-
mark algorithms for comparison. There are eight UEs in the
system where four UEs are static with zero angular velocities
(indexed with 1 ∼ 4) while the other four UEs are rotating
with angular velocity 2 rad/s (indexed with 5 ∼ 8). We
compare the proposed algorithms with the following three
benchmarks, which are referred to BM1, BM2 and BM3.
For fair comparison, the fixed transmission power of the base
policy and benchmarks are the same, i.e., PBSL =PBM.

BM 1 (Dynamic Backpressure). The transmission power
to each selected UE is fixed to PBM. The UE selection
is based on the backpressure algorithm [21] according
to the real-time data rate and queue length, i.e., dt =
arg maxk∈KRt,k(PBM)Qt,k.

BM 2 (Largest-Rate First). The transmission power to each
selected UE is fixed to PBM. In each frame, the UE with the
largest data rate is selected, i.e., dt=arg maxk∈KRt,k(PBM).

BM 3 (Longest-Queue First). The transmission power to each
selected UE is fixed to PBM. In each frame, the UE with the
longest queue is selected, i.e., dt=arg maxk∈KQt,k.

The instantaneous SNR and queue length of a static UE
(indexed by k=1) and a rotating UE (indexed by k=5) in one
realization of scheduling period are illustrated in Fig. 2. The 5-
th UE cannot find appropriate combiner due to UE rotation and
limited FoV in the middle of the scheduling period, leading to
weak SNRs. It can be observed that the proposed scheme can
predict the low SNR period of rotating UEs and schedule more
transmission opportunities to them before the low SNR period,
so that the packet drop rate can be significantly reduced.
As a comparison, the benchmarks suffer from high packet

Frame index

S
N

R
(d

B
)

Q
u

e
u

e
 L

e
n

g
th

 (
P

a
c
k
e

t)

proposed

BM1

BM2

BM3

-10

0

10

20

30

100

200
k=1

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
-20

-10

0

10

20

30

0

100

200
k=5

Fig. 2. The dynamics of SNR and queue length. T =100, Qmax =
200, Q1,k ∼ U(100, 200), λk ∼ U(2, 6), W = 400 MHz, NF = 10
ms, B = 30000 bytes, NR = 16, NT = 32, θmax = −θmin = 90◦,
φmax=−φmin=30◦, Pmax=30 dBm, Ncl

k =3, N ray
k,i =20, σ2

α;k,i∼
U(4×10−15, 4×10−14), σφ;k,i=σθ;k,i=5◦, N0 =−174 dBm/Hz,
wP=1500, wQ=2000, and PBSL=PBM=27 dBm.

0 0.5 1 1.5 2

Per-Frame Cost 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
 o

f 
P

e
r-

F
ra

m
e

 C
o

s
t

Proposed(P
BSL

=27 dBm)

Proposed(P
BSL

=30 dBm)

BM1(P
BM

=27 dBm)

BM1(P
BM

=30 dBm)

BM2(P
BM

=27 dBm)

BM2(P
BM

=30 dBm)

BM3(P
BM

=27 dBm)

BM3(P
BM

=30 dBm)

(a)

proposed BM1 BM2 BM3
0

5

10

15

20

25

30

A
v
e

ra
g

e
 P

o
w

e
r 

C
o

n
s
u

m
p

ti
o

n
 (

d
B

m
)

proposed BM1 BM2 BM3
0

0.5

1

1.5

2

2.5

3

3.5

A
v
e

ra
g

e
 Q

u
e

u
in

g
 D

e
la

y
 (

s
)

105

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
v
e

ra
g

e
 N

u
m

b
e

r 
o

f 
P

a
c
k
e

t-
D

ro
p

 U
s
e

rs

(b)
Fig. 3. (a) CDF of the per-frame cost. (b) Average transmission power,
queuing delay and the number of packet-drop UEs.

drop rate during the low SNR period. This demonstrates the
performance gain of the sensing-based channel prediction and
the proposed predictive scheduling framework.

While Fig. 2 shows the system performance in a snapshot,
Fig. 3(a) shows CDFs of per-frame cost of the proposed
scheme as well as the benchmarks. It can be observed that
the proposed algorithm has significantly better CDF curves
than the benchmarks. More insights can be obtained from Fig.
3(b), where average transmission power, queuing delay, and
the number of packet drop UEs are illustrated. BM1 has the
medium cost of delay and packet drop penalty. This is because
it makes UE selection according to both the queue length and



data rate. BM2 has the least cost of delay because it attempts to
decrease the queue length as much as possible in every single
frame. BM3 takes only the QSI into account but neglects the
channel state information (CSI), which results in the worst
performance. The proposed scheme manages to achieve the
minimum packet drop rate, while keeping the average queuing
delay in a low level. This demonstrates the benefits of channel
prediction of the proposed scheme in suppressing the packet
drop rate with non-stationary mmWave channel statistics.

VI. CONCLUSION

In this paper, we consider the downlink transmission
scheduling in an mmWave cell. Each UE is rotating with a
predictable angular velocity for a number of frames, where
the angular velocity of rotation can be measured by embedded
motion sensors and reported to the BS. We first propose an
SCSI-based beam alignment scheme. Then, we formulate the
joint optimization of the downlink UE selection and power
allocation as a finite-horizon MDP. To address the curse of
dimensionality, we finally propose a novel approximate MDP
approach via one-step policy improvement over a base policy.
Simulations show that the proposed MDP solution framework
can effectively exploit the motion sensors to predict the future
performance, resulting in an efficient scheduling algorithm.

APPENDIX A
PROOF OF LEMMA 1

Note that Yt,k = |wH
t,kHt,kft,k|2 = <2(wH

t,kHt,kft,k) +

=2(wH
t,kHt,kft,k). According to [22], when NR and NT are

both sufficiently large, we have
∣∣aHR(φq†t

)aR(φt,k,i,`)
∣∣2 →

{0, 1},
∣∣aHT(θp†t

)aT(θt,k,i,`)
∣∣2→{0, 1}. Denote the set It,k,i,{

`
∣∣|aHR(φq†t

)aR(φt,k,i,`)|2 → 1, |aHT(θp†t
)aT(θt,k,i,`)|2 → 1,

ΛR(φt,k,i,`)ΛT(θt,k,i,`) = 1
}

, then Φt,k,i , |It,k,i| will
follow the binomial distribution. Conditioned on {Φt,k,i|∀i},
the real and imaginary parts of wH

t,kHt,kft,k will fol-
low normal distributions, e.g., <

(
wH
t,kHt,kft,k

)∣∣
{Φt,k,i|∀i}

∼

N
(
0, 1

2

∑Ncl
k

i=1 Φt,k,iσ
2
α;k,i

)
. Remind that if χ2

2 is a random
variable following chi-squared distribution with degrees of
freedom 2, then the CDF of χ2

2 is Fχ2
2
(x)=1−exp(−x/2), x>

0. Hence, Lemma 1 is straightforward.

APPENDIX B
PROOF OF LEMMA 3

ut,k and st,τ,k represent the post-decision and pre-decision
probability vector for the k-th queue respectively. [c(1)]i and
[c(2)]i represent the per-frame queuing and packet-drop cost
for the k-th UE in the τ -th frame for cases t+1≤ τ ≤T and
τ=T+1, respectively. Mt,k and Pk are transition probability
matrices for the k-th queue considering both packet departure
and arrival and only the packet arrivals, respectively. In (16),
sTt,τ,kc

(1) and sTt,T+1,kc
(2) counts for the average queuing and

packet-drop cost in the τ -th frame for cases t+1≤τ≤T and
τ=T+1, respectively. Hence, Lemma 3 is straightforward.
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