
Predicting the Channel Access of
Bluetooth Low Energy

Julian Karoliny∗†, Thomas Blazek∗, Andreas Springer†, Hans-Peter Bernhard∗†
∗Silicon Austria Labs GmbH, 4040 Linz †Johannes Kepler University, 4040 Linz, Austria

{julian.karoliny. thomas.blazek, hans-peter.bernhard}@silicon-austria.com, andreas.springer@jku.at

Abstract—Bluetooth Low Energy (BLE) is one of the key
enablers for low-power and low-cost applications in consumer
electronics and the Internet of Things. The latest features such
as audio and direction finding will introduce more and more
devices that rely on BLE for communication. However, like many
other wireless standards, BLE relies on the unlicensed 2.4 GHz
frequency band where the spectrum is already very crowded and
a channel access without collisions with other devices is difficult
to guarantee. For applications with high reliability requirements,
it will be beneficial to actively consider channel access from other
devices or standards. In this work, we present an approach to
estimate the connection parameters of multiple BLE connections
outside our control and knowledge by passively listening to the
channel. With this, we are able to predict future channel access
of these BLE connections that can be used by other wireless
networks to avoid collisions. We show the applicability of our
algorithm with measurements from which we are able to identify
unknown BLE connections, reconstruct their specific connection
parameters, and predict their future channel access.

Index Terms—Bluetooth Low Energy, Channel Access Predic-
tion, Coexistence, Wireless Networks

I. INTRODUCTION

Due to the Internet of Things and Industry 4.0 trends in both
consumer electronics and industrial applications, an increasing
number of devices are wirelessly connected. Currently, most
of these devices operate in the unlicensed 2.4 GHz industrial,
scientific and medical (ISM) band, and each new one is an ad-
ditional competitor for channel access. Since reliability is a key
element in wireless communication, the capability of sensing
and avoiding interference becomes essential. Popular wireless
standards such as Bluetooth® Classic (BT), Bluetooth® Low
Energy (BLE), Wireless Local Area Network (WLAN), and
Thread include channel access methods which observe the
channel before transmitting or distribute the communication
over multiple channels to minimize the chance of collisions on
blocked ones. Many low-power wireless sensor networks rely
on deterministic channel access rather than random channel
access to stay in sleep mode as long as possible. If the access
to the channel is systematic, there is a good chance for other
devices to identify the channel access pattern and include

This work is funded by the InSecTT project (https://www.insectt.eu/).
InSecTT has received funding from the ECSEL Joint Undertaking (JU) under
grant agreement No 876038. The JU receives support from the European
Union’s Horizon 2020 research and innovation programme and Austria,
Sweden, Spain, Italy, France, Portugal, Ireland, Finland, Slovenia, Poland,
Netherlands, Turkey. The document reflects only the author’s view and
the Commission is not responsible for any use that may be made of the
information it contains.

it in their own access scheduling. However, this systematic
access might only be known to the communicating devices
and may appear random to external viewers. One example is
BLE, where connected devices agree on specific transmission
times for the communication. For the devices themselves, the
communication happens periodically, however, due to channel
hopping, the channel access might appear random from an
external viewpoint.

In this work, we propose an approach to identify active
BLE connections, estimate connection specific parameters, and
predict future channel access of these connections. The current
BLE version supports two different channel access algorithms
and by only passively listening to a single BLE channel, we
can reconstruct both for multiple BLE connections in parallel.
For the newest channel access algorithm, we will show the
possibility to fully reconstruct the channel hopping pattern of
a connection, including the access to channels which are not
actively observed. The channel access information can be in-
cluded in wireless networks with high reliability requirements
to actively avoid collisions with BLE connections active in
the same area. The rest of the work is organized as follows.
In Section II we give an overview of the important parts of
the BLE specification and how channel access is coordinated.
In Section III we will introduce our approach for channel
access prediction which is then evaluated in Section IV with
measurements. Finally, conclusions are drawn in Section V.

A. Related Work

In the unlicensed spectrum, the coexistence with other
devices has to be considered. Authors in [1], [2] studied
the coexistence of different wireless communication protocols
operating in the 2.4 GHz ISM band. In the case of BLE,
the specification [3] defines no method to detect an occupied
channel and reschedule the communication. However, BLE
applies adaptive frequency hopping where specific channels
can be excluded for communication. Authors in [4] studied the
channel access mechanism of BLE and proposed an approach
to select the best channels. Active interference mitigation is
a key enabler for low power and high reliability in wireless
networks. Specifically, it is important to enable deterministic
channel access via estimation of communication slots available
for interference-free communication. In particular, avoiding
interference is a must if the ISM band is used for deterministic
wireless communication, as in [5] for Time-Sensitive Network-
ing (TSN). Authors in [6] proposed an approach to reconstruct

ar
X

iv
:2

30
1.

08
10

9v
1

 [
cs

.I
T

]
 1

9
Ja

n
20

23

BLE connection parameters which can be directly used to
predict the channel access of BLE connections. This approach
is similar to ours, however, their work focuses only on the
older version of the channel access algorithms in BLE. Due
to the needed channel hopping of the sniffer in their approach,
only one BLE connection can be easily observed at a time. In
our approach, only passive listening to the channel is required
and both channel access algorithms of BLE are covered. The
prediction for BLE advertising channels is not within the scope
of this work due to its partially random nature. Authors in
[7] discussed the channel access for advertisement from a
jamming perspective.

B. Notation

Scalars are written as x, while vectors and matrices are
denoted as lower- and uppercase boldface respectively (x and
X). Vectors can be indexed with square brackets, e.g. x[r] is
the r-th entry of the vector starting with index 0. Time indices
are indicated with subscripts xk.

II. BLUETOOTH LOW ENERGY LINK LAYER

BLE is a Wireless Personal Area Network (WPAN) tech-
nology that operates in the 2.4 GHz ISM band. The physical
(PHY) layer is responsible for the transmission and reception
of raw data. This work, however, targets the channel access
prediction for BLE devices. Thus, we focus on the link layer
specification of the BLE protocol. Here the channel access
scheme and channel hopping are defined.

In the BLE link layer, the operational states of BLE devices
are defined, which can be summarized in connection state
and non-connection states. The non-connection states include
all states where no direct connection between BLE devices
is established. This includes the important advertising state
where devices announce their presence and may start setting
up connections. In the connection state, the devices exchange
data in periodic connection events. The BLE specification [3]
defines 40 channels, where channels 0-36 are used for general
connection events and channels 37-39 are used for advertise-
ment. Most of the communication in BLE is performed in the
connected state, on which we will focus in the following.

A connection between central and peripheral is established
through an advertisement event, where the peripheral is the
one that advertises its presence and the central requests a con-
nection. In the connection process, the necessary parameters
are exchanged and the two devices start communicating. Data
between central and peripheral is only exchanged during so-
called connection events, which happen periodically with the
connection interval cint (a multiple of 1.25 ms in the range
of 7.5 ms to 4 s). Each connection event includes at least
one message sent by the central directly at the beginning.
Afterwards, the peripheral and central transmit alternating
if data is available. The peripheral is also allowed to skip
connection events to save energy. To enumerate the connection
events, we will use the connection event counter k, a 16-
bit value that always starts at zero for the first connection
event, is incremented by one for every connection event,
and shall be set to zero again in case of a 16-bit number

overflow (65536 to 0). The goal of this work is to predict
the channel access of unknown BLE connections in a certain
frequency band or channel by passively listening to BLE
communication in this channel. If communication between
BLE devices would happen only on one channel, the access
prediction would be trivial, as it occurs every cint seconds in
that channel. However, BLE applies frequency hopping spread
spectrum (FHSS). A new communication channel is chosen for
every new connection event, such that the access will appear
random if only one channel is considered. This is also the
reason why sniffing an already established BLE connection
is a challenging task, since you need to know the connection
parameters to follow the channel hopping. BLE also provides
the possibility to exclude certain channels from hopping, for
example if the link quality is not sufficient. The used channels
are collected in ascending order in the channel map cmap.
Table I summarizes the general connection parameters for BLE
connections.

TABLE I: Connection parameters for channel hopping.

parameter description

cint connection interval
cmap list of allowed channels
nch number of allowed channels
k connection event counter

chk calculated channel for the k-th event
rk remapping index to account for cmap
ch′k used channel for the k-th event

In the BLE specification there are currently two channel
hop algorithms defined. The first one is the Channel Selection
Algorithm #1 (CSA#1), which was released with the first
BLE specification, and the second is the Channel Selection
Algorithm #2 (CSA#2), which was implemented with BLE
version 5.0. To tackle the whole access prediction problem,
we will introduce both channel selection algorithms in the
following.

A. Channel Selection Algorithm #1

CSA#1 is the basic algorithm for channel selection and
is used for all connections between devices where at least
one device has a BLE version below 5.0. In addition to the
parameters in Table I, the channel hopping in CSA#1 is defined
by the hop increment hinc. The parameters are known for the
connected devices and used to calculate the communication
channel for each connection event k.

For CSA#1 the unmapped channel chk for the k-th connec-
tion event is calculated by

chk = mod (chk−1 + hinc, 37) , (1)

where mod(·, ·) is the modulo operation which assures that
chk is within the allowed BLE channels. Since BLE also
allows adaptive channel selection, we have to check whether
the calculated channel chk is in the allowed channel map cmap.
If chk is an allowed channel, it is also set as mapped channel
ch′k and used in the k-th connection event. If it is not part

of the channel map, we first have to calculate the remapping
index rk with

rk = mod (chk, nch) . (2)

The modulo operation ensures that rk is restricted to the
number of allowed channels nch. Now we can map the channel
to ch′k with

ch′k = cmap [rk] . (3)

The remapping is performed only if chk is not within the
allowed channel list, otherwise no remapping is performed.
For the k-th connection event the channel ch′k is used for
communication.

An important characteristic of CSA#1 can be drawn from
(1). It has the form of a linear congruential generator de-
scribed in [6]. The special parameter choice for this equation
in the BLE specification makes the hop pattern repeat every 37
connection events. For example, if a connection event occurs
on channel 22 for the k = 5-th connection, it will also happen
37 connections later at k = 42 on the same channel.

To demonstrate this and show an example pattern of the
CSA#1, simulations were performed with cint = 7.5ms and
hinc = 7. Additionally, adaptive channel hopping is activated
where we do not allow communication in the first 10 channels.
Figure 1 depicts the connection event counter k and the
corresponding channel for this event. The red lines every
37 connection events mark the positions where the channel
access pattern repeats. In this figure, we show the results for
the unmapped channel chk with orange plus-signs and the
mapped channel ch′k (without using channel 0-10) with blue
crosses. The remappings are indicated with green arrows. We
can see for both cases that the pattern repeats exactly after 37
connections.

0 20 40 60 80 100

connection event k

0

10

20

30

40

ch
an

n
el

n
u

m
b

er

ch′k (mapped)

chk (unmapped)

Fig. 1: Example channel hopping for CSA#1.

B. Channel Selection Algorithm #2
In BLE version 5.0 CSA#2 was added, removing some

disadvantages like the short repetition interval and the unequal
distribution if channels are excluded. Additional to the param-
eters in Table I, the channel identifier CI is used in CSA#2
to calculate the communication channel. CI is assumed to be
known since it can be easily calculated with

CI = AA[31:16]⊕AA[15:0] , (4)

where ⊕ is the bitwise xor operation and AA is the 32-bit
access address that is transmitted in every BLE packet. The
notation AA[15:0] defines the first 16 bit of the access address
and AA[31:16] the last, respectively.

In CSA#2 the channel hopping is defined by the pseudo
random number prn ek, that is calculated by the channel
identifier CI and the connection event counter k using the
function composition

prn ek = (⊕|CI ◦fMAM|CI ◦ gperm ◦ fMAM|CI ◦ gperm

◦ fMAM|CI ◦ gperm ◦ ⊕|CI)(k) . (5)

⊕|CI(x) is a bitwise xor function conditioned on CI that can
be written as

⊕|CI(x) = x⊕ CI . (6)

gperm is a permutation operation that consists of separately bit-
reversing the lower and upper 8 input bits [3].
fMAM|CI(x) is a multiply, add, and modulo (MAM) element,
again conditioned on CI, that is defined by

fMAM|CI(x) = mod
(
17x+ CI , 216

)
. (7)

The unmapped channel chk is now calculated using (5) for
every connection event k as

chk = mod (prn ek, 37) . (8)

Compared to before, chk does not depend on the previous
result k− 1, but only on current k and CI. Similar to CSA#1,
if chk is not part of the channel map cmap we first have to
calculate the remapping index rk using

rk =
⌊nch prn ek

216

⌋
, (9)

where b·c is the floor function (the greatest integer less than
or equal to the argument). Now we can map the channel to
ch′k with

ch′k = cmap [rk] . (10)

Remapping is performed only if chk is not within the allowed
channel list. For the k-th connection event the channel ch′k is
used for the communication.

Also for CSA#2 simulations were performed with cint =
7.5ms and a cmap that excludes the first 10 channels. As access
address we use 0xB0A1CD9D to calculate CI by (4) and start
for k = 0. Figure 2 depicts the connection event counter k
and the corresponding channel for this event. The results for
the unmapped channel chk are marked with orange plus-signs
and the mapped channel ch′k with blue crosses. Again, the
remapping is indicated with green arrows. Since the repetition
interval of the pattern is much larger (65536 instead of 37
connection events), no repetition is visible here. Compared to
CSA#1, the remapping in Fig. 2 is not always to the same
channel, it is uniformly distributed across all nch channels [4].

0 20 40 60 80 100

connection event k

0

10

20

30

40
ch

a
n

n
el

n
u

m
b

er

ch′k (mapped)

chk (unmapped)

Fig. 2: Example channel hopping for CSA#2.

III. CHANNEL ACCESS PREDICTION

In this section, we present an approach to predict the
channel access of BLE devices for both channel selection
algorithms. Current approaches in literature require additional
channel hopping of the sniffer, which restricts the evaluation
to only one BLE connection at a time. With our approach, we
are able to evaluate multiple BLE connections in parallel.

If one BLE channel is sniffed, packets of multiple connec-
tions can be observed. However, these packets can be easily
separated by the access address which is transmitted at the
start of each packet [3]. The header of a BLE payload is not
encrypted [8], which allows us to explicitly filter the central
node messages that are transmitted at the beginning of all
connection events. We define the channel we are passively
listening to as chsniff. In the following, the reconstruction is
only described for a single device of a BLE connection (e.g.
central), however, it works also for multiple devices in parallel
since they can be distinguished by the access address and
header. By listening passively to chsniff, the only measurement
that is available is the time ta ∈ RNa of the message reception,
where Na is the number of measurements we collected as

ta = [t0, t1, t2, . . . , tNa−1] . (11)

One important characteristic of ta is that between measure-
ments there is always an integer multiple of the connection
interval, which can be written as

∆ta =
[
t1 − t0︸ ︷︷ ︸
x1cint

, t2 − t1︸ ︷︷ ︸
x2cint

, t3 − t2︸ ︷︷ ︸
x3cint

, . . .
]
≡ x cint , (12)

where xi is an integer number that may vary for each entry
and cint is the connection interval that we need to estimate. In
our approach we use ta to reconstruct all needed parameters
for the channel access prediction.

However, we first need to reconstruct the connection interval
cint and determine which of the two channel selection algo-
rithms is used. For this we have to distinguish three different
cases. First, if all entries in (12) are the same, CSA#1 was
used and we can estimate cint by simply dividing the entries
by 37, which is the repetition interval. In the second case, the
entries are different, but they repeat after a few measurements.
This is due to the short repetition interval of CSA#1 which

can be seen in Fig. 1 by observing channel 10. Here we
have two observations per repetition interval because of the
remapping from channel 0. In this example we would measure
∆ta = [25cint, 12cint, 25cint, 12cint, . . .], were we clearly see
the characteristic of CSA#1. Since there is always an integer
number of connection events between the measurements, cint
can be estimated by

ĉint = GCD(∆ta) , (13)

where GCD is a function that calculates the greatest common
divider. In the third case, (12) does not show any repetition,
so CSA#2 was used. Here, cint can also be calculated with
(13). To account for measurement errors, a rounding to 1.25 ms
steps can be applied, which is the resolution of cint defined in
the BLE specification [3]. For both algorithms, we give now
an approach to predict the future channel access.

A. Channel Selection Algorithm #1
As mentioned in Section II-A, the channel access pattern

repeats every 37 connection events. For example, if we listen
to chsniff and observe packets from a device at the connection
event k = 2 and k = 4, the channel access will also be
observable for k = 39 and k = 41. As a result, for CSA#1 we
only need the connection interval cint and measure for a period
of 37 cint. Every access from the device to the sniffed channel
within this period will appear again after 37 connection events,
the starting point is not important.

With cint and the observations per repetition, the future
channel access can be predicted by simply adding 37 cint to
the current observation. To account for measurement errors
and clock drifts, a Kalman filter [9] with a constant velocity
motion model can be used to stay synchronized with the
connection interval. By listening only passively to one channel,
it is not possible to estimate the channel map cmap and the
hop increment hinc. If chsniff is changed during the sniffing
procedure, it is possible to estimate hinc and cmap as described
in [6]. However, since our use case is the prediction of channel
access for one channel, these parameters are not needed.

B. Channel Selection Algorithm #2
Since the CSA#2 has a more complex structure and lacks the

short repetition interval, all parameters listed in Table I have
to be estimated for the access prediction. For the estimation,
we propose a two-step approach in which we first reconstruct
the connection event counter k and then the channel map cmap.

1) Reconstruct the connection event counter: With cint
computed by (13), we know how many channel hops happened
between the measured connection events in ta. The sniffed
BLE connection has most likely not just started, thus the con-
nection event counter k will be some number between 0 and
65535. We define kinit as the connection event corresponding
to the first observation of the BLE connection. i.e. the value of
k for ta[0]. With kinit we can determine the value of k for all
measurements in ta and also for all future measurements. For
this, we construct the binary vector cmeas ∈ {0, 1}Nm using
∆ta as

cmeas =
[
I1×x1 , I1×x2 , . . . , I1×xNa−1

]
, (14)

where xi can be calculated with cint from (12) and IM×N is
a M ×N matrix where the entries are given as

In,m =

{
1 m = n
0 otherwise . (15)

cmeas basically lists all Nm connection events that happen
during the measurement, where the entries are 1 if there
was a observation in chsniff and 0 otherwise. Additionally, we
construct the binary vector cref ∈ {0, 1}65536 for all possible
k ∈ [0, 65535]

cref[k] =

{
1, if chk = chsniff

0, otherwise
, (16)

using (5) and (8) to calculate all possible chk. Here, the
unmapped channel number is used, since we have no prior
knowledge of cmap. The idea now is to find the position
where cref and cmeas have the highest correlation. For this,
we calculate the circular cross-correlation between both and
estimate the maximum as

r[k] =

Nm−1∑
m=0

cref [mod
(
m+ k, 216

)]
cmeas[m] , (17)

kinit =argmax
k

(
r[k]

)
. (18)

However, to predict all channel accesses of a BLE connection,
we also need to consider the remapping in (9) and (10).
Therefore, cmap also needs to be estimated.

2) Estimate the channel map: One advantage of CSA#2 is
that, compared to CSA#1, the remapping of a certain channel
appears not always to the same other channel (compare the
remapping in Fig. 1 and Fig. 2). Due to this, an unused
channel will always be mapped to the sniffed channel chsniff if
we observe the channel long enough. This characteristic can
be used to completely reconstruct the channel map without
listening to all channels. The schematic of this approach is
shown in Fig. 3 where we assume that we are passively
listening at chsniff = 22. Here we again use cref for all possible
k and compare it with cmeas. The two vectors are now aligned
at kinit, as highlighted in the figure. For all entries where the
unmapped channel chk is chsniff, both cref and cmeas have 1
as entry. In the cases where the calculated channel is not the
sniffed one, we have no observations in general. However, in
some cases we will have an observation in cmeas but not in cref.
This is caused by remapping, for example in Fig. 3 for channel
5 highlighted with the green dashed rectangle. In this case, we
can be sure that the corresponding channel, e.g. here channel
5, is not part of the channel map. However, the counter-
argument cannot be used. If we have no measurement we do
not know if the channel access happens at the planed channel
or was remapped to a channel we are not observing. With this
approach, cmap and nch can be reconstructed iteratively.

To compute the expected number of required measurements
for reconstructing CSA#2, we assume an uniform distribution
both for the mapping and remapping [4]. Thus, we expect an
excluded channel to be remapped to the sniffed channel on
average on the nchth access. The coupon collector problem

chk =

cref =

cmeas =

[. . . 03 22 17 31 05 12 14 18 22 35 21 . . .]

[. . . 0 1 0 0 0 0 0 0 1 0 0 . . .]

[1 0 0 1 0 0 0 1 0 0 . . .]

kinit

caused by remapping

Fig. 3: Process to reconstruct the channel map cmap.

[10] gives us an estimate for the expected number of channel
access needed to access every remapped channel at least once.
Combined with the probability of accessing an excluded chan-
nel prem = 37−nch

37 , we estimate the number of channel hops
to be measured to be Nm = nch(37−nch)

(∑37−nch
i=1

1
i

)
p−1rem,

with the worst case occurring for nch = 28, resulting in
Nm ≈ 2932, or 21.99 s for cint = 7.5ms.

With CI, k, cmap, and nch we have now all parameter to
perform the same hop calculation as the BLE devices of the
sniffed communication. As a result, we are able to predict the
access to all used BLE channels and not only the sniffed one.
This is unique for this algorithm, since for CSA#1 we would
need to sniff multiple channels for this. Similarly to CSA#1, it
is necessary to account for clock drifts and stay synchronized
with the connection interval for the prediction step.

IV. MEASUREMENT RESULTS

With our approach the channel hopping can be predicted
exactly and prediction problems can only occur due to mea-
surement errors. Therefore, instead of simulations, we directly
show the applicability of our approach with measurements.
Our measurement setup consists of six Nordic NRF52840 BLE
devices that form three BLE connection pairs and one sniffer
based on the Ubertooth One. The BLE devices are running the
heart-rate monitor sample of the Zephyr Project [11], mod-
ified to allow configuring cint and cmap. The Ubertooth One
demodulates the raw signals of one BLE channel and provides
the measured bitstream. With this we can measure multiple
BLE connections in parallel and separate individual ones by
their access address. The measurements conducted during this
work are published as open-source in [12], where also a more
detailed description of the setup is provided. For the following
evaluation, the measurement set dataset ubertooth/set 1 in
[12] was used. The configuration of the BLE devices is listed
in Table II.

TABLE II: Configuration parameters and prediction results.

CSA cint [ms] cmap ĉint [ms] RSME [mus]

1 18.75 0x1FFFFFFC00 18.747 0.1163
2 12.50 0x1E00E00700 12.498 0.0699
2 7.50 0x1FFFFFFC00 7.499 0.1187

For two BLE connection pairs CSA#2 and for one the
older CSA#1 was used. The devices communicated with three
different values of cint and we applied two different values
of cmap. Table II provides the hexadecimal representation of

the channel maps, where 0x1FFFFFFC00 corresponds to a
channel map where we do not use the first 10 BLE channels (as
in Figs. 1 and 2) and 0x1E00E00700 uses channels between
the widely used WLAN channels 1, 6 and 11. For the sniffer,
we choose a center frequency of 2.45 GHz, which corresponds
to BLE channel 22.

The measurement duration was 400 s, where we used the
first 100 s to estimate all needed parameters as described in
Section III and performed predictions on the remaining 300 s.
For the prediction, we first evaluated the connection counter
k of the latest measurement and then calculated the future
connection events for the observed channel using the method
described in Section III. To predict the access time a few
connection events ahead, a simple multiplication with ĉint is
sufficient to accurately predict the channel access. However,
to account for clock drift and measurement errors, we added
a Kalman filter with a constant velocity motion model to stay
synchronized and predict the channel access time with a higher
accuracy. Table II lists the root mean squared error (RMSE)
between the measured ta and the predicted one for the
remaining 300 s, and also the estimated ĉint. The estimated con-
nection intervals match the configured but are slightly lower
due to clock differences between sniffer and BLE devices.
For all active BLE connections, we were able to reconstruct
the hopping pattern and stay synchronized to the individual
connections. We could achieve an average RMSE of 0.1016 ms
for the access time prediction. Fig. 4 shows the empirical
Complementary Cumulative Distribution Function (eCCDF) of
the absolute error between the estimated channel access and
the measured one, where we additionally marked the 5% and
50% probability including the corresponding absolute error.
We can see that 50% of the estimation shows an error below
0.023 ms, while only for 5% of the measurements the error
exceeded 0.236 ms. With this accuracy, it is easily possible to
stay synchronized and continuously perform predictions of the
channel access. Since the channel access is deterministic and
as soon as the corresponding parameters are reconstructed,
the channel access can be theoretically estimated exactly.
The presented error is due to the measurement accuracy and
missing measurements.

0 0.023 0.236 0.3

absolute error in ms

0.0

0.2

0.4

0.6

0.8

1.0

eC
C

D
F

Fig. 4: eCCDF of the absolute error between all combined
measurements and the corresponding predictions.

As long as the parameters of the observed connections do
not change, e.g. an update of cint or cmap, we are able to
calculate the channel hopping in a similar way as the BLE
devices and continue predicting the channel access. To account
for changes in the parameters, the corresponding steps in
Section III have to be repeated. However, since the procedure
is iterative, it is beneficial to perform the parameter estimation
continuously for new measurements. This allows to detect
changes and immediately update the algorithm.

V. CONCLUSION

In order to have a more deterministic channel access in
ISM bands, we presented an approach to predict the channel
access of multiple unknown BLE connections. We are able
to identify active BLE connections and reconstruct their rele-
vant connection parameters. Based on the standardized access
schemes for BLE we are thus able to predict future channel
access for multiple devices in parallel. These predictions can
be used by wireless networks with high reliability require-
ments operating in close proximity to the BLE devices to
reschedule their own communication and avoid using time
slots and channels with predicted interference. For the latest
channel selection algorithm in BLE version 5.0 and above,
our algorithm allows to completely reconstruct the connection
parameters. This gives us the unique possibility to predict the
future channel access for all used BLE channels while only
listening passively to a single one. The applicability of this
approach is demonstrated by measurements and identification
of three BLE links including their channel access.

REFERENCES

[1] R. Natarajan, P. Zand, and M. Nabi, “Analysis of coexistence between
IEEE 802.15.4, BLE and IEEE 802.11 in the 2.4 GHz ISM band,”
in IECON 2016 - 42nd Annual Conference of the IEEE Industrial
Electronics Society, 2016, pp. 6025–6032.

[2] W. Guo, W. M. Healy, and M. Zhou, “Impacts of 2.4-GHz ISM Band
Interference on IEEE 802.15.4 Wireless Sensor Network Reliability in
Buildings,” IEEE Transactions on Instrumentation and Measurement,
vol. 61, no. 9, pp. 2533–2544, 2012.

[3] Bluetooth SIG, “Bluetooth Core Specification,” Dec. 2019, v 5.2.
[4] B. Pang, K. T’Jonck, T. Claeys, D. Pissoort, H. Hallez, and J. Boydens,

“Bluetooth Low Energy Interference Awareness Scheme and Improved
Channel Selection Algorithm for Connection Robustness,” Sensors,
vol. 21, no. 7, 2021.

[5] M. K. Atiq, R. Muzaffar, O. Seijo, I. Val, and H.-P. Bernhard, “When
IEEE 802.11 and 5G Meet Time-Sensitive Networking,” IEEE Open
Journal of the Industrial Electronics Society, vol. 3, pp. 14–36, 2022.

[6] S. Sarkar, J. Liu, and E. Jovanov, “A Robust Algorithm for Sniffing
BLE Long-Lived Connections in Real-Time,” in 2019 IEEE Global
Communications Conference (GLOBECOM), 2019, pp. 1–6.

[7] S. Bräuer, A. Zubow, S. Zehl, M. Roshandel, and S. Mashhadi-Sohi,
“On practical selective jamming of Bluetooth Low Energy advertising,”
in 2016 IEEE Conference on Standards for Communications and Net-
working (CSCN), 2016, pp. 1–6.

[8] M. Cäsar, T. Pawelke, J. Steffan, and G. Terhorst, “A survey on
Bluetooth Low Energy security and privacy,” Computer Networks, vol.
205, p. 108712, 2022.

[9] G. Welch, G. Bishop et al., “An introduction to the Kalman filter,” 1995.
[10] P. Flajolet, D. Gardy, and L. Thimonier, “Birthday paradox, coupon

collectors, caching algorithms and self-organizing search,” Discrete
Applied Mathematics, vol. 39, no. 3, pp. 207–229, 1992.

[11] Zephyr Project, https://github.com/zephyrproject-rtos/zephyr, Ver. 2.7.
[12] J. Karoliny, T. Blazek, H.-P. Bernhard, and A. Springer,

“InSecTT BLE Channel Sniff Dataset,” Distributed by Zenodo
https://doi.org/10.5281/zenodo.7152044, Sep. 2022.

