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Abstract—One of the innovations brought by Mirai and its
derived malware is the adoption of self-contained loaders for
infecting IoT devices and recruiting them in botnets. Functionally
decoupled from other botnet components and not embedded in
the payload, loaders cannot be analysed using conventional ap-
proaches that rely on honeypots for capturing samples. Different
approaches are necessary for studying the loaders evolution and
defining a genealogy. To address the insufficient knowledge about
loaders’ lineage in existing studies, in this paper, we propose
a semantic-aware method to measure, categorize, and compare
different loader servers, with the goal of highlighting their
evolution, independent from the payload evolution. Leveraging
behavior-based metrics, we cluster the discovered loaders and
define eight families to determine the genealogy and draw a
homology map. Our study shows that the source code of Mirai is
evolving and spawning new botnets with new capabilities, both
on the client side and the server side. In turn, shedding light on
the infection loaders can help the cybersecurity community to
improve detection and prevention tools.

Index Terms—IoT botnet, loader, taxonomy, lineage inference

I. INTRODUCTION

Following the growth of the IoT market, botnets recruiting
IoT devices have become a major cyber-security threat. Earlier
in 2016, the emerging Mirai botnet drew attention from the
cybersecurity community. The operator launched a 1.1Tbps
DDoS attack using 148,000 IoT devices, breaking the record
and making it the most notorious botnet clan in the following
years. As the Mirai’s code release [1] have stimulated the
evolution of botnet malware, the cybersecurity community has
invested considerable energy to define complete taxonomies
that would help to understand the differences and similarities
between emerging variants. Empirical studies have discovered
multiple families and defined by general taxonomy studies [2]—
[4]], while other efforts went into collecting and dissecting
malware samples to identify less obvious variants [5]-[7].

Although these investigations depicted a clear genealogy
of malware families and variants, sample-centered approaches
fail to consider server-side components that are characteristics
of Mirai-like botnets. In particular, while conventional worms
infect new victims independently, Mirai exhibits a decoupled
design that assigns infection functions to a separated self-

contained loader server, deployed on cloud services. By
assigning to the bots the discovery task and offloading the
infection process to an external loader server, Mirai reduces
the amount of resources required for a machine to function as
a bot and allows for recruiting resource-restricted IoT devices.

The design choice of Mirai presents different challenges
for the research community. On the one hand, delegating
the infection tasks to cloud services results in botnets that
are split in disjoint parts, making them harder to study as
a whole system. On the other hand, this choice prevents
honeypots from capturing a vital part of Mirai code and
operations. Therefore, studies limited to payload-based lineage
inference are inherently incomplete, as they neglect the in-
fecting toolkits. Server-side studies are critical to understand
in depth botnets infrastructure. By highlighting the peculiar
characteristics of intrusion toolkKits, malware studies can shed
new light on the relationship between botnet campaigns, as
well as improve the efficiency of defense strategies against
new attack vectors.

In this paper, we focus on the telnet loader, the only
infection toolkit distributed in the original Mirai codebase.
Our work provides a server-side view of botnets evolution and
a novel behavior-based taxonomy of bot loaders, following
a conventional family-variant epistemology. To address the
absence of loader samples, we analyse the interaction logs
captured using telnet honeypots. Under the assumption that
different intrusion toolkits use different infection instructions,
we adopt a semantic-aware strategy to map differences and
similarities in instruction sets to lineages. The paper’s contri-
butions are the following:

e We propose a semantic-aware method to analyse the
lineage of bot loaders through their interaction logs,
captured via honeypots;

¢ We conduct a taxonomy study on infection toolKkits,
evaluate the behavioural patterns, and define a genealogy
of eight families;

o We highlight the existence of an unconventional loader,
suspected to conduct fileless attacks, and we confirm its
homology with conventional file-based bot loaders;

o We highlight that infection loaders evolve independently



from their payloads and we advocate the importance of a
server-side perspective in botnet provenance attribution.

II. RELATED WORK

Since the source code of Mirai has been publicly released,
dozens of variants appeared in the wild and hundreds of
massive botnets spawned. The cybersecurity community strove
to produce a taxonomic view on these botnet campaigns and
capture their evolution. Most studies built their observations
on the relationships between botnets on empirical definitions
of families and variants. Pa et al. [§]] analyzed and categorized
emerging botnets based on an observation of shared command
sequence patterns. Antonakakis et al. [2]] and Herwig et al. [3]
analyzed two emerging botnet families, Mirai and Hajime, to
discuss their propagation and evolution. To examine the com-
petition and battle among botnets, Griffioen [4] categorized
botnet campaigns into several variants by their identity strings
before discussing their behavior. Dang et al. [9] categorized
fileless attacks on Linux-based IoT devices and correlated
these attack vectors with known botnet families. Alrawi et
al. [10] discussed the lifecycles of botnets based on family
definitions from VirusTotal [11], a popular malware detection
tool with a collection of anti-virus engines.

Beyond the definition of families, depicting their evolu-
tion and variation under the family-variant epistemology is
also critical to botnet studies. Most studies obtain evidence
from bot samples, the most easy-to-access components, by
involving bindiff and other sample-centered techniques. Wang
et al. [[7] pointed out that investigating relationships among
botnet families could be a fundamental step for provenance,
triage, labeling, lineage analysis, and authorship attribution.
They derived knowledge of botnet samples from online articles
and captured samples, proposed a hybrid methodology to
construct a lineage graph, and discussed the lineage of 72
botnet families. Cozzi et al. [5] shed light on the tangled
genealogy of botnet samples by measuring shared components
across malware samples from different families. Most anti-
virus engines also used YARA [12] to match the shared
patterns of a malware family, so that they could relate unseen
samples to existing families or variants.

As dissecting samples of bot loaders is impractical due to
the absence of samples, many studies further explored various
intrusion fingerprints to reveal their covert relationships. The
first studies on Mirai [2]], and Hajime [3] studied the password
dictionaries captured by honeypots to discuss the lineage of
botnet variants. Lingenfelter et al. [13] made a comparison
of initial commands and query tokens to demonstrate the
variation of telnet intrusion toolkits. Torabi et al. [[14] tried
mining unique strings from logs to build associations among
active botnets. Tabari et al. [[15] made a statistical analysis of
the most commonly exploited vulnerabilities, credentials, and
intrusion commands. However, while sample-centered works
have always overlooked loaders in lineage inference, simply
comparing strings or fingerprints in intrusion toolkits cannot
yield a systematic view. The families and variants derived
from malware samples also brought a prior hypothesis bias

to these studies, which effectively hinders the understanding
of the desired server-side behaviors.

III. METHODOLOGY

In this section, we categorize telnet loaders into families
and discuss their variation through captured sequences of
intrusion commands. We assume that the sequence of in-
trusion commands may reflect loaders’ functions and inner
implementation, so we propose a semantic-aware metric to
describe the similarity among collected sequences and leverage
agglomerative clustering to categorize them into families.
Based on the agglomerative tree, we further present the shared
patterns among sibling loaders to yield a systematic conclusion
about the variation and homology of intrusion toolkits from a
server-side perspective.

A. Data Collection

Telnet is a text-based protocol commonly used for accessing
a remote shell on IoT platforms. Although botnets have
been evolving their toolkits to exploit new vulnerabilities in
different protocols, bot masters are still working on telnet-
based intrusions to adapt to more vulnerable devices. Based
on such behaviors, recent studies on IoT botnets [3], [4]], [[14]
all considered telnet loaders as a crucial basis to make com-
parisons among botnet families. Thus, we initialize the study
by investigating telnet protocols to understand the behavior of
botnet loaders.

We deploy a honeycloud system to record command se-
quences from loaders. We deploy frontends on 3 virtiual cloud
servers in China, Singapore, and the United States to redirect
requests to the honeycloud backend. The honeycloud backend
dispatches telnet conversations to the backing devices listed
in Table [Il then it substitutes the requested username and
password to allow botnets to access our deployed devices.
We only record the requests of intrusion commands from
botnets and drop all responses to avoid client-side noise for our
server-side analysis. All requests collected from a conversation
are concatenated into a single “request log” to represent the
behavior and function of a loader.

TABLE I
DEPLOYED BACKING DEVICES DURING THE EXPERIMENT

Software version
PandoraBox git-6fcbaa5
OpenWRT 21.02
KoolShare Merlin

Device name
Lenovo Y1S
Netgear R7800
Netgear R6300v2

Type

Smart router

IP Camera Hikvision (Stock)
ONU CMCC I-120EM (Stock)
Other Raspberry Pi 3B Raspberry Pi OS Lite Jan 2021

To evaluate the effectiveness of our proposed method, we
run a Hajime bot and a Mirai loader in a QEMU ARM sandbox
to generate control group data. The Hajime bot sample is
provided by MalwareBazaalﬂ

Uhttps://bazaar.abuse.ch/
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Fig. 1. Byte-based tokenization and n-gram vectorization of request logs.

B. Feature Extraction and Dissimilarity Measurement

In this step, We adopt classical methods from Natural
Language Processing (NLP) to embed request logs into a
feature space, then quantify the dissimilarity between any two
of them. Fig. [T] illustrates the process of feature extraction.

Similar to our work, PRISMA [16] used bytewise 3-gram
vectors to represent binary messages and token vectors to
represent text messages. However, because a single telnet
message may carry both binary and text contents, we need a
better embedding method to adapt to the complexity of telnet
protocol. We empirically categorize payload bytes into three
types: alphanumeric, symbolic (plus punctuation and spaces),
and unprintable. As we assume that the type of each byte and
its collocation imply semantic information, we split the request
log at positions where two contiguous bytes are different types.
We consider these tokens as minimum semantic units of a
request log and build a Bag of Word (BoW) vector to represent
its basic semantics in the feature space. This method generates
a token that consists of only one type of byte and enables the
extraction of information from all bytes.

Besides BoW vectors, we also use n-gram vectors to high-
light the replacement of variable tokens in different loaders.
Assigning a high value to n may result in computational
overhead, so we choose 2-gram and 3-gram of tokens to
capture the variability while limiting the scale of feature
vectors. We join these three vectors to generate a feature vector
for every request log.

In order to measure the semantic distance between request
logs, the dissimilarity metric should reflect the existence,
repetition, and collocation of tokens and n-gram features based
on the proposed feature vector. We choose the Euclidean
distance in our experiment, because the commonly used cosine
distance may not reflect the repetition of tokens.

C. Agglomerative Clustering

To cluster similar loaders yet demonstrate their inter-cluster
similarities, we use agglomerative clustering to build hierarchy
clusterings bottom-top, based on dissimilarity metrics. The
clustering process starts from single-element clusters corre-
sponding to every request log. In each iteration, the algorithm
searches for two clusters having the minimum inter-cluster
distance based on the distance metric (also known as the
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Fig. 2. Smith-Waterman algorithm on the agglomerative tree.

dissimilarity metric in this work) and a linkage criterion. The
algorithm hierarchically merges two clusters in each iteration
until only one is left.

Here, we describe the hierarchical clusters as an inverted
binary tree, on which the leaves at the bottom correspond to
request logs, while a trunk node refers to an agglomerative
cluster of attached leaves. The height of a cluster node refers
to the inter-cluster distance of its two sub-clusters, which also
indicates the discrepancy of contained elements. We denote
agglomerative clusters as C' € N, where N denotes the full
set of them. Every cluster C' can be further split into two
sub-clusters {C1,C>} or merged into a super-cluster C°.
Cutting the tree at a given height 7 will produce a preliminary
partitioning P C N at a selected precision. To make generated
clusters cohesive yet discrete from each other, we determine
the value of 7 based on the shape of the tree as discussed
later. In this work, we use the ward [17] function offered by
Scikit-learn, as the linkage criterion minimizes the variance of
the merged clusters.

D. Pattern Extraction

We apply the Smith-Waterman algorithm [18] from leaves
to the root node to get “templates” for every cluster on
the agglomerative binary tree and identify shared patterns of
sibling loaders or clusters out of their request logs.

We use the tokenized sequence in the section to align
two request logs. As depicted in Fig. [2} the align(Ac1, Ac2)
operation leverages the Smith-Waterman algorithm to scan
two token sequences from head to tail. This operation aligns
identical tokens at the same position and adds placeholders
(shadow cells in Fig. to replace the mismatched ones,
allowing identical tokens to align. We finally get a “template”
of two clusters indicating the shared pattern of tokens. For any
cluster C' € N, the corresponding template Ac is generated
recursively based on the templates of its sub-clusters Ac¢
and Ags. Every node on the agglomerative tree will get a
“template” representing the common pattern of its elements.

E. Clustering Refinement

As the unique 7 value may not fit all branches on the tree,
the preliminary partitioning P is far from being taken as the
final class definition. Starting from nodes in PP, we examine
corresponding templates to calibrate the family definition by



TABLE II
INDEX TABLE OF LOADER FUNCTIONS DISCUSSED IN SECTION[[V=C|
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Fig. 3. Clustering dendrogram of the agglomerative clustering. Only the top
five layers are shown. The red dashed line denotes 7~ = 60. The colored bars
indicate the family definition on the agglomerative tree. For every family, we
note the count of member clusters/samples in the legend on the right side.

evaluating if a cluster should be kept, merged, or further split.
Here, we empirically configure some criteria for accepting or
denying a merged cluster:

« While identical commands are critical in evaluating the
similarity, their arguments and arrangement are also im-
portant factors that we should concern about.

o For complex statements, the syntax structure is more
important than its component commands to evaluate the
similarity of two templates.

o We ignore the variation of self-identification tokens un-
less it appears in different commands or arguments.

IV. DATA ANALYSIS

In this section, we discuss the functions and behavior of
active loaders based on the aforementioned methods and make
a conclusion about their homologies.

A. Captured Dataset

The following analysis is based on captured request logs
from November 14 to December 31 in 2021. To reduce the
scale of the dataset, we take no more than 20 request logs for
each host and selected 4,855 out of over 3 million captured
items. As this work focuses on the function of active loaders
instead of their deployment, we drop duplicates and got 481
valid items. This dataset generates 895 tokens, 2,451 2-gram
terms, and 4,737 3-gram terms, finally composing feature
vectors of 8,083 dimensions.

B. Family Definition

In this step, we leverage agglomerative clustering to define
several families of bot loaders based on the collected dataset.

1) Clustering overview: The agglomerative clustering al-
gorithm generates a tree with a height of 1193.07, whose
dendrogram is depicted in [3] While the tree is relatively tall,
most of the branches are at a height below 200. Minority
branches at a higher height manifest significant discrepancies
in samples in the corresponding clusters. Based on the method
in Section we recursively generate templates for 480
non-singleton clusters to describe their common behaviors.
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* The capital letters A-E correspond to the 5 categories of loader functions
listed in the upper header. Their different implementations are indicated by the
first digit of their subscripts, while the second digit indicates sub-commands
called for the corresponding function.

2) Threshold selection: According to the dendrogram in
Fig. 3] when trying to merge two sibling clusters with a
distance over 100, the intra-cluster discrepancy of the merged
cluster will increase greatly compared to the original ones,
which runs counter to our expectation of clustering results.
Based on this observation, we empirically set 7 = 60 with
reasonable margin. The 7 value partitioned all request logs
into 19 clusters. As Griffioen’s work [4] only intensively
investigated 14 active botnets, we regard the partitioning as
reasonable to reflect the situation of active loaders.

3) Family definition: Based on the extracted templates, we
evaluated these clusters based on the aforementioned criteria
in section [IFE| and finally identified several families out
of the dataset. We traverse their sub-clusters and pick some
representative tokens as their name, which may not follow the
common naming rules. We listed these families and indexed
their functions in Table [

The yellow branch in Fig. [3] consists of 3 very similar
families: Nippon-kami, SEFA, and Port. As the control group
data from Anna-senpai’s loader is all located on the Nippon-
kami branch, in our following analysis we treat Nippon-kami
as an alias of the original Mirai loader family.

We also identified five “red families” in Fig. 3] that are sig-
nificantly different from the aforementioned “yellow families™:

o No-path-check removes every command prior to checking
the architecture and simply uses the default working
directory of the logged-in user;

o SwitchBlades derives the framework of Nippon-kami,
but uses a different implementation to detect writable
directory, acting similar to Sofia;

o Sofia bases its intrusion toolkit on a simplified workflow,
using a long initial command list and implementing a
different method to detect writable directories;

e 6-chars generates 6 random escaped characters to check
the shell environment for every session, acting differently
from every other family;

o “whattttttlol” does not share any pattern with other
families. It runs a fixed command list and downloads
multiple scripts named “whattttttlol«.sh” to load



B2

busybox echo -e "\\x6b\\x61\\x6d\\x69/proc’ > /proc/.nippon;
busybox cat /proc/.nippon;
busybox rm /proc/.nippon

B, and B3

>/var/tmp/.file && cd /var/tmp/

Dy

/bin/busybox cp /bin/echo sefaexecbi; /bin/

busybox chmod 777 sefaexecbi;

>sefaexecbi;

D

/bin/busybox cat /bin/echo

D;

/bin/busybox cat /bin/busybox || while read i; do echo $i;

done < /bin/busybox

Fig. 4. Sample codes of the “Get working directory” function (B+) and the
“Test environment” function (D+) denoted by indexes in Table

the bots.

4) Clustering of scanners: The samples on the green branch
are very different from the other ones. As they only conduct
quick probes and do not run any downloading commands, we
assume that these logs are related to scanning campaigns.
Among these scanner logs, we first identify the 6-chars-
scanner family that generates 6 random escaped characters
in their scanning conversation. We also identify the hajime
family related to our control group sample generated by a
Hajime bot, as well as the others family having no particular
patterns.

C. Behavior Patterns

In this section, we interpret the Table [[I] vertically to make
a comprehensive comparison about their shared pattern. We
denote all functions of loaders by alphanumeric indexes.

1) Initialize: At the beginning of the intrusion, the loader
injects initializing commands to enable the shell interface and
checks the environment. As yellow families share the same
codebase, their initialize command lists are very similar. They
run ps command to check suspicious processes in the environ-
ment (A;). The SEFA loader modifies the victim’s hostname to
SEFA_ID:<4-digit numbers> (A;) to identify bots in
the botnet. Sofia removed all checking commands but extended
the initialize command list. While whattttttlol holds a fixed
command list, it runs 1s /home to scan files in the directory
(A3). 6-chars only checks wget in this step (Ayg).

2) Get working directory: Most of the loaders require a
writable directory to temporarily drop the executable. Yellow
families scan mounted filesystems (B;;) and create some
files(Bj.;) to check their writing privileges. SwitchBlades,
Sofia, and 6-chars use a simplified statement (B, and B3 in
Fig.|4) to test writable directories in their own hard-coded lists.
While SwitchBlades and Sofia use returns to assemble these
element statements (B;), the 6-chars family uses semicolons
(B3) which makes a slight difference. A variant of 6-chars
runs this step twice, which shows a difference in the request
logs. Whattttttlol uses a simple “| |” (or) statement to join

multiple cd <directory> commands (Bs). This statement
changes the working directory to the first available one in the
hard-coded list, regardless of its writable privilege.

3) Monopolize: Most loaders will try eliminating competi-
tors by deleting certain files stored in a built-in list. The yel-
low families use .sh .t .human (C;), Sofia uses .file
.cowbot.bin retrieve cowffxxna (Cs), and 6-chars
uses . i only (Cy4). SwitchBlades tries to delete two files while
the lists are unstable among different variants (C).

4) Test environment: In this step, the loaders probe the CPU
architecture and the available downloaders to decide how to
load a bot. Yellow families tests cp command(D;.;), prints
/bin/echo(D;;), and then test wget and t ftp commands
(D1.3) in this step. As the CPU architecture can be obtained by
parsing any executable on the device, no-path-check and Sofia
prints /bin/busybox to obtain the same information (D,).
In case of the cat command is unavailable, they also use a
shell-based while read statement to print the file. Sample
codes are displayed in Fig. [

5) Drop & run malware: In this step, loaders cd to the
selected working directory and drop bot clients via a tested
downloader. If neither wget nor tftp is available, most
Mirai-based families will run a fallback command that loads
the whole file with echo command and launches a stdout redi-
rect statement (E;_«). 6-chars leverages an “| |~ (or) statement
to call multiple commands sequentially (E3.«) until a command
succeeds. Whattttttlol calls multiple commands sequentially to
download and run 4 scripts, and then it deletes them all after
the execution to clean the trace (E4+). In this step, Port and
Sofia do not seem to download any executable. Instead, Port
calls openssl for an unknown reason (E;), while Sofia only
checks writable privilege in the current directory (Dj_1).

V. DISCUSSION

Based on the agglomerative tree and the discussion about
behavior patterns, we draw a dendrogram (Fig. [5) to demon-
strate the variation of intrusion functions.

A. Variation of Loaders

Although we treat nippon-kami family as the direct descen-
dant of the original Mirai loader, we found that other families
inherit its intrusion workflow, but modify some components to
adapt to different environments and situations. The directory
detector is frequently modified or rebuilt to fit heterogeneous
filesystem structures on victim devices, while the cleaning
commands used for monopolizing the infected device also
vary according to the malware family. Some families made
significant changes to the original code base to simplify the
workflow (No-path-check and SwitchBlades) or rebuild the
toolkit (Sofia). Some independent families also implemented
their toolkits to load malware.

While conventional taxonomy research overlooked the vari-
ation and evolution of bot loaders, this experiment reveals that
Mirai original ideas and codebase are still contributing to new
spawning variants. Our server-side perspective highlights how
the infection mechanisms of these bots operate through telnet
and how they are suitable to run on different environments.
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(the author of Mirai). In the description of a connecting line between two families, green “+” indicates adding functions, red “-” indicates removing functions,
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B. Comparison with Other Studies

According to Cozzi [5] and Wang [7|], the evolution of
bot clients focused on updating their scanners, attackers, per-
sistence techniques, and anti-detection techniques. Our work
demonstrated the distinct motivation of loaders’ and bots’ evo-
Iution. Compared to Torabi’s work [14] and Tabari’s work [|15]],
our work further quantified the similarity of families and
identified the lineage of loaders beyond simple comparisons
of string patterns, which contributes to understanding the
evolution of botnet malware from new perspectives.

As noted by Wang [7] and Dang [9]], a growing number of
botnets are exploiting victims by means of fileless attacks. We
noticed the Port family replaced Nippon-kami’s loading tool
with a fileless attack command, which broke Mirai convention
behaviour of infecting victims by downloading executables.
Our lineage study sheds some light on the provenance of
fileless attack toolkits and helps to understand how botmasters
develop new attack vectors starting from the original Mirai
codebase. In turn, this knowledge can contribute to improve
the efficiency of defense strategies against new variants.

VI. CONCLUSION

In this paper, we analysed telnet request logs captured with
ad-hoc honeypots, and we investigated functions and similari-
ties of various infection loaders. Our data allowed us to define
8 different families and draw a dendrogram of their lineage
and evolution, demonstrating the importance of understanding
loaders’ evolution and variation. The experiment highlighted
the evolution of IoT botnets on the server side, providing a
server-side view of botnets evolution and a novel behavior-
based taxonomy of bot loaders.
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