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Abstract—Due to the ability of channel reconfiguration, intel-
ligent reflecting surface (IRS) can be used to boost the secrecy
rate of cognitive non-orthogonal multiple access (NOMA) sys-
tems. However, the cost and hardware complexity of full-digital
beamforming in existing related studies is high, especially for the
systems with massive antennas. In this paper, we investigate the
secure transmission for IRS-aided cognitive NOMA systems with
cost-effective analog beamforming. The secrecy rate of primary
user is maximized subject to the quality of service constraint
of secondary user via joint analog and passive beamforming
optimization. Owing to the non-convexity, we first transform
the problem into two subproblems. Then, each subproblem
is tackled via the penalty-based algorithm and the successive
convex approximation. Simulation results demonstrate that the
proposed transmission scheme has higher energy efficiency and
can boost the security of IRS-aided cognitive NOMA systems.

Index Terms—Analog beamforming, cognitive radio, IRS,
NOMA, physical layer security.

I. INTRODUCTION

Intelligent reflecting surface (IRS), as a promising tech-
nique, can boost the performance of wireless communications
via reconfiguring wireless channels intelligently [1]. Specifi-
cally, IRS is made up of enormous reflection elements inte-
grated on a plane, and passive beamforming can be performed
via coordinating the phase shift at each reflection element. In
addition, IRS can outperform the conventional active relays in
hardware complexity, energy consumption and cost. Owing to
the enhanced capacity of desired channels through reconfigu-
ration, IRS can boost the security of wireless communications
[2], [3]. Pang et al. in [2] studied the secure transmission
for IRS-aided unmanned aerial vehicle systems. Yu et al.
in [3] proposed a robust transmission scheme to guarantee
the security of IRS-aided wireless communications with the
imperfect wiretap channel state information (CSI).

With the growing number of wireless devices, orthogonal
multiple access (OMA) can not satisfy the increasing demand
for wireless connections because of limited radio resources.
Non-orthogonal multiple access (NOMA) can outperform
the conventional OMA in spectrum efficiency via sharing
the same resource among all users [4]. For instance, the
signals for all power-domain NOMA users are superposed at
the transmitter, and then transmitted over a single resource.
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Then, successive interference cancellation (SIC) is adopted
by each user to decode its own signal [5]. To guarantee
proper operation of power-domain NOMA, user with weaker
channel gain is allocated with more transmit power, which
makes it more vulnerable to eavesdropping. Owing to its
capability of channel reconfiguration and enhancement, IRS
can be integrated with NOMA to further improve the security
and spectrum efficiency [6], [7]. In [6], Zhang et al. proposed
a robust transmission scheme to guarantee the security of
IRS-aided NOMA systems with the imperfect eavesdropping
CSI. Unknowing the eavesdropping CSI, Wang et al. in [7]
proposed a transmission scheme to guarantee the security of
IRS-aided NOMA systems. Tang et al. in [8] investigated the
secrecy performance of IRS-aided NOMA systems.

All the above works assume that the BS adopts the full-
digital beamforming, where each antenna is connected to
a power-hungry radio frequency (RF) chain. Although full-
digital beamforming has better performance, it is not cost-
effective to deploy full-digital beamforming in the systems
with massive antennas because of high hardware complex-
ity and power consumption [9]. By contrast, the hybrid
beamforming (HBF) and analog beamforming consist of
lots of low-cost phase shifters and much fewer RF chains.
Therefore, HBF and analog beamforming have the advantages
of low hardware complexity, low power consumption and
easy deployment, which are more suitable for the deployment
of massive antennas. Hong et al. in [10] maximized the
achievable rate of IRS-aided systems with HBF via joint HBF
and passive beamforming optimization.

To our knowledge, the secure transmission for IRS-aided
cognitive NOMA systems with analog beamforming has not
been well investigated. In this paper, we investigate the secure
transmission for IRS-aided cognitive NOMA systems with
analog beamforming. The secrecy rate of primary user (PU) is
maximized subject to the quality of service constraint (QoS)
of secondary user (SU) via joint analog and passive beam-
forming optimization. To address this non-convex problem,
we first transform it into two subproblems, and then solve
each subproblem via the proposed iterative algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model, and
then formulate the secrecy rate maximization problem.
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Fig. 1. IRS-aided secure cognitive NOMA systems with analog beamform-
ing.

A. System Model

We consider an IRS-aided secure cognitive NOMA system
consisting of a base station (BS) with Nt antennas, a single-
antenna cell-center PU, a single-antenna cell-edge SU, an
IRS with M reflection elements and an eavesdropper with
Ne antennas, as depicted in Fig. 1. Moreover, the BS adopts
the analog beamforming to reduce the power consumption
and hardware complexity. The eavesdropper aims at obtaining
the confidential information from BS to PU. Owing to that
the direct links from BS to the users are blocked, an IRS is
employed to assist the wireless transmission and enhance the
security. The channels from BS to IRS, IRS to PU, IRS to SU
and IRS to eavesdropper are represented by Hai ∈ CM×Nt ,
h1 ∈ CM×1, h2 ∈ CM×1 and Hie ∈ CNe×M , respectively.
Let Φ = diag(v) ∈ CM×M stand for the phase shifts of
the IRS, where v(i) = ejθi represents the phase shift of ith
reflection element.

Different from existing works, the BS adopts the analog
beamforming. Thus, the transmitted signal from the BS can
be formulated as

x = f1s1 + f2s2, (1)

where s1 ∼ CN (0, 1) and s2 ∼ CN (0, 1) are the normalized
information symbols of PU and SU, respectively, and f1 and
f2 are the corresponding analog beamforming vectors.

Therefore, the signal received by PU can be formulated as

y1 = hH
1 ΦHaix+ n1, (2)

where n1 ∼ CN (0, σ2
1) stands for the additive white Gaussian

noise (AWGN) at the PU.
The signal received by SU can be expressed as

y2 = hH
2 ΦHaix+ n2, (3)

where n2 ∼ CN (0, σ2
2) denotes the AWGN at the SU.

Similarly, the signal received by the eavesdropper can be
expressed as

ye = HieΦHaix+ ne, (4)

where ne ∼ CN (0, σ2
eI) denotes the AWGN vector at the

eavesdropper.
Owing to that the PU is near the IRS, while the SU is

far away from it, the channel gains of PU and SU satisfy
∥h1∥2 > ∥h2∥2 > 0. According to the power-domain NOMA

[5], each user first detects the SU’s signal via treating the
PU’s signal as noise. Then, the PU can decode its own signal
via removing the detected SU’s signal from the received
signal. Consequently, the achievable rate of SU and PU at
the PU can be given by

R1,2 = log2

(
1 +

γ1|hH
1 ΦHaif2|2

γ1|hH
1 ΦHaif1|2 + 1

)
, (5)

R1,1 = log2
(
1 + γ1|hH

1 ΦHaif1|2
)
, (6)

respectively, where γ1 = 1/σ2
1 .

The achievable rate of SU at the SU can be given by

R2,2 = log2

(
1 +

γ2|hH
2 ΦHaif2|2

γ2|hH
2 ΦHaif1|2 + 1

)
, (7)

where γ2 = 1/σ2
2 .

For the eavesdropper, the eavesdropping rate towards the
confidential information s1 can be given by

Re = log2

∣∣∣I+ Q̃−1
e γe(HieΦHia)f1f

H
1 (HieΦHia)

H
∣∣∣ , (8)

where Q̃e = γe(HieΦHai)f2f
H
2 (HieΦHai)

H + I and γe =
1/σ2

e .
Therefore, the secrecy rate of PU can be expressed as

Rs = max(R1,1 −Re, 0). (9)

B. Problem Formulation

With the perfect CSI, the secrecy rate of PU is maximized
subject to the constant modulus constraint, the transmit
power constraint, the SIC decoding constraint and the QoS
constraint of SU. The optimization problem can be given by

max
f1,f2,v,p1,p2

Rs (10a)

s.t. |f1(i)| =
√

p1
Nt

, i = 1, · · · , Nt, (10b)

|f2(i)| =
√

p2
Nt

, i = 1, · · · , Nt, (10c)

p1 + p2 ≤ Pmax, p1 ≥ 0, p2 ≥ 0, (10d)
R2,2 ≥ ζ, (10e)
|v(i)| = 1, i = 1, · · · ,M, (10f)
R1,2 ≥ R2,2, (10g)

|hH
k ΦHaif2|2 ≥ |hH

k ΦHaif1|2, k = 1, 2, (10h)

where (10b) and (10c) stand for the analog beamforming
constraints, while p1 ≥ 0 and p2 ≥ 0 are the transmit
power allocated to f1 and f2, respectively. (10d) represents
the transmit power constraint at BS. (10e) denotes that the
achievable rate at SU should be no less than a given threshold
ζ > 0. (10f) is the unit-modulus constraint for the IRS. (10g)
guarantees the successful SIC at PU. (10h) implicates the
SIC decoding order of users. Problem (10) is challenging
to address owing to the coupled variables, the non-convex
constraints and the non-concave objective function.



III. PROPOSED ITERATIVE ALGORITHM

In this section, an iterative algorithm based on the AO, the
penalty-based algorithm and the SCA is developed to address
(10). Specifically, we first transform (10) into two subprob-
lems. Then, each subproblem is solved via the penalty-based
algorithm and the SCA.

A. (f1, f2, p1, p2) Optimization With Given v

With any given v, we denote F1 = f1f
H
1 (F1 ≽

0, rank(F1) = 1) and F2 = f2f
H
2 (F2 ≽ 0, rank(F2) = 1),

respectively. (10) can be equivalently formulated as

min
F1,F2,p1,p2

− R̃s (11a)

s.t. diag(Fi) =
pi
Nt

, i = 1, 2, (11b)

rank(Fi) = 1, i = 1, 2, (11c)
Fi ≽ 0, i = 1, 2, (11d)
p1 + p2 ≤ Pmax, p1 ≥ 0, p2 ≥ 0, (11e)

log2

(
1 +

γ2Tr(M2F2)

γ2Tr(M2F1) + 1

)
≥ ζ, (11f)

γ1Tr(M1F2)

γ1Tr(M1F1) + 1
≥ γ2Tr(M2F2)

γ2Tr(M2F1) + 1
, (11g)

Tr(MkF2) ≥ Tr(MkF1), k = 1, 2, (11h)

where Mk = HH
aiΦ

Hhkh
H
k ΦHai, k = 1, 2, R̃s is for-

mulated as (12) at the top of the next page and Q̂e =
γe(HieΦHai)F2(HieΦHai)

H + I. The constraints (11b),
(11d), (11e) and (11h) are convex, while the other constraints
and the objective function are non-convex. To address it, the
constraint (11f) is first formulated into an equivalent form as

γ2Tr(M2F2)− (2ζ − 1)(γ2Tr(M2F1) + 1) ≥ 0, (13)

which is convex with respect to F1 and F2.
Via introducing a slack variable β > 0, the constraint (11g)

can be relaxed as

γ1Tr(M1F2) ≥ β(γ1Tr(M1F1) + 1), (14a)
γ2Tr(M2F2) ≤ β(γ2Tr(M2F1) + 1). (14b)

It can be seen that the term γ1Tr(M1F1) + 1 in (14a) is
positive. According to the arithmetic and geometric mean
(AGM) inequality [11], (14a) can be approximated as

2γ1Tr(M1F2) ≥
(γ1Tr(M1F1) + 1

a

)2
+ (βa)2, (15)

where the equality holds if and only if a =√
(γ1Tr(M1F1) + 1)/β.
For the constraint (14b), we introduce a slack variable ν,

which satisfies

γ2Tr(M2F2)
(a)

≤ ν2
(b)

≤ β(γ2Tr(M2F1) + 1). (16)

The inequality (a) in (16) can be further approximated as

γ2Tr(M2F2) ≤ −ν̃2 + 2ν̃ν. (17)

The right-hand side of (17) stands for the first-order Taylor
expansion of the quadratic function ν2 at the reference point
ν̃, which is a lower bound of the quadratic function ν2.

The inequality (b) in (16) can be equivalently written as[
γ2Tr(M2F1) + 1 ν

ν β

]
≽ 0. (18)

For the rank-one constraint (11c), we formulate it into an
equivalent form as

(11c) ⇔ ∥Fi∥∗ − ∥Fi∥2 ≤ 0, i = 1, 2. (19)

For any F ∈ HNt , the inequality ∥F∥∗ ≥ ∥F∥2 holds. The
equality in (19) holds if and only if rank(F) = 1 [12]. The
constraint (19) is non-convex and the penalty-based algorithm
in [12] is utilized to address it. In particular, we move the
constraint (19) into the objective function as a penalty term,
which yields the following problem as

min
F1,F2,p1,
p2,β≥0,ν

− R̃s +
1

2ρ

∑2

i=1
(∥Fi∥∗ − ∥Fi∥2) (20a)

s.t. (11b),(11d),(11e),(11h),(13),(15),(17),(18), (20b)

where ρ > 0 stands for the penalty coefficient. All constraints
in (20) are convex. As for the non-convex objective function
in (20), the SCA is utilized to address it. Specifically, the
objective function is first transformed into a difference of
convex, i.e., −R̃s = N1 −D1, where

N1 =− log2(1 + γ1Tr(M1F1))

− log2 |I+ γeH̃eF2H̃
H
e |+

∑2

i=1

∥Fi∥∗
2ρ

, (21a)

D1=− log2 |I+ γeH̃e(F1+F2)H̃
H
e |+

∑2

i=1

∥Fi∥2
2ρ

, (21b)

and H̃e = HieΦHai. Both N1 and D1 are jointly convex
with respect to F1 and F2. Then, we introduce Lemma 1
to get a convex upper bound of this non-convex objective
function.

Lemma 1. Let fi be a real-valued function of the matrices
Z ≽ 0 and Y ≽ 0, i = 1, 2, which is jointly convex in
regard to Z and Y. For the function g , f1 − f2, its convex
upper bound can be expressed as f1− f̃2, where f̃2 stands for
the first-order Taylor expansion of f2 at the reference point
(Z0,Y0), as

f̃2 =f2(Z0,Y0) + Tr(∇H
Z f2(Z0,Y0)(Z− Z0))

+ Tr(∇H
Yf2(Z0,Y0)(Y −Y0)). (22)

Proof: Owing to that f2 is jointly convex in regard to Z
and Y, f2 is lower bounded by f̃2, i.e., f2 ≥ f̃2. In addition,
f̃2 is an affine function in regard to Z and Y. Thus, we have

f1 − f2 ≤ f1 − f̃2, (23)

and f1 − f̃2 is jointly convex with regard to Z and Y.
According to Lemma 1, the objective function in (20) can

be replaced with its convex upper bound at the reference point



R̃s = log2 (1 + γ1Tr(M1F1))− log2

∣∣∣I+ Q̂−1
e γe(HieΦHia)F1(HieΦHia)

H
∣∣∣ . (12)

(Fn
1 ,F

n
2 ), which yields the problem as

min
F1,F2,p1,
p2,β≥0,ν

N1 − Tr(∇H
F1

D1(F
n
1 ,F

n
2 )(F1 − Fn

1 ))−

Tr(∇H
F2

D1(F
n
1 ,F

n
2 )(F2−Fn

2 ))−D1(F
n
1 ,F

n
2 ) (24a)

s.t. (11b),(11d),(11e),(11h),(13),(15),(17),(18), (24b)

where ∇FiD1 can be formulated as

∇FiD1 =
1

2ρ
λmax(Fi)λ

H
max(Fi)−

H̃H
e

(
I+ γeH̃e(F1 + F2)H̃

H
e

)−1
H̃e

ln 2
, i = 1, 2. (25)

Therefore, (11) is converted to a convex one (24), which can
be solved via CVX. According to [3], a rank-one solution
(F̄1, F̄2) can be obtained via solving (24) with sufficiently
small ρ. Then, the optimal solution f̄i can be recovered from
F̄i via the eigen-decomposition, i = 1, 2.

The penalty-based algorithm for (24) is summarized in
Algorithm 1. Through iteratively solving (24) in Step 3, the
optimal value of (24) tends to that of (20). According to [12],
the sequence {F̄n

1 , F̄
n
2}n∈N converges to a stationary point of

(20) in polynomial time.

Algorithm 1 Penalty-Based Algorithm for (24)
1: Initialization: Given an initial point (F̄0

1, F̄
0
2), and set the

index of iteration n = 0 and the convergence tolerance
ϱ.

2: Repeat
3: With the given (F̄n

1 , F̄
n
2 ), obtain (F̄n+1

1 , F̄n+1
2 ) via solv-

ing (24).
4: n = n+ 1.
5: Until 1− λmax(F̄

n+1
1 )

pn+1
1

≤ ϱ and 1− λmax(F̄
n+1
2 )

pn+1
2

≤ ϱ.

6: Output: (F̄n+1
1 , F̄n+1

2 ).

B. v Optimization With Given (f1, f2, p1, p2)

With any given (f1, f2, p1, p2), we denote V =
vvH (rank(V) = 1,V ≽ 0). Therefore, (10) can be equiva-
lently formulated as

min
V

− Řs (26a)

s.t. V ≽ 0, diag(V) = 1, (26b)
rank(V) = 1, (26c)

log2

(
1 +

γ2Tr(f̂22f̂H22V
T )

γ2Tr(f̂21f̂H21VT ) + 1

)
≥ ζ, (26d)

γ1Tr(f̂12f̂H12V
T )

γ1Tr(f̂11f̂H11VT ) + 1
≥ γ2Tr(f̂22f̂H22V

T )

γ2Tr(f̂21f̂H21VT ) + 1
, (26e)

Tr(f̂k2f̂Hk2V
T ) ≥ Tr(f̂k1f̂Hk1V

T ), k = 1, 2, (26f)

where f̂mn = diag(hH
m)Haifn, n = 1, 2,m = 1, 2, h̄k =

Haifk, k = 1, 2, Q̄e = I + γeHiediag(h̄2)Vdiag(h̄H
2 )HH

ie ,
and Řs is given by (27) at the top of next page. The objective
function and all the constraints except (26b) and (26f) are
non-convex. To address this non-convex problem, we first
write the non-convex constraint (26d) into an equivalent form
as

γ2Tr(f̂22f̂H22V
T )− (2ζ − 1)(γ2Tr(f̂21f̂H21V

T )+1) ≥ 0, (28)

which is convex with respect to V.
Recalling (15)-(18), the constraint (26e) can be rewritten

as

2γ1Tr(f̂12f̂H12V
T ) ≥

(γ1Tr(f̂11f̂H11V
T ) + 1

a

)2
+ (βa)2, (29a)

γ2Tr(f̂22f̂H22V
T ) ≤ −ν̃2 + 2ν̃ν, (29b)[

γ2Tr(f̂21f̂H21V
T ) + 1 ν

ν β

]
≽ 0. (29c)

Therefore, the penalized version of (26) can be given by

min
V,β≥0,ν

− Řs +
1

2ρ
(∥V∥∗ − ∥V∥2) (30a)

s.t. (26b), (26f), (28), (29). (30b)

All constraints of (30) are convex. For the non-convex
objective function in (30), we first rewrite it into a difference
of convex as

−Řs +
1

2ρ
(∥V∥∗ − ∥V∥2) = N̄1 − D̄1, (31)

where

N̄1 = − log2
(
1 + γ1Tr(f̂11f̂H11V

T )
)
+

∥V∥∗
2ρ

− log2
∣∣I+ γeHiediag(h̄2)Vdiag(h̄H

2 )HH
ie

∣∣ , (32a)

D̄1 = − log2

∣∣∣I+ 2∑
k=1

γeHiediag(h̄k)Vdiag(h̄H
k )HH

ie

∣∣∣
+

∥V∥2
2ρ

. (32b)

Both N̄1 and D̄1 are convex with respect to V. According
to Lemma 1, the objective function in (30) can be replaced
with its convex upper bound at the reference point Vn, which
yields the following problem as

min
V,β≥0,ν

N̄1 − D̄1(V
n)− Tr(∇H

VD̄1(V
n)(V −Vn)) (33a)

s.t. (26b), (26f), (28), (29), (33b)

where ∇VD̄1 is the gradient of D̄1 with respect to V,
which is formulated as (34) at the top of next page and
X = I +

∑2
k=1 γeHiediag(h̄k)Vdiag(h̄H

k )HH
ie . Thus, the

problem (26) is converted to a convex one (33) and can be
solved by CVX.



Řs = log2

(
1 + γ1Tr(f̂11f̂H11V

T )
)
− log2

∣∣I+ Q̄−1
e γeHiediag(h̄1)Vdiag(h̄H

1 )HH
ie

∣∣ . (27)

∇VD̄1 = − 1

ln 2

(
2∑

k=1

γediag(h̄H
k )HH

ieX
−1Hiediag(h̄k)

)H

+
1

2ρ
λmax(V)λH

max(V), (34)

C. Algorithm Analysis

In summary, the problem (10) is converted to two convex
subproblems (24) and (33), and the proposed AO-based
algorithm for (10) is summarized in Algorithm 2, which
alternatively tackles the two subproblems and guarantees to
converge to a stationary point in polynomial time [13].

Algorithm 2 AO-based Algorithm for (10)
1: Initialization: Given an initial point (f01 , f

0
2 , p

0
1, p

0
2,v

0),
and set the iteration index n = 0.

2: Repeat
3: With the given (fn1 , f

n
2 , p

n
1 , p

n
2 ,v

n), tackle (24) utilizing
Algorithm 1 and update (Fn+1

1 ,Fn+1
2 ).

4: Decompose Fn+1
i = fn+1

i fn+1,H
i , i = 1, 2.

5: With the given (fn+1
1 , fn+1

2 , pn+1
1 , pn+1

2 ,vn), tackle (33)
utilizing Algorithm 1 and update Vn+1.

6: Decompose Vn+1 = vn+1vn+1,H .
7: n = n+ 1.
8: Until convergence or reach maximum iteration number.
9: Output: (fn+1

1 , fn+1
2 , pn+1

1 , pn+1
2 ,vn+1).

IV. SIMULATION RESULTS

In this section, we present simulation results to verify the
effectiveness of the proposed secure transmission scheme.
The BS, IRS, PU, SU and eavesdropper are located at (10,
-20, 5), (0, 0, 2), (5, 0, 0), (5, 8, 0) and (7, 7, 0) in
meters, respectively. We set Nt = 4, Ne = 2, M = 9 and
σ2
1 = σ2

2 = σ2
e = −75 dBm, respectively. All the channels are

modeled as Rician fading channel. For instance, the channel
from BS to IRS can be given by

Hai=

√
L0d

−αai
ai

(√
kai

1 + kai
HL

ai+

√
1

1 + kai
HNL

ai

)
, (35)

where kai stands for the Rician factor, L0 = −30 dB, αai

is the path-loss exponent and dai stands for the distance
between IRS and BS. HL

ai and HNL
ai v CN (0, I) represent

the line-of-sight (LoS) and non-LoS component, respectively.
The path-loss exponent for Hai is 2, and those for h1, h2,
and Hie are 2.8. The Rician factor for all channels is set to
5. ϱ and ς are set to 10−3 and 10−4, respectively.

For comparison, we study the following benchmarks. 1)
Random Phase: With random phase shifts at IRS, the secrecy
rate is maximized via designing the analog beamforming. 2)
Full Digital: The BS adopts the full-digital beamforming,

whose performance is a upper bound of the analog beam-
forming. 3) OMA: The system adopts the frequency division
multiple access and the frequency band is equally allocated
to the two users. Thus, the achievable rate at each user can
be given by

ROMA
k =

1

2
log2

(
1 +

2|hH
k ΦHaifk|2

σ2
k

)
, k = 1, 2. (36)

Fig. 2 plots the average secrecy rate versus the maximum
transmit power Pmax, with ζ = 0.3 bps/Hz. From Fig. 2,
we can conclude that the average secrecy rate increases with
Pmax for all the schemes. This is because that the additional
transmit power can improve the SINRs at the users, which
increases the secrecy rate. Moreover, the proposed Scheme
outperforms “Random Phase” and OMA obviously owing to
the higher spectrum efficiency and passive beamforming gain.
Moreover, the proposed Scheme slightly underperforms “Full
Digital”, and the analog beamforming has the advantages
of lower hardware complexity and cost. Thus, the proposed
analog beamforming scheme is more effective.

In Fig. 3, we depict the average secrecy rate ver-
sus the number of reflecting elements, with (Pmax, ζ) =
(30 dBm, 0.3 bps/Hz). From Fig. 2, we can conclude that
the secrecy rate achieved by all the schemes increases with
M because additional reflecting elements can improve both
the receiving and reflecting beamforming gain of IRS. In
addition, the proposed Scheme outperforms “Random Phase”
and OMA. Besides, the performance gap between “Full
Digital” and the proposed Scheme is very small.

Fig. 4 shows the secrecy energy efficiency (SEE)
versus the antenna number at BS, with (Pmax, ζ) =
(30 dBm, 0.3 bps/Hz). Ignoring the low power consumption
of IRS, the SEE can be given by [14]

SEE=
Rs

Pmax +NrfPrf +NpsPps + PB
(bps/Hz/W), (37)

where PB = 0.2 W stands for the baseband power con-
sumption. Nrf and Nps are the number of RF chains and
phase shifters, respectively. Prf = 0.3 W and Pps = 0.04
W represent the power consumed by each RF chain and
phase shifter, respectively. For the full-digital beamforming,
Nrf = Nt and Nsp = 0, while Nrf = 2 and Nsp = 2Nt

for the analog beamforming. As shown in the figure, the
proposed Scheme outperforms the other benchmarks in SEE.
Moreover, the SEE of “Full Digital” decreases dramatically
with Nt owing to the increase of power-hungry RF chains.
Thus, the analog beamforming is more suitable than the full-
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Fig. 2. Average secrecy rate versus the maximum transmit power Pmax,
with ζ = 0.3 bps/Hz.
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Fig. 3. Average secrecy rate versus the number of reflecting elements, with
(Pmax, ζ) = (30 dBm, 0.3 bps/Hz).

digital beamforming for the deployment of massive antennas.

V. CONCLUSIONS

In this paper, we deployed an IRS to boost the security of
cognitive NOMA systems with cost-effective analog beam-
forming and a scheme was proposed to guarantee the secure
transmission of PU. Specifically, the secrecy rate of PU was
maximized subject to the QoS constraint of SU via joint
analog and passive beamforming optimization. To address
this problem with the non-convex constraints and coupled
variables, we first decomposed it into two subproblems, and
then solved each subproblem via the penalty-based algorithm
and the SCA. The effectiveness of the proposed secure
transmission scheme was demonstrated via simulation results.
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Fig. 4. Secrecy energy efficiency versus the antenna number at the BS,
with (Pmax, ζ) = (30 dBm, 0.3 bps/Hz).
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