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Abstract—The projected number of Internet of Things (IoT)
sensors makes battery maintenance a challenging task. Although
battery-less IoT is technologically viable, the sensors should be
somehow energized, either locally or remotely. Unmanned aerial
vehicles (UAVs) can respond to this quest via wireless power
transfer (WPT). However, to achieve energy neutrality across
the IoT networks and thus mitigate the maintenance issues, the
UAVs providing energy and connectivity to IoT sensors must be
supplied by recharging stations having multi-source energy har-
vesting (EH) capability. Yet, as these sensors rely solely on UAV-
transferred power, the absence of UAVs causes sensor outages
and hence loss of coverage when they visit recharging stations for
battery replenishment. Hence, besides the UAV parameters (e.g.,
battery size and velocity), recharging duration and station density
must be carefully determined to avoid these outages. To address
that, this paper uses stochastic geometry to derive the coverage
probability of UAV-powered sensors. Our analysis sheds light
on the fundamental trade-offs and design guidelines for energy-
neutral IoT networks with recharging stations in regard to the
regulatory organization limitations, practical rectenna and UAV
models, and the minimum power requirements of sensors.

Index Terms—Unmanned Aerial Vehicles, Wireless Power
Transfer, Stochastic Geometry, Coverage Probability, IoT.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are becoming increas-
ingly essential in wireless networks, serving as either mobile
users or base stations/access points (APs) [1]. In addition to
the numerous value-added services they already provide, UAVs
also play a critical role in addressing the battery constraints of
the Internet of Things (IoT) through wireless power transfer
(WPT) [2]. They are particularly beneficial for networks
that rely on a multitude of sensors, which require excessive
maintenance, or that operate in hard-to-reach areas, such as
rainforests. By offering line-of-sight (LoS) air-to-ground links,
UAVs enable highly efficient WPT [3], which, in turn, enables
the battery-less operation of sensors deployed on the ground.
After delivering the energy required by sensors, UAVs can also
collect sensory data by acting as mobile APs, thereby offering
an all-in-one solution. In these settings, UAVs govern both
energy and data flows with no human supervision for battery
maintenance or terrestrial APs for data collection, aiming for
a certain level of autonomy in network operation.

Since the primary goal of a WPT-enabled UAV setting is
to minimize the battery constraints of sensors, besides the
prevailing energy scarcity across the IoT domain, the energy
required for UAV operation, including the power transferred to
sensors, has to be provisioned within the network. In this way,
energy neutrality can be enabled [4], mitigating the challenges
mentioned above. One approach for achieving this goal is to
replenish UAV batteries via recharging stations having energy
harvesting (EH) capability. Here, multiple ambient sources,
such as solar and wind power, can be simultaneously exploited
[5] to minimize the variance and intermittency in the EH
output for assured reliability.

The literature has vast examples of UAV-based service pro-
visioning for IoT devices, including recharging stations. In
most cases, the UAVs operate as flying APs [6] to collect
sensory data underpinned by terrestrial counterparts. They
sometimes deliver power [7] in addition to or aside from AP
functionality [8]. The recharging stations are usually deemed
to have mains connection, or their source of power is untold
[9], both referring to a case with an unlimited energy source,
i.e., the total disregard of the energy neutrality objective.

One domain that has been exhaustively studied in the
literature is the UAV-assisted IoT networks, in which the UAVs
provide coverage to sensors. For example, the authors in [10]
optimized the trajectory of a UAV energized by a solar-
powered recharging station in consideration of data rate,
energy consumption, and fairness of coverage. However, they
focused on a single UAV operation without considering the
effect of recharging station density, limiting their application
potential. Furthermore, the authors in [11] proposed a dis-
tributed blockchain-based scheme to enable secure and reliable
energy exchange between UAVs and recharging stations. How-
ever, they did not consider the energy-neutral operation of their
system, leading to an impractical solution. The authors in [12]
proposed reinforcement learning algorithms to jointly optimize
the velocity and energy replenishment of UAVs that collect
data from sensors. Although they enabled efficient transfer
learning techniques to decrease the learning time and improve
the overall learning process, they did not take energy neutrality
into consideration in their setting, similar to other studies.
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As discussed in [13] and the references therein, the lit-
erature on UAV-assisted sensor coverage mainly focused on
various other aspects, such as clustering the sensor nodes for
more energy-efficient data collection, different flying modes
of UAVs, and joint path planning and resource allocation via
graph-theory, optimization, machine learning, etc. Despite the
promising findings of these studies, the research must look
towards a more pressing and fundamental issue, i.e., how
to achieve energy-neutral IoT at the minimal sensor outage,
occurring due to recharging station-driven UAV operation.
Hence, the following aspects need considerable attention for
a more realistic analysis of the coverage performance of
sensors, facilitating energy neutrality in the IoT domain: i)
effective isotropic radiated power (EIRP) limitations enforced
by regulatory organizations; ii) practical rectenna models with
non-linear EH behavior; iii) minimum power requirements of
sensors; iv) individual duration of each UAV operation; and
most importantly, v) a limited source of power for WPT, i.e.,
the UAVs energized by multi-source EH recharging stations.

The current gap in the research field being highlighted, this
work aims to mathematically analyze the coverage probability
of sensors powered by multi-source EH recharging stations
through UAVs performing WPT with directive antennae. Since
the UAVs manage both energy and data flows in the envisioned
scenario, no service is available during their trip (towards
sensors and recharging stations) and battery replenishment,
which refers to an outage or no coverage of sensors. The
goal is to maximize the coverage probability by tweaking the
crucial design parameters, such as the station density, UAV
velocity, battery capacity, and recharging time.

Following the agenda given above, we used stochastic
geometry in order to derive a tractable expression for the
event of service guaranteeing a certain level of coverage. Our
analyses, based on practical rectenna and UAV propulsion
models, revealed the non-trivial relationships between the
UAV attributes (e.g., availability, velocity, descent altitude,
antenna directivity, energy budget, output power, transmission
duration, and operating frequency); sensor characteristics (e.g.,
sensitivity, antenna gain, and power conversion efficiency);
medium specifications (e.g., urban, suburban); and application
requirements (e.g., minimum reporting frequency). In the end,
our study provides an upper bound for the coverage probability
of sensors, which can be practically achieved by carefully
selecting the design parameters in a UAV-powered energy-
neutral application scenario involving EH recharging stations.

The remainder of this paper is organized as follows. We first
introduce the system model in Section II, where the event
of service, incorporating directivity, UAV propulsion, WPT
and rectenna models, and FCC regulations, are formulated.
Then, in Section III, we derive the coverage probability of
sensors based on stochastic geometry. This is followed by the
numerical evaluation of the proposed model in Section IV to
reveal the design guidelines that must be followed for the best
achievable coverage while meeting application requirements.
Finally, Section V discusses future research directions and
concludes the paper.
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Figure 1: Illustration of the envisioned network scenario.

II. SYSTEM MODEL

As illustrated also in Fig. 1, we envision an energy-neutral
network scenario, which comprises: i) recharging stations,
ii) UAVs, and iii) battery-less sensors. The UAVs retrieve
energy from multi-source EH recharging stations via inductive
power transfer, fly towards the sensors, energize them via radio
frequency (RF) power transfer, and collect their data. During
power transfer and data collection, which refers to service,
the UAVs do not move in the 3D space; they just hover at the
centers of event areas, i.e., where sensors reside. The sensors
become active as soon as they intercept enough power from a
UAV. When active, they probe their vicinity for an application-
defined parameter, e.g., temperature, humidity, and/or noise
level, and notify their respective UAV with their readings.
After collecting sensor data, the UAVs fly back to the nearest
recharging station to replenish their batteries.

As explained, the UAVs singlehandedly manage energy and
data flows within the network in an autonomous manner;
there are no other authorized entities, terrestrial APs, energy
providers, etc. The service is provided at the centers of event
areas, i.e., randomly located circles with radius r∆, which are
modeled as a Poisson point process (PPP). Within each circle,
the sensors are uniformly distributed, and finally, the locations
of recharging stations are modeled as a PPP ΦCh with density
λCh. Below, we explain the service in detail.

A. Service Provisioning

In our envisioned scenario, recharging stations refill the
UAV battery with energy that is just enough for i) a round trip
to the event area, i.e., travel to its center and descent/ascent
to/from it, ii) providing service, and iii) hovering when provid-
ing service. During the trip and getting its battery replenished,
the UAV cannot provide any service, i.e., it is unavailable.



The definition above confirms that the service is conditioned
on the distance between the point where it is provided and the
nearest charging station, d∆(=R∆+hl). However, only one of
d∆’s components, namely R∆, changes randomly due to the
distribution of recharging stations. Hence, the probability of
UAV’s availability, i.e., the event of service E , is conditioned
on R∆, which can be given as:

P(e|R∆) = P(E|R∆)

=
tPT + tAP

tPT + tAP + tCh + tJ
,

(1)

where tPT is the time spent for power transfer, tAP is the time
spent for data collection, tCh is the time spent for recharging
the UAV battery, and tJ is the time spent for the round trip.
Here, each of tJ , tPT , and tAP can be defined as:

tJ =
2(R∆ + hl)

V
=

2d∆
V

,

tPT =
EPT

PT
,

tAP =
BUAV − tPT (Ph + PT )− tJPJ

Ph
,

(2)

where PJ is the power consumption during the trip, V is
the UAV’s velocity during the trip, EPT is the energy budget
spared for power transfer, Ph is the power consumption during
hovering at the center of an event area, PT is the transmit
power of the UAV, and BUAV is the energy level of the
UAV battery. We should note that the UAV battery might
not be fully charged always since it predominately depends
on the power transfer rate of the wireless pad, ξCh, of the
recharging station and the time the UAV spends on it, tCh.
From (1), we also know that tCh is inversely proportional to
UAV availability since it is on the denominator of the equation,
so it should be limited. That is also because the UAV battery
has a limited/maximum capacity, Bmax, so the UAV should
not reside on the charging pad beyond when the battery gets
fully charged, referring to tsatCh. Note that the saturation time
tsatCh can be achieved sooner or later depending on the charging
rate ξCh since Bmax is fixed. Considering all these, an accurate
battery charging model for the UAV can be given as:

BUAV(tCh) =

{
ξCh · tCh, tCh ∈ [0, tsatCh],

Bmax, tCh ≥ tsatCh.
(3)

and finally, by taking the expectation of (1), the service
probability of the UAV can be calculated as:

Pe = EΦCh

[
tPT + tAP

tPT + tAP + tCh + tJ

]
. (4)

B. Power Transfer

The UAV performs RF power transfer with a directional
antenna having a pencil-beam-like radiation pattern. For such
an antenna, i.e. with one major lobe and very negligible minor

lobes of the beam, the gain GT can be approximated by:

GT =

≈ 30000

θ2B
, −θB

2 ≤ φ ≤ θB
2 , (major lobe)

g(φ), otherwise, (minor lobes)
(5)

where φ is the sector angle, θB is the directional antenna half-
power beamwidth (HPBW) -both in degrees, ≈ 30000/θ2B is
the maximum gain, and g(φ) is the gain outside of the major
lobe (including minor lobes), which can be neglected [14].
Note that (5) is for a symmetrical radiation pattern, where the
HPBWs in each plane are equal to each other, i.e. θ1d=θ2d.

Contrary to expectations, the transmit power of the UAV,
PT in (2), cannot be altered casually; it is determined by
regulatory organizations, e.g., the Office of Communications
(Ofcom) in the UK, the Federal Communications Commission
(FCC) in the US. For example, FCC Part 15.247 rules [15]
declare that the maximum PT fed into the (in our case,
UAV’s) antenna cannot exceed 30dBm (1W) for the industrial,
scientific, and medical (ISM) bands, in which the maximum
effective isotropic radiated power (EIRPmax) is limited to
36dBm (4W). This indicates that increasing GT necessitates
a proportional decrease in PT , and vice versa, such that the
total RF power radiated by the antenna remains the same,
i.e., 4W EIRP, where max(PT ) = 1W for each case. For
directional dispersion, however, there are some exceptions to
the EIRPmax, details of which can be found in [15].

Here, we should note the following: i) since the antenna
size increases with increasing GT , the GT vs. PT balance
must be maintained regarding what a UAV can physically
accommodate, ii) power transfer should be administrated at a
low frequency (f , preferably sub-GHz), as the power received
by sensors (PR) is inversely proportional to the square of f ,
i.e., PR ∝ 1/f2, iii) since the UAV has a fixed budget for
power transfer (EPT ), decreasing PT means a longer tPT ,
which may affect the service probability of the UAV -from
(1). The lengthened coverage lifetime, tPT , despite sounding
attractive, will alter the duty cycle of sensors, which cannot
be tolerated always due to the certain reporting frequency
requirements of IoT applications [16]. Thus, these trade-offs
must be carefully considered during the system design to
maximize the performance metric defined by the application.

C. Trip Power Consumption

The rotary-wing type UAVs that we have need fixed power
during their trip, which can be approximated as [17]:

PJ(V ) ≈ P0

(
1 +

3V 2

U2
tip

)
+

Piv0
V

+
1

2
d0ρsAV

3, (6)

where U2
tip is the tip speed of the rotor blade, v0 is the mean

rotor-induced velocity when hovering, d0 is the fuselage drag
ratio, ρ is the air density, s is the rotor solidity, A is the rotor
disc area, and P0 and Pi are the UAV’s blade profile power
and induced power in hovering status, respectively. Here, Ph



can be defined as the sum of P0 and Pi, i.e.,:

Ph =
δ

8
ρsAΩ3R3︸ ︷︷ ︸

≜ P0

+(1 + k)
W 3/2

√
2ρA︸ ︷︷ ︸

≜ Pi

, (7)

where Ω is the blade angular velocity, R is the rotor radius,
k is the incremental correction factor to induced power, and
W is the UAV weight. Using the respective values of each
parameter given in [17], PJ as a function of V is illustrated
in Fig. 2(a), which is also used in our calculations.

From (2) and (6), the energy that the UAV needs for a round
trip, EJ , is tJ ×PJ = 2(R∆+hl)

V PJ , where each leg consumes
the half, i.e., EJ/2 for travelling to or from the service point.
That is important, as the energy left in BUAV after providing
service must be enough for UAV to make it to the nearest
charging station before depleting its battery, i.e.,Eleft≥EJ/2.
In our analyses, we evaluate the effect of V in minimizing
EJ , ensuring that the UAV has more resources for service.

D. Sensor Association

We assume that each event area, ∆, is serviced by only one
UAV at a time, i.e., each sensor is associated with one UAV
hovering at the center of ∆ that the sensor falls into. Other-
wise, the sensor has no service, which refers to the outage.

The power intercepted by the sensor, PI , after the UAV
initializes the power transfer process is:

PIχ =
EIRP+GRGh

PLχ
, (8)

where EIRP+ is equal to PT × GT , GR is the gain of sensor
antenna, Gh is exponentially distributed fading power coeffi-
cient, PL is path loss as a function of distance between the
UAV and sensor, and finally, χ refers to LoS and NLoS, i.e.,
the line of sight (LoS) and Non-LoS, indicating the condition
of the air-to-ground link between the UAV and sensors.

To perform sensory operations, however, PIχ has to be
converted into utilizable DC power, PRχ

, using a rectifying
antenna or rectenna. Considering the sensitivity and saturation
of rectennas, the research field has agreed on the following
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Figure 2: (a) Trip power consumption, PJ , vs. UAV velocity, V , as
modelled in [17]; (b) rectenna efficiency, Ψ, as a function of in-
put/intercepted power, PIχ , for the rectenna in [18] (@fc=868MHz).

piecewise linear function, capturing PRχ
as a high-order

polynomial [19]:

PRχ(PIχ) ≜


0, PIχ ∈ [0, Pth),

(pw +
w−1∑
j=1

pjP
w−j
Iχ

)·PIχ , PIχ ∈ [Pth, Psat],

PRχ
(Psat), PIχ ≥ Psat,

(9)
where PRχ

(PIχ) is non-decreasing and continuous for all
PIχ ∈R, PIχ ≥0. In our analyses, the rectennas are assumed
to operate in the ideal region, i.e., PIχ ∈ [Pth, Psat] for all
sensors. Hence, (pw+

∑w−1
j=1 pjP

w−j
Iχ

) is the rectenna (or RF-
to-DC conversion) efficiency as a function of PIχ , i.e., Ψ(PIχ)
(0 ≤ Ψ(PIχ) < 1), with w being the degree of polynomial
and {pj}wj=1 the respective coefficients. Furthermore, Ψ(PIχ)
is calculated using real data outsourced from [18], where
Fig. 2(b) depicts the measured and simulated behaviors of the
rectenna design of authors.

PLLoS and PLNLoS in (8) can be given as [20]:

PLLoS =20log10

(
4πfcd3D

c

)
+ ηLoS,

PLNLoS =20log10

(
4πfcd3D

c

)
+ ηNLoS, (10)

where fc is the carrier frequency, c is the speed of light, and
ηLoS, ηNLoS are average additional loss, depending on the en-
vironment for LoS, and NLoS links, respectively. Furthermore,
the probability that the UAV has a LoS air-to-ground link with
a sensor can be formulated as [21]:

PLoS =
1

1 + γexp(−δ(90− θB/2− γ))
, (11)

where γ and δ are constant values that depend on the environ-
ment (e.g., suburban, high-rise urban), and (90− θB/2) is the
elevation angle of the UAV. Finally, the probability of NLoS
is always PLoS = 1− PNLoS.

Based on the equations given above, we can define the
coverage probability of the UAV conditioned on R∆ as:

Pcov|R∆
= P(e|R∆)Pcov,s, (12)

where P(e|d∆) is given in (1). Hence, the unconditional cov-
erage probability can be expressed as:

Pcov = PePcov,s, (13)

in which:

Pcov,s = P(PRχ
≥ Γth), (14)

where Γth is the minimum power that has to be received by a
sensor to become active, referring to the sensitivity, probe its
vicinity, and deliver the data it collects to the UAV. Here, we
should note that d3D, and so RRF , can be assumed as equal
to hUT due to directivity (hUT = cos (θ/2)×RRF actually,
but θ/2 is quite small; hence, RRF ≈ hUT ). That leads to
the assumption that PRχ will be equal for each point in the



event area, i.e., all sensors in ∆ will receive the same power
irrespective of their locations. Therefore, PRχ does not need
to be averaged when Pcov,s is calculated.

III. PERFORMANCE METRICS

In this section, we first derive the service probability con-
ditioned on the distance to the nearest charging station, i.e.,
P(e|R∆), to calculate the unconditioned service probability, Pe.
Then, we find Pcov,s, and hence, study the coverage probabil-
ity, Pcov, for the envisioned energy-neutral network scenario.

A. Service Probability

By substituting for (2) in (1), we can derive the service
probability given the value of R∆ as:

P(e|R∆) =
ζ − 2(R∆ + hl)PJ

ζ − 2(R∆ + hl)(PJ − Ph) + V tChPh
, (15)

where ζ = V BUAV − V tPTPT . It should be noted that (15)
only holds if R∆ ≤ V BUAV−2hlPJ

2PJ
; otherwise, P (e|R∆) = 0.

If this condition is not satisfied, it means that BUAV is not
large enough to support the energy required for the round
trip. Hence, there will not be enough power for the UAV
to provide service in ∆. In addition, when R∆ = 0, hl is
also 0, because the UAV cannot descent when it is still on
the recharging station. In that case, the maximum service
probability is achieved, i.e., P(e|R∆ =0) =

ζ
ζ+V tCHPh

.
Now, using (15), let’s calculate the CDF of the conditional

service probability, FP(e|R∆)
(x), as:

FP(e|R∆)
(x)

= P(P(e|R∆) ≤ x)

= P
(

ζ − 2(R∆ + hl)PJ

ζ − 2(R∆ + hl)(PJ − Ph) + V tChPh
≤ x

)
,

and given that P(e|R∆) is a decreasing function of R∆, the
preimage can be obtained as:

= P
(
R∆ ≥ ζ(1− x)− hlκ− xV tChPh

κ

)
, (16)

where κ = 2[PJ(1− x) + xPh].
Hence, the CDF becomes:

FP(e|R∆)
(x) = e−λChπQ

2(x), (17)

in which:

Q(x) =
ζ(1− x)− hlκ− xV tChPh

κ
.

Since the minimum value of R∆ = 0, and its maximum value
for a non-zero availability probability is V BUAV−2hlPJ

2PJ
, then:

0 ≤ x ≤ ζ

ζ + V tCHPh

Using these results, we can find the service probability as:

Pe = EΦCh
[P(e|d∆)]

=

∫ ∞

0

(1− FP(e|d∆)
(x)) dx

=

∫ ζ
ζ+V tChPh

0

(1− e−λChπQ
2(x)) dx. (18)

B. Coverage Probability
Based on the equations derived in the previous subsections,

we can now work on the coverage probability given in (14).
First, we need to reexpress Pcov,s as follows:

Pcov,s

=PcovLoSPLoS + PcovNLoSPNLoS

=P
(
PRLoS ≥Γth

)
PLoS + P

(
PRNLoS ≥ Γth

)
PNLoS

=P
(
ηLoS

EIRP+GRGh
PLLoS

≥ Γth

)
PLoS + ...

...+ P
(
ηNLoS

EIRP+GRGh
PLNLoS

≥ Γth

)
PNLoS

=P
(
Gh≥ ΓthPLLoS

ηLoSEIRP+GR

)
PLoS+P

(
Gh≥ ΓthPLNLoS

ηNLoSEIRP+GR

)
PNLoS

=e
−
(

ΓthPLLoS
ηLoSEIRP+GR

)
PLoS+e

−
(

ΓthPLNLoS
ηNLoSEIRP+GR

)
PNLoS. (19)

Therefore, the coverage probability, Pcov in (13), can be finally
calculated by using (18) and (19).

IV. NUMERICAL RESULTS

In this section, we calculate the coverage probability using
the derived equations to study the effect of recharging time and
station density, maximum battery size, and UAV speed. Unless
otherwise stated, Table I provides the parameter values, where
ηLoS and ηNLoS are for high-rise urban scenario.

We first investigate the effect of varying recharging time on
the coverage probability for an increasing recharging station
density. For this analysis, using (3) for the considered Bmax and
ξCh values, we know that tsatCh should be 3600 seconds, i.e., 1
hour, which is typical for commercial UAVs. Fig. 3(a) depicts

Table I: Parameter values.

Service-related
PT 21 [dBm] GT 15 [dBi]
θB 30.8 [◦] fc 868 [MHz]
c 3× 108 [m/s] Γth 1 [µW]

Environment-related [22] [22]
ηLoS 1.6034 [dB] γ 27.1157

ηNLoS 29.6462 [dB] δ 0.1232

UAV-related [17]
Bmax 770 [Wh] Ph 168.48 [W]
V 10.36 [m/s] PJ 126.395 [W]

Others
λCh 10−6 [m−2] GR 9 [dBi]
hCh 100 [m] hl 80 [m]
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Figure 3: Coverage probability, Pcov , vs. recharging station density, λCh, for different tCh: (a) half-charged; (b) fully-charged; (c) overflowed.

what happens when the UAV stays at the recharging station
until its battery gets half-full gradually. Here, we observe that,
depending on the recharging level, certain discrepancies arise,
which are especially evident for lower densities of recharging
stations. For example, in the case of 0.001 stations per km2,
Pcov gets 2.7 times better when tCh is increased from 600
to 1800 seconds. This effect is less apparent for higher λCh

because finding a recharging station becomes more likely for
the UAV; hence, it may not need to depend heavily on the
charge in its battery due to the increased recharging possibility.
Numerically speaking, Pcov increases only up to 1.3 times for
the same increment in tCh when λCh is ten times higher, i.e.,
0.01 per km2. When we look at the fully charged case shown
in Fig.3(b), which can be considered ideal in theory, we see
that the performance gap increases for lower-density values.
Unsurprisingly, a fully-charged battery can help the UAV
achieve better coverage, especially at a low λCh, compared
to those of partially-charged cases. Finally, in Fig.3(c), we
analyze the case when the battery overflowed, i.e., when the
UAV continues to stay at the recharging station after its battery
gets fully charged. From (1), we know that increasing tCh

beyond saturation is unsuggested since the service probability,
Pe, and hence Pcov , is inversely proportional to it. However,
Fig.3(c) reveals that this might not be the case always. As
seen, when the battery is charged for 4350 seconds (>tsatCh), it
is still possible to obtain higher Pcov compared to the partial
charge cases, depending on λCh. For example, tCh of 600
seconds can only outperform the overflowed case when λCh

is 7.81 × 10−6m−2 or higher. Similar comments also hold
for other tCh values (except for tsatCh), as can be seen from
the dashed red lines perpendicular to the x-axis, where the
λCh threshold significantly reduces for increasing charge level
towards the full battery, e.g., 2 × 10−9m−2 for tCh of 2850
seconds. The take-home message from this analysis is that a
relatively empty battery might be worse than overstaying at
the recharging station, e.g., for maintenance purposes, if the
application mandates a certain level of λCh.

Next, we extend our discussion to the impact of using
batteries of different sizes on the coverage probability for
varying charging times. As can be seen from Fig. 4(a), in
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Figure 4: Coverage probability, Pcov , vs. recharging time, tCh, for
different Bmax: (a) @λCh=10−9 [m−2]; (b) @λCh=10−6 [m−2].

the case of a partial charge, all batteries show the same
performance until tCh = 1440 seconds, i.e., when the battery
of size 308Wh gets full. That is because all batteries are
charged to the same level at that tCh value regardless of their
total size, Bmax. The same phenomenon is also observed for the
remaining batteries until the one with the smallest size reaches
its tsatCh, where the respective Pcov starts its dramatic decay due
to overflow. Fig. 4(a) and Fig. 4(b) are for different densities
of stations; 10−9 and 10−6 [m−2], respectively. Although tsatCh

of each battery remains the same, the achievable Pcov changes
dramatically due to the clockwise rotation of the behavior.

We lastly focus on understanding how the UAV velocity
affects the coverage performance depending on the recharging
station density. Before explaining the results, we should note
that Fig. 5 is produced for a Bmax of 192.5Wh, i.e., the quarter
of what Table I mentions, which is only charged until its half
at the same rate. As seen, the impact of V is negligible for
high λCh due to the same reason explained earlier in this
section. For low λCh, on the other hand, the UAV should
speed up to reach the nearest station faster, although that
means an increased PJ . Due to the PJ component, however,
the increment in V is only beneficial until a certain point, as
shown with the black dashed line marking the optimal velocity
values for each λCh. Using a bigger battery and charging it
to the ideal level, i.e., 100% -no overflow, will diminish this
behavior, forcing higher speeds only for low λCh values.
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Figure 5: Coverage probability, Pcov , as a function of UAV velocity,
V , for varying λCh values.

The results above suggest that for a given performance
target, e.g., maximum Pcov with minimum λCh, shorter tCh,
or a fixed Bmax, the relevant design parameters can be tweaked
as required. Considering that most of these parameters affect
each other, e.g., the EIRP limit on PT alters not only PLoS (due
to the dictated θB) but also the size of the event area and hence
the number of sensors that can be powered (not within the
scope of this study) and even their reporting frequencies, the
network requires a holistic design approach as optimizing the
trade-offs for the best performance achievable. We believe this
paper provides a practice-based showcase on this, providing
guidance for future efforts.

V. CONCLUSIONS

This study investigates the factors affecting the coverage
performance of sensors energized by UAVs with directional
antennae, constituting an energy-neutral IoT network together
with the multi-source EH recharging stations replenishing
UAVs batteries. With this goal, We first derived the service
probability as a function of UAV power consumption/velocity
and battery size, recharging time and station density, and
WPT duration. That was then joined with distance-conditioned
coverage probability, incorporating the effects of directivity,
the LoS/NLoS connectivity, and the non-linear EH model.
The analyses revealed the design considerations for the best
coverage with regard to FCC regulations, realistic rectenna and
UAV operation, and minimum power requirements of sensors.
Future works will focus on calculating the number of sensors
that can be powered by UAVs. We will also try maximizing
the communication throughput of sensors in the envisioned
setting by optimizing the parameters/trade-offs that have been
discussed in this study.
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