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Abstract—The freshness of real-time status processing of time-
sensitive information is crucial for several applications, including
healthcare monitoring and autonomous vehicles. This freshness
is considered in this paper for the system where unprocessed
information is sent from sensors to a base station over a
shared wireless network. The base station has a dedicated non-
preemptive processor with a constant processing time to process
information from each sensor. The age of processed information is
the time elapsed since the generation of the packet that was most
recently processed by a processor. Our objective is to minimize
the average age of processed information over an infinite time-
horizon. We first show that a drop-free policy simplifies the
system without sacrificing optimality. From this simplification,
we propose three transmission-scheduling policies with 2-optimal
guarantees for different requirements. A distributed Power-2
policy can be implemented without a central scheduler. With a
central scheduler, both Back-Off and Max-Weight policies are
near optimal with different advantages. The Back-Off policy
guarantees a bound on the maximum age of processed infor-
mation, while the Max-Weight policy achieves the lowest average
age in simulation without the guarantee of bound. Simulation
results confirm our theoretical findings.

Index Terms—Age of information, Transmission scheduling,
Max-weight, Scheduling policy, Wireless network, Optimization

I. INTRODUCTION

Real-time status processing finds various applications, in-

cluding healthcare monitoring [1] and autonomous vehicles

[2], [3]. These applications collect real-time information from

sensors over wireless communication, process the obtained

information at a base station, and utilize the processed in-

formation for making decisions as illustrated in Figure 1. For

example, an autonomous vehicle needs to process information

in real-time to drive safely. The vehicle’s control system

receives data wirelessly from sensors, and data from each

sensor is then processed by a dedicated processor.

To ensure that systems always make informed decisions

based on up-to-date data, the freshness of processed informa-

tion becomes one of the key factors. The freshness of infor-

mation can be rigorously modeled by the age of information

(AoI) ( [4], [5] and references therein), which is the time

elapsed since the generation of the packet that the base station

most recently received. AoI has been extensively studied from

queueing analysis, including single-server queues [6], multi-

source queues [7], non-preemptive queues [8], and parallel-

server queues [9], to scheduling problems, such as throughput

constraints [10], power constraints [11], [12], single-hop [13]–

[16], multi-hop [17]–[19], both offline and online policies
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Fig. 1. Time-sensitive information in a wireless network

[20]. Moreover, [21]–[23] have investigated AoI from the per-

spective of joint sampling and scheduling policies. However,

those studies focus on the age of information unprocessed

(AoIU) of packets that have just arrived at the base station.

In some circumstances, the newly received information must

be processed before the systems can use it. Thus, we must

incorporate this processing time into scheduling procedures.

In this paper, the age of information processed (AoIP),

which is the time elapsed since the generation of the packet

that was most recently processed by a processor, is modeled

to quantify the freshness of information for the real-time

status processing. As shown in Figure 1, time-sensitive and

unprocessed information is transmitted from sensors to a base

station over a shared wireless channel. To process information

from each sensor, the base station possesses a dedicated

non-preemptive processor with a constant processing time,

and each processor may process one packet at a time. Each

processor is said to have fresher information when a new

packet has been fully processed–rather than when a new

packet arrives at the base station. Our goal is to develop

scheduling policies for a resource-constrained wireless channel

that minimizes the average age of processed information over

an infinite time-horizon. While the AoIP can better capture the

aspect of processed information, it is challenging to derive,

compared to the AoIU. Thus, we concentrate on a subclass

of scheduling policies, namely drop-free policies, that make

the analysis of the average age of processed information

more tractable. We show that this subclass of policies does

not sacrifice any optimality and derives a lower performance

bound to the optimal average sum of AoIP. Afterward, we

present three drop-free scheduling policies, called the Power-2

policy, the Back-Off policy, and the Max-Weight policy. They

all achieve 2-optimal performance guarantees with different

advantages.

To elaborate, the Power-2 policy is low-complexity and

fully distributed. On the other hand, with central scheduler

employing a greedy approach, the Back-Off policy can signif-
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Fig. 2. A system model consists of N sensors and dedicated processors with
different processing times. Each gray block represents a progress bar. For
example, the total processing time of processor 2 is 3 slots, and the current
progress is 1/3.

icantly outperform the Power-2 policy in terms of the average

age. Furthermore, the Back-Off policy guarantees a bound on

the maximum age of processed information. Lastly, the Max-

Weight policy is a centralized policy that uses a Lyapunov

Optimization technique. In simulation results, it provides the

average age closest to the optimal. However, the Max-Weight

policy cannot guarantee a bound on the maximum age of

processed information.

The contributions of this paper are threefold:

• We model the age of processed information in a wireless

network with processors and show that a class of drop-

free policies tractably minimizes AoIP without sacrific-

ing any optimality.

• We analyze a lower performance bound of the system and

design three drop-free scheduling policies with 2-optimal

guarantees.

• We simulate these policies and compare them with the

lower performance bounds to confirm our analytical re-

sults and show that the Max-Weight and Power-2 policies

perform near-optimal.

This paper is organized as follows. The system model is for-

mally presented in Section II. Section III introduces the drop-

free policies and analyzes their lower performance bounds.

Three policies with different advantages are proposed and

analyzed in Section IV. In Section V, these policies are

simulated to evaluate their performances, followed by the

conclusion in Section VI.

II. SYSTEM MODEL

A. Network and Processors

Consider a wireless network system with N nodes attempt-

ing to send packets, containing time-sensitive, unprocessed

information, to their corresponding N processors at a base

station, as shown in Figure 2. Each node and its corresponding

processor are indexed by the index set N = {1, . . . , N}. For

example, sensors in an autonomous vehicle send the measured

data wirelessly to a central control system, the base station in

our model, with a dedicated processor for each sensor.

Time is slotted, t ∈ {1, 2, . . .}. In each slot t, at most one

node can transmit a packet to the base station over a wireless

channel due to interference, which is similar to [10], [13], [15],

[16], [18], [20]–[22], [24]. Let xi(t) be a decision variable that

equals 1 when node i transmits a packet to the base station

in slot t, and xi(t) = 0 otherwise. Hence, the interference

constraint is defined by
∑

i∈N

xi(t) ≤ 1, ∀t ∈ {1, 2, . . .} . (1)

We assume that every transmission is always successful when

the interference constraint is satisfied [13], [16], [22].

In this paper, we consider the class of all scheduling

policies, denoted by Π, that make transmission decision

{xi(t)}i∈N every slot such that the interference constraint is

satisfied. Henceforth, we assume all transmissions satisfy the

interference constraint. Every transmitted packet is assumed to

take one slot to arrive at the base station [10], [11], [13], [16],

[18]. When a packet arrives at the base station, it is redirected

immediately to a corresponding processor.

All processors are non-preemptive. Each processor i can

process one packet at a time, and the processing time takes Di

consecutive slots for any constant Di ∈ N. Therefore, when a

new packet for processor i arrives at time t and the processor is

idle, not processing any packet, the packet will be completely

processed at the end of slot t+Di−1 and will be considered as

processed information in slot t+Di. However, if processor i is

busy (not idle), the newly arrived packet will be dropped and

is no longer considered for processing. We call this situation

wasteful transmission. Note that the system could introduce

queues to store newly-arrived packets while processors are not

idle. However, later we will show in Section III that those

queues are unnecessary for optimality.

B. Wasteful Transmission

To prevent wasteful transmission, where a transmitted

packet is dropped, we introduce fi(t) as an indicator variable

that equals 1 if a transmission from node i in slot t will be

wasteful, and fi(t) = 0 otherwise. We assume all processors

are initially idle, so fi(1) = 0, ∀i ∈ N . When node i transmits

a packet in slot t knowing that the transmission will not be

wasteful, i.e., xi(t) = 1 and fi(t) = 0, at the beginning of slot

t+ 1 the processor i will be busy processing this transmitted

packet until the end of slot t +Di as illustrated in Figure 2.

This implies that fi(τ) = 1 for τ ∈ {t+ 1, . . . , t+Di − 1}
and fi(t+Di) = 0. In particular, any packet from node i
transmitted during {t+ 1, . . . , t+Di − 1} will be dropped,

but a packet transmitted at time t + Di will get processed

right after the previous processing completes.

If node i does not transmit in slot t and fi(t) = 0, then

fi(t+ 1) = 0. However, if node i transmits a packet in slot t
knowing that the transmission will be wasteful, i.e. xi(t) = 1
and fi(t) = 1, then the transmitted packet will be dropped in

slot t+1 right after it has been redirected to processor i. Also,

this wasteful transmission will not affect the values of fi(t).
The dynamic of fi(t) is illustrated in Figure 3.

C. Age of Information

The Age of Information (AoI) represents how fresh the

information received by the base station is. In this paper,

we extend AoI to two metrics, considering unprocessed and



Fig. 3. The green dots represent transmissions from node i. The pink dots
represent unwasteful transmissions when those packets that would not be
dropped at the base station are generated and transmitted to the base station.
The crossed xi(t) represents a wasteful transmission. A wasteful transmission
affects AU

i
(t) but does not affect AP

i
(t), as show in slots 7, 15, and 16.

processed information. They are formally defined with their

relationship below. We also assume that every packet is

generated right before transmission, and its age starts at zero.

The Age of Information Unprocessed (AoIU) of node i at

time t represents how old the transmitted packet that the base

station most recently received from node i is. This AoIU is

denoted by a positive integer AU
i (t). When node i transmits a

packet at time t, i.e., xi(t) = 1, and other nodes do not, this

newly-generated packet from node i will arrive at the base

station in slot t+1, and AU
i (t+ 1) = 1 because the packet is

generated right before the transmission and takes one slot to

arrive. When there is no transmission from node i, the AoIU

gets older by one slot, and AU
i (t+ 1) = AU

i (t) + 1. The

AU
i (t+ 1) is illustrated in Figure 3 and is written as follows

AU
i (t+ 1) =

{

1 , if xi(t) = 1;

AU
i (t) + 1 , otherwise.

(2)

To measure the AoIU of the entire system when a policy π
is employed, we consider the Average Weighted Sum of AoIU

(AWSAoIU) as follows, for every π ∈ Π,

Jπ
U = lim

T→∞

1

NT

T
∑

t=1

∑

i∈N

wiA
U
i (t) (3)

where wi is a positive weight of node i.
The Age of Information Processed (AoIP) of node i at

time t represents how old the packet that processor i most

recently finished processing is. This AoIP is denoted by a

positive integer AP
i (t). When processor i has just finished

processing a packet at the end of slot t, we know that

AP
i (t+ 1) = Di + AU

i (t−Di + 1) = Di + 1 because i)

the processing time is Di and ii) the received packet at the

base station is not dropped and is immediately processed.

In particular, this situation happens only when the packet is

transmitted at time t−Di, and the transmission is unwasteful,

i.e., xi(t−Di) = 1 and fi(t−Di) = 0. When there is no

processing completion of processor i at time t, the AoIP gets

older by one slot, and AP
i (t+ 1) = AP

i (t)+1. The AP
i (t+ 1)

is illustrated in Figure 3 and is written as follows

AP
i (t+ 1) =











Di + 1 , if xi(t−Di) = 1 and

fi(t−Di) = 0;

AP
i (t) + 1 , otherwise.

(4)

To measure AoIP of the entire system when a policy π is

employed, we consider the Average Weighted Sum of AoIP

(AWSAoIP) as follows, for every π ∈ Π,

Jπ
P = lim

T→∞

1

NT

T
∑

t=1

∑

i∈N

wiA
P
i (t) (5)

with the same weight wi defined in (3).

The initial AoIU and AoIP can be any arbitrary positive

integers. For simplicity, we assume that AU
i (1) = AP

i (1) = 1
for all i ∈ N .

D. System Objective

In this paper, we develop scheduling policies that minimize

the AWSAoIP in (5) under the interference constraint in (1)

as follows

J∗
P =min

π∈Π

{

lim
T→∞

1

NT

T
∑

t=1

∑

i∈N

wiA
P
i (t)

}

(6a)

s.t.
∑

i∈N

xi(t) ≤ 1, ∀t ∈ {1, 2, . . .} , (6b)

where J∗
P is the minimum AWSAoIP achieved under a

scheduling policy that satisfies the interference constraint.

While we aim to minimize the AWSAoIP, the evolution of

AP
i (t) in (4) is too cumbersome to deal with, compared to

AU
i (t) in (2). The next section considers a special class of

policies that render our analysis tractable.

Note that, while the scheduling problem in (6) is determin-

istic, computing the optimal policy offline needs to search over

a policy space, which is exponentially large with respect to N
and

∏

i∈N Di. For example, let Li(t) be the state of processor

i at time t. At time t, a policy π could map the current system

state,
{

AP
i (t), Li(t)

}

i∈N
, to a scheduling decision at time

t+1. In this case, searching for an optimal policy π for large

N and
∏

i∈N Di is intractable. Furthermore, implementing

the policy requires a large memory space to store the policy

mapping.

III. DROP-FREE POLICIES AND PRELIMINARY

We observe that wasteful transmission consumes network

resources without improving AWSAoIP. Therefore, we con-

sider a drop-free scheduling policy that avoids scheduling a

transmission from nodes that will cause a packet drop, once

the packet arrives at the base station. We denote the class of

drop-free policies by ΠDF . Note that ΠDF ⊆ Π. Next, we

introduce some useful properties of drop-free policies, derive

a lower performance bound, and prove a preliminary lemma.



A. Drop-free Policies

For each node i, we begin with decomposing the first T slots

into intervals between transmissions. Let Vi[T ] be the total

number of packets transmitted by node i within these T slots,

i.e.,
∑T

t=1 xi(t) = Vi[T ]. Let Ii[m] be the number of slots

between the (m − 1)th and mth packet deliveries from node

i for all m ∈ {1, 2, . . . , Vi[T ]}, and let Ri be the number of

remaining slots after the last transmission to slot T . Therefore,

we have

T =

Vi[T ]
∑

m=1

Ii[m] +Ri, ∀i ∈ N . (7)

Next, we show that drop-free policies lead to a simple rela-

tionship between unprocessed and processed ages.

Lemma 1. For any drop-free scheduling policy, the relation-

ship between AU
i (t) in (2) and AP

i (t) in (4) always follows:

AP
i (t+Di) = AU

i (t) +Di, ∀t ≥ Ii[1] + 1, ∀i ∈ N . (8)

Proof. We will prove this by induction. Let π be a drop-free

policy. Since xi(t) = 1 implies that fi(t) = 0, the evolution

of AP
i (t) in (4) can be rewritten as

AP
i (t+ 1) =

{

Di + 1 , if xi(t−Di) = 1;

AP
i (t) + 1 , otherwise.

(9)

Basic Step: Since xi(Ii[1]) = 1, we know from (2) and (9)

that

AU
i (Ii[1] + 1) +Di = 1 +Di = AP

i (Ii[1] +Di + 1).

Inductive Step: Suppose k ≥ Ii[1] + 1 is an integer such

that

AP
i (k +Di) = AU

i (k) +Di. (10)

For k + 1 and xi(k) = 1, we have from (2) and (9) that

AU
i (k + 1) +Di = Di + 1 = AP

i (k +Di + 1).

For k + 1 and xi(k) = 0, we have that

AU
i (k + 1) +Di = AU

i (k) + 1 +Di

= AP
i (k +Di) + 1 = AP

i (k +Di + 1),

where the first equality uses (2), the second equality uses

the induction hypothesis (10), and the last equality uses (9).

Hence, the equality in (8) holds by the proof of induction.

The implication of Lemma 1 is that the relationship between

AoIU and AoIP becomes much simpler under drop-free

policies. The next lemma considers the relationship between

AWSAoIU and AWSAoIP.

Lemma 2 (AWSAoIU and AWSAoIP). For any system with

{wi, Di}i∈N , the following holds for every drop-free schedul-

ing policy, π ∈ ΠDF ,

Jπ
P = Jπ

U +
1

N

∑

i∈N

wiDi, (11)

where Jπ
P and Jπ

U are defined repectively in (5) and (3).

Proof. Consider a drop-free policy π ∈ ΠDF . Manipulating

the AWSAoIP in (5) gives

Jπ
P = lim

T→∞

1

NT

∑

i∈N

wi

[

Ii[1]+Di
∑

t=1

AP
i (t)

+

T
∑

t=Ii[1]+Di+1

AP
i (t)

]

.

Knowing the first term above disappears after applying the

limit T →∞, we apply Lemma 1 as π is drop-free and obtain

Jπ
P = lim

T→∞

1

NT

∑

i∈N

wi

T−Di
∑

t=Ii[1]+1

(

AU
i (t) +Di

)

= lim
T→∞

1

NT

∑

i∈N

wi

[

T−Di
∑

t=1

(

AU
i (t) +Di

)

−

Ii[1]
∑

t=1

(

AU
i (t) +Di

)

]

Knowing the second term in the RHS disappears in the limit,

we use the definition of AWSAoIU in (3) to prove (11) from

Jπ
P = lim

T→∞

1

NT

∑

i∈N

wi

T−Di
∑

t=1

AU
i (t) +

1

N

∑

i∈N

wiDi.

Next, we argue that considering the class of drop-free

policies does not affect the optimal AWSAoIP in (6a).

Lemma 3 (Drop-free Optimal Scheduler). For any system with

{wi, Di}i∈N , there exists a drop-free optimal scheduler.

Proof. Assume that S is an optimal scheduler that knows

which node to transmit in each slot to achieve the optimal

AWSAoIP. If the scheduler S causes wasteful transmissions,

then we can simply construct a new scheduler S∗ by replicat-

ing S but without transmitting those packets that would have

been dropped according to the scheduler S. By doing so, S∗

is a drop-free scheduler, and its AWSAoIP is not higher than

the optimal AWSAoIP under the optimal schedule S. Thus,

S∗ is a drop-free optimal scheduler.

Note that even if a processor is preemptive, meaning it has

the capability to drop a packet it is processing, there still exists

an optimal drop-free policy because we can tweak an optimal

policy for preemptive processors by not scheduling those

packets that would have been preempted later. In particular, the

tweaked policy is drop-free and achieves the same optimality

for the system with preemptive processors.

Combining Lemma 2 and Lemma 3, we have that

J∗
P = min

π∈ΠDF
Jπ
P = min

π∈ΠDF
Jπ
U +

1

N

∑

i∈N

wiDi. (12)

This simplifies our optimization only to minimize

AWSAoIU over drop-free policies. However, finding

the optimal AWSAoIU is challenging, so we mitigate this



by deriving a lower performance bound and later show that

our policies in Section IV achieve the bound.

B. Lower Performance Bound

We consider the long-term transmission rate and derive its

property before proceeding to the lower bound. The long-term

transmission rate of node i under policy π is defined by, for

every π ∈ Π,

rπi = lim
T→∞

1

T

T
∑

t=1

xi(t) = lim
T→∞

Vi[T ]

T
. (13)

Lemma 4 (Maximum Transmission Rates). For any system

with {wi, Di}i∈N and for any drop-free policy π ∈ ΠDF ,
the long-term transmission rate from each node is at most the

reciprocal of the corresponding processing time. In particular,

the following holds

rπi ≤
1

Di
, ∀i ∈ N . (14)

Proof. Fix node i ∈ N . Consider the first T slots. Since π
is a drop-free policy, the inter-delivery times during T slots

must be at least Di, i.e.,

Ii[m] ≥ Di, ∀i ∈ N and m ∈ {2, 3, . . . , Vi[T ]} .

Applying the above inequality to (7), we get

T =

Vi[T ]
∑

m=1

Ii[m] +Ri ≥ (Vi[T ]− 1)Di.

Manipulating the inequality above, applying the limit T →∞,

and using the definition of the long-term transmission rate in

(13) yields

1

Di
≥ lim

T→∞

[

Vi[T ]

T
−

1

T

]

= rπi .

Theorem 1 (Lower bound). For any system with {wi, Di}i∈N ,

the optimal AWSAoIP J∗
P has the lower bound LB that is the

solution of the following optimization problem, i.e., J∗
P ≥ LB

and

LB = min
π∈ΠDF

{

1

N

∑

i∈N

wi

(

Di +
1

2
+

1

2rπi

)

}

(15a)

s.t.
∑

i∈N

rπi ≤ 1 (15b)

0 < rπi ≤
1

Di
, ∀i ∈ N . (15c)

Proof. Consider a drop-free policy π ∈ ΠDF that satisfies

the interference constraint throughout the first T slots. Fix

node i, and recall that the notations Vi[T ], Ii[m], and Ri are

introduced in Section III-A for equality (7). For each interval

Ii[m], the unprocessed age AU
i (t) evolves as {1, 2, . . . , Ii[m]}

according to the dynamic of AU
i (t) in (2). Similarly, the

age evolves as {1, 2, . . . , Ri} during the remaining Ri slots.

Therefore, the time-average age of information unprocessed of

node i during the first T slots is as follows

1

T

T
∑

t=1

AU
i (t) =

1

T





Vi[T ]
∑

m=1

(Ii[m] + 1)Ii[m]

2
+

(Ri + 1)Ri

2





(16)

=
1

2T





Vi[T ]
∑

m=1

Ii[m]2 +R2
i



+
1

2
.

Applying Cauchy’s Inequality to the above equality gives

1

T

T
∑

t=1

AU
i (t) ≥

1

2T

[

∑Vi[T ]
m=1 Ii[m] +Ri

]2

Vi[T ] + 1
+

1

2

=
T

2(Vi[T ] + 1)
+

1

2
.

Applying the limit T → ∞ to the above and using the

definition of the long-term transmission rate (13), we obtain

the lower bound of the time-average age of information

unprocessed for node i as

lim
T→∞

1

T

T
∑

t=1

AU
i (t) ≥

1

2 limT→∞

[

Vi[T ]
T + 1

T

] +
1

2

≥
1

2rπi
+

1

2
.

Using the bound above, we can bound the AWSAoIU in (3)

by

Jπ
U =

1

N

∑

i∈N

wi lim
T→∞

1

T

T
∑

t=1

AU
i (t)

≥
1

N

[

∑

i∈N

wi

2rπi
+

∑

i∈N

wi

2

]

. (17)

The lower bound in (17) is a function of long-term trans-

mission rates. Using the definition of these rates in (13) and

summing over i ∈ N , we have

∑

i∈N

rπi = lim
T→∞

1

T

∑

i∈N

T
∑

t=1

xi(t) = lim
T→∞

1

T

T
∑

t=1

∑

i∈N

xi(t) ≤ 1

(18)

where the last inequality holds because the policy satisfies

the interference constraint in (1). Minimizing both sides of

(17) over drop-free policies and using (18) and (14) as the

constraints give

min
π∈ΠDF

Jπ
U ≥ min

π∈ΠDF

1

N

∑

i∈N

wi

(

1

2rπi
+

1

2

)

(19)

where
∑

i∈N rπi ≤ 1 and 0 < rπi ≤
1
Di

for all i ∈ N . Finally,

using (19) and (12) proves the theorem and (15).

Intuitively, Theorem 1 provides a lower performance bound

of an optimal drop-free policy. It is later used to analyze the

performances of three scheduling algorithms in Section IV.



Note that our lower bound in (15) differs from [10], [22] in

that i) it involves processing constraints and ii) it is under a

class of drop-free policies.

Furthermore, it is possible to show that this lower bound

also holds for another system with queues placed in front of

the processors, where processors can be either preemptive or

non-preemptive. In other words, if some drop-free scheduling

policy achieves the bound, that policy is also near-optimal

for the system with queues. This claim can be proven by

considering a rate of processed packets. Since this rate cannot

exceed the transmission rate and packets get older when being

queued, we can derive a similar bound as in (15).

The bound in (15) can be made explicit by finding the set of

optimal rates {r∗i }i∈N that minimizes (15a) under constraints

(15b) and (15c). These optimal rates can be found from solving

the convex optimization in (15) by any off-the-shelf solver, for

example, CVX [25]. Substituting the optimal rates {r∗i }i∈N
into (15a) gives

J∗
P ≥ LB =

1

N

∑

i∈N

wi

(

1

2r∗i
+

1

2
+Di

)

. (20)

Furthermore, when
∑

i∈N
1
Di
≤ 1, it is easy to see that r∗i =

1
Di

for all node i, and we have

J∗
P ≥ LB =

1

N

∑

i∈N

wi

(

3

2
Di +

1

2

)

. (21)

C. Preliminary of Performance Guarantee

To guarantee the performance of a scheduling policy π ∈ Π,

we say π is k-optimal if Jπ
P ≤ k × J∗

P where J∗
P =

minπ′∈Π Jπ′

P . We first prove the following lemma, which will

be used in the next section.

Lemma 5 (inter-deliver-optimal). When a scheduling policy

has the property that
⌈

1
r∗
i

⌉

≤ Ii[m] ≤ 2
⌈

1
r∗
i

⌉

for every i ∈ N

and m ∈ N, the policy is 2-optimal. Moreover, it is 4/3-

optimal if
∑

i∈N
1
Di
≤ 1.

Proof. Considering the first T slots with the similar derivation

in (16) and using the condition that Ri, which is lower than

Ii[Vi[T ] + 1], and Ii[m] do not exceed 2
⌈

1
r∗
i

⌉

, we have

1

T

T
∑

t=1

AU
i (t) =

1

2T





Vi[T ]
∑

m=1

Ii[m]2 +R2
i



+
1

2

≤
2
⌈

1
r∗
i

⌉

2T





Vi[T ]
∑

m=1

Ii[m] + Ri



+
1

2

=

⌈

1

r∗i

⌉

+
1

2
.

Since Ii[m] ≥
⌈

1
r∗i

⌉

≥ 1
r∗i
≥ Di, π is a drop-free policy.

Therefore, by Lemma 2 and the inequality above, we obtain

Jπ
P = Jπ

U +
∑

i∈N

wiDi

= lim
T→∞

1

T

T
∑

t=1

∑

i∈N

wiA
U
i (t) +

∑

i∈N

wiDi

≤
∑

i∈N

wi

(⌈

1

r∗i

⌉

+
1

2
+Di

)

. (22)

Since
⌈

1
r∗
i

⌉

≤ 1
r∗
i

+Di as Di ≥ 1, the inequality (22) yields

that π is 2-optimal according to (20) as

Jπ
P ≤

∑

i∈N

wi

(

1

r∗i
+

1

2
+ 2Di

)

≤ 2
∑

i∈N

wi

(

Di +
1

2
+

1

2r∗i

)

= 2J∗
P .

Also, if
∑

i∈N
1
Di
≤ 1, then r∗i = 1

Di
for all i ∈ N and, the

inequality (22) yields that π is 4/3-optimal according to (21)

and

Jπ
P ≤

∑

i∈N

wi

(

Di +
1

2
+Di

)

≤
4

3

∑

i∈N

wi

(

3

2
Di +

1

2

)

≤
4

3
J∗
P .

IV. SCHEDULING POLICIES

In this section, we present three scheduling policies, namely,

Power-2 , Back-Off , and Max-Weight, with their performance

guarantees.

A. Power-2 Policy

The Power-2 policy minimizes AWSAoIP with a 2-optimal

guarantee. It is distributed, cyclic, and has low complexity. The

policy is inspired by the work in [16] for a different problem

that guarantees the upper bound of AoI without minimizing

AWSAoIU explicitly. Here, we present our policy and derive

its performance guarantee.

Without loss of generality, node indices are rearranged such

that r∗1 ≥ r∗2 ≥ . . . ≥ r∗N . We define DPW
i = 2⌈log2(1/r

∗

i )⌉

as a fixed inter-delivery time for source node i. Note that

DPW
1 ≤ DPW

2 ≤ . . . ≤ DPW
N . Then, for each node i,

we determine a basic time Bi, in which every packet from

node i is transmitted in slot t where t ≡ BimodDPW
i .

Intuitively, Bi is the first slot node i transmits a packet and it

keeps transmitting every DPW
i slots. Therefore, node i only

needs know Bi and DPW
i to make transmission decisions

independently from other nodes, assuming the starting time

is synchronized.

The procedure for determining the basic time {Bi}i∈N that

the policy is drop-free and satisfies the interference constraint

in (1) is summarized in Algorithm 1 with an example provided

below.



Algorithm 1: Procedure for determining basic time

{Bi}

Input :
{

DPW
i

}

i∈N
Output: {Bi}i∈N

for i ∈ {1, . . . , N} do
Pi =
{

t ∈
{

1, 2, . . . , DPW
i

}

|t 6≡ Bj modDPW
j , ∀j < i

}

Bi = minPi
end

Example: A system consisting of three nodes with

{Di}
3
i=1 = {2, 2, 4} and {wi}

3
i=1 = {20, 5, 1}. Solving

problem (15) obtains {r∗i }
3
i=1 ≈

{

1
2 ,

1
2.9 ,

1
6.5

}

, and we set
{

DPW
i

}3

i=1
=

{

2⌈log2(1/r
∗

i )⌉
}3

i=1
= {2, 4, 8}. Starting from

the first node, we have P1 = {1, 2} and B1 = 1. Next, we

have P2 = {2, 4} and B2 = 2. Lastly, we have P3 = {4, 8}
and B3 = 4. Therefore, node 1 transmits a packet in slots

{1, 3, 5, 7, . . .} without communicating with the other nodes.

Similarly, node 2 transmits in slots {2, 6, 10, 14, . . .}, and node

3 transmits in slots {4, 12, 20, . . .}.

Now, we show that Algorithm 1 always constructs the basic

times {Bi}i∈N before showing that the interference constraint

in (1) is satified by the transmissions generated by these basic

times.

Theorem 2 (Existence of Basic Times). For any system with

{wi, Di}i∈N , Algorithm 1 always leads to non-empty Pi for

all i ∈ N .

Proof. Let
{

DPW
i

}

i∈N
be the result of a given network

setting. We use induction to show that Pi is non-empty for

all i ∈ N .

Basic Step: Since DPW
i ≥ 1, we have that P1 =

{

1, 2, . . . , DPW
1

}

and is non-empty.

Inductive Step: Let k ∈ {1, 2, . . . , N − 1} such that all

Pk are non-empty. We will show that Pk+1 is non-empty as

follows.

|Pk+1|

=

∣

∣

∣

∣

∣

{

1, 2, . . . , DPW
k+1

}

/

k
⋃

j=1

{

t ∈
{

1, . . . , DPW
k+1

}}

∣

∣t ≡ Bj modDPW
j

∣

∣

∣

∣

∣

(23)

≥ DPW
k+1 −

k
∑

j=1

∣

∣

∣

∣

∣

{

t ∈
{

1, 2, . . . , DPW
k+1

}}

∣

∣t ≡ Bj modDPW
j

∣

∣

∣

∣

∣

. (24)

Because all DPW
i are power of 2 and DPW

1 ≤ . . . ≤ DPW
k+1 ,

we know that DPW
k+1 is divisible by DPW

j for every j ≤ k. It

follows that

∣

∣

{

t ∈
{

1, 2, . . . , DPW
k+1

} ∣

∣t ≡ Bj modDPW
j

}∣

∣ =
DPW

k+1

DPW
j

.

Applying the property above to (23) gives

|Pk+1| ≥ DPW
k+1 −

k
∑

j=1

DPW
k+1

DPW
j

= DPW
k+1



1−
k

∑

j=1

1

DPW
j



 .

Using the facts that 1
DPW

i

≤ 2− log2(1/r
∗

i ) = r∗i and
∑

i∈N r∗i ≤ 1, as {r∗i }i∈N satisfies (15b), we have

|Pk+1| ≥ DPW
k+1



1−
k

∑

j=1

r∗j



 ≥ DPW
k+1

(

r∗k+1

)

≥ DPW
k+1

1

DPW
k+1

= 1.

Therefore, Pk+1 is non-empty, which proves the theorem.

Theorem 3 (No Concurrent Transmissions). For any system

with {wi, Di}i∈N , the Power-2 policy satisfies the interference

constraint in (1).

Proof. Let
{

DPW
i

}

i∈N
be the result of a given network set-

ting. Suppose that the Power-2 policy violates the interference

constraint. There exist i, j ∈ N in which i > j and t ∈ N

such that t ≡ BimodDPW
i and t ≡ Bj modDPW

j , as

nodes i and j are scheduled to transmit in the same slot.

However, since DPW
i is divisible by DPW

j , the fact that

t ≡ BimodDPW
i leads to t ≡ Bi modDPW

j . It follows

that Bj ≡ BimodDPW
j . However, by the procedure for con-

structing Bi in Algorithm 1, the fact that Bi 6≡ Bj modDPW
j

leads to a contradiction. Therefore, the policy satisfies the

interference constraint.

We finally state the performance guarantee of the Power-2

policy.

Theorem 4 (Performance Guarantee of Power-2 ). For any

system with {wi, Di}i∈N , the Power-2 policy is 2-optimal,

and it is 4/3-optimal if
∑

i∈N
1
Di
≤ 1.

Proof. To determine the AWSAoIP of the Power-2 policy

over an infinite time horizon, we can simply ignore the first

inter-delivery time of every node. According to the policy,

Ii[m] = 2⌈log2(1/r
∗

i )⌉ for every i ∈ N and m ∈ {2, 3, 4, . . .}.
It holds that

Ii[m] = 2⌈log2(1/r
∗

i )⌉ ≤ 2 · 2log2(1/r
∗

i ) ≤ 2 ⌈1/r∗i ⌉

and Ii[m] = 2⌈log2(1/r
∗

i )⌉ ≥
⌈

2log2(1/r
∗

i )
⌉

= ⌈1/r∗i ⌉ .

Applying Lemma 5 proves the theorem.

Intuitively, the Power-2 policy utilizes a set of fixed inter-

deliver times to achieve the 2-optimal guarantee with simple

and distributed implementation. However, this comes at a cost

of under-utilization of network resources, i.e., no transmission

even when some processor is idle. The next policy improves

on this issue.



B. Back-Off Policy

The Back-Off policy employs a greedy approach to select a

node for transmission without causing wasteful transmissions.

This is done by restricting the inter-delivery time to be at least

DBO
i = ⌈1/r∗i ⌉ for every node i ∈ N . Later, we show that

the policy is 2-optimal and outperforms the Power-2 policy in

simulations. In particular, it has bounded maximum AoIP .

The Back-Off policy maintains a list of candidate nodes for

drop-free transmission in every slot. Let bi(t) be an indicator

variable that equals 0 if node i is a candidate for slot t. If

bi(t) equals 1, node i is backed off from the list. We initialize

bi(t) = 0 ∀i ∈ N and ∀t ∈ N, and then bi(t) is updated

dynamically as follows. If node i transmits during slot t, it

will back off from the list for DBO
i −1 slots. That is bi(τ) = 1

where τ ∈
{

t+ 1, t+ 2, . . . , t+DBO
i − 1

}

. Since ⌈1/r∗i ⌉ ≥
Di, the Back-Off policy is drop-free.

There could be multiple candidate nodes in a slot. Therefore,

we introduce a countdown time Ci(t) as a variable that

quantifies how urgent node i should transmit in slot t. This

Ci(t) is initialized by Ci(1) = DBO
i and evolves as follows

Ci(t) =











DBO
i , t > DBO

i and xi(t−DBO
i ) = 1;

∞ , bi(t) = 1;

Ci(t− 1)− 1 , otherwise.

(25)

That is, when node i is backed-off, the countdown time is

infinite. If it has just stopped being backed-off, then Ci(t) is set

to DBO
i . If the node is not backed-off and it does not transmit

a packet, then the countdown time reduces by 1. Intuitively,

the lower Ci(t) is, the more urgent node i needs to transmit

a packet in slot t. Thus, in each slot t, the Back-Off policy

schedules a transmission from node j where

j = argmin
i∈N :bi(t)=0

Ci(t).

Also, if all nodes are backed off, bi(t) = 1 for every i ∈ N ,

nothing is transmitted during slot t. The Back-Off policy is

summarized in Algorithm 2.

Example: Table I illustrates the Back-Off policy using the

same setup in Section IV-A. Given {Di}
3
i=1 = {2, 2, 4} and

{wi}
3
i=1 = {20, 5, 1}, we have {r∗i }

3
i=1 ≈

{

1
2 ,

1
2.9 ,

1
6.5

}

,

and
{

DBO
i

}3

i=1
= {⌈1/r∗i ⌉}

3
i=1 = {2, 3, 7} . We initialize

the countdown times with {Ci(1)}
3
i=1 = {2, 3, 7}. Although

processor 3 takes D3 = 4 slots to process information and

a transmission in the 8th slot by node 3 is not wasteful,

f3(8) = 0, node 3 is still backed-off until t = 10. The

countdown time is reset later in the 11th slot, C3(11) = 7.

The performance of the Back-Off policy can be analyzed

by showing that every countdown time never reaches a zero

as stated in the following lemma. Note that we set DBO
i =

⌈1/r∗i ⌉ for all i ∈ N , so
∑N

i=1
1

DBO
i

≤ 1 always holds.

Lemma 6 (No-zero). If
∑N

i=1
1

DBO
i

≤ 1, then we have that

Ci(t) ≥ 1 for every i ∈ N and every t ∈ {1, 2, . . .}.

Algorithm 2: Back-Off Policy

Input :
{

wi, Di, D
BO
i , AU

i (1)
}

i∈N

Output:
{

{xi(t)}i∈N

}

t∈{1,2,...}
Initialize

bi(t)← 0, Ci(1)← DBO
i , ∀i ∈ N , ∀t ∈ {1, 2, . . .}

for t ∈ {1, 2, . . .} do
Initialize xi(t)← 0, ∀i ∈ N
if some nodes are not being backed-off at time t
then

Let j = argmini∈N :bi(t)=0 Ci(t)
Set xj(t)← 1
Set bj(τ)← 1, ∀τ ∈
{

t+ 1, t+ 2, . . . , t+DBO
i − 1

}

end

Update AU
i (t+ 1), AP

i (t+ 1), and Ci(t+ 1)
according to (2), (4), and (25)

end

t 1 2 3 4 5 6 7 8 9 10 11 12

C1(t) ✁2 ∞ ✁2 ∞ ✁2 ∞ ✁2 ∞ ✁2 ∞ ✁2 ∞

C2(t) 3 ✁2 ∞ ∞ 3 ✁2 ∞ ∞ 3 ✁2 ∞ ∞

C3(t) 7 6 5 ✁4 ∞ ∞ ∞ ∞ ∞ ∞ 7 ✁6
b3(t) 0 0 0 0 1 1 1 1 1 1 0 0

f3(t) 0 0 0 0 1 1 1 0 0 0 0 0

TABLE I
AN EXAMPLE OF THE BACK-OFF POLICY

Proof. Since this proof requires defining new definitions and

proving other three lemmas, it is provided in the Appendix.

The high-level idea is as follows. We use the proof of

contradiction by first assuming that there exists a non-stop

transmission period such that some countdown reaches 0.

However, due to the countdown times and back-off periods,

the number of transmissions during this non-stop transmission

period from each node is limited. As a result, the maximum

total number of transmissions during this period is less than the

length of the period, suggesting that there must be a slot with

no transmission during the non-stop period and contradicting

the assumption that the period is non-stop.

We then use Lemma 6 to prove the following guarantee.

Theorem 5 (Performance Guarantee of Back-Off ). For any

system with {wi, Di}i∈N , the Back-Off policy is 2-optimal,

and it is 4/3-optimal if
∑

i∈N
1
Di
≤ 1.

Proof. Since the back-off period is DBO
i − 1 = ⌈1/r∗i ⌉ − 1,

the interdelivery time Ii[m] is at least ⌈1/r∗i ⌉. From Lemma 6,

the countdown times are always positive, so the inter-delivery

time Ii[m] is no longer than the sum of back-off period and

the longest countdown period, i.e., 2 ⌈1/r∗i ⌉−1. Therefore, we

have ⌈1/r∗i ⌉ ≤ Ii[m] ≤ 2 ⌈1/r∗i ⌉, and the policy is drop-free.

Invoking Lemma 5 proves the theorem.



Corollary 1 (Bounded Maximum AoIP of Back-Off ). The

Back-Off policy has bounded maximum AoIP satisfying

AP
i (t) ≤ 2

⌈

1

r∗i

⌉

+Di − 1 ∀i ∈ N , ∀t ≥ Ii[1] +Di + 1.

Proof. Since the Back-Off policy is drop-free, we can write

AP
i (t) as AU

i (t−Di) +Di for every t ≥ Ii[1] +Di + 1 by

Lemma 1. Since, the maximum inter-delivery time is at most

2 ⌈1/r∗i ⌉ − 1 and every packet takes one slot to arrive at the

base station, we have AU
i (t−Di) ≤ 2 ⌈1/r∗i ⌉ − 1 and

AP
i (t) = AU

i (t−Di) +Di ≤ 2

⌈

1

r∗i

⌉

+Di − 1.

The Back-Off policy still has unused slots while some

processors are idle. The next section considers a greedy

scheduling policy that always makes unwasteful transmission

when possible.

C. Max-Weight Policy

The Max-Weight policy is a drop-free policy that requires a

central scheduler. It is derived from a Lyapunov Optimization

technique [5], [10]. We first derive the policy and then prove

its performance.

The network state is defined by S(t) =
{

AU
i (t), fi(t)

}

i∈N
,

where AU
i (t) and fi(t) are AoIU and the wasteful transmis-

sion indicator defined in Section II. We consider the linear

Lyapunov function

L(S(t)) =
1

N

∑

i∈N

α̃iA
U
i (t) (26)

where every α̃i is some positive constant. The Lyapunov drift

is defined by

∆(S(t)) = L(S(t+ 1))− L(S(t)). (27)

The evolution of AU
i (t+ 1) in (2) can be rewritten as

AU
i (t+ 1) = xi(t) + (1− xi(t))

(

AU
i (t) + 1

)

. (28)

Substituting (28) and (26) to (27), we get

∆(S(t)) =
1

N

∑

i∈N

α̃i

[

AU
i (t+ 1)−AU

i (t)
]

= −
1

N

∑

i∈N

xi(t)α̃iA
U
i (t) +

1

N

∑

i∈N

α̃i. (29)

The Max-Weight policy minimizes the Lyapunov drift in

(29) to reduce the progress of AoIU in every slot. Since the

only controllable variable is the transmission xi(t), the policy

selects node i that i) causes no wasteful transmission, fi(t) =
0, and ii) has the largest coefficient, α̃iA

U
i (t). In particular,

node j is selected for transmission when

j = argmax
i∈N :fi(t)=0

α̃iA
U
i (t).

The Max-Weight policy with α̃i = wi/r
∗
i for every i ∈ N

is summarized in Algorithm 3. Recall that r∗i is the optimal

Algorithm 3: Max-Weight Policy

Input :
{

wi, r
∗
i , A

U
i (1)

}

i∈N
Output: {xi(t)}i∈N ,t∈{1,2,...}

Initialize fi(t)← 0, ∀i ∈ N , ∀t ∈ {1, 2, . . .}
for t ∈ {1, 2, . . .} do

Initialize xi(t)← 0, ∀i ∈ N
if no wasteful transmission is possible at time t
then

Let j = argmaxi∈N :fi(t)=0
wi

r∗
i

AU
i (t)

Set xj(t)← 1
Set fj(τ)← 1, ∀τ ∈
{t+ 1, t+ 2, . . . , t+Dj − 1}

end

Update AU
i (t+ 1) and AP

i (t+ 1) according to (2)

and (4)
end

rate of the problem in (15). The performance of Max-Weight

is proven in Theorem 6.

Theorem 6 (Performance Guarantee of Max-Weight). For

any system with {wi, Di}i∈N and corresponding optimal rate

{r∗i }i∈N , the Max-Weight policy with α̃i = wi/r
∗
i for all

i ∈ N is 2-optimal, and it is 5/3-optimal if
∑

i∈N
1
Di
≤ 1.

Proof. Let xi(t) represent the decision variable with respect

to the Max-Weight policy, πMW . Since the sum of the optimal

rate is at most 1 as in (18) and the policy selects the node with

the highest α̃iA
U
i (t), we have

∑

i∈N :fi(t)=0

xi(t)α̃iA
U
i (t) ≥

∑

i∈N :fi(t)=0

r∗i α̃iA
U
i (t). (30)

Applying (30) to (29), we obtain

∆(S(t)) ≤−
1

N

∑

i∈N :fi(t)=1

xi(t)α̃iA
U
i (t) +

1

N

∑

i∈N

α̃i

−
1

N

∑

i∈N :fi(t)=0

r∗i α̃iA
U
i (t).

Since node i with fi(t) = 1 is not selected for transmission,

leading to xi(t) = 0, the first term in the RHS above is 0 and

we have

∆(S(t)) ≤
1

N

∑

i∈N

α̃i −
1

N

∑

i;fi(t)=0

r∗i α̃iA
U
i (t).

Rewriting the last sum above to

1

N

∑

i∈N

r∗i α̃iA
U
i (t) (1− fi(t))

gives

∆(S(t)) ≤
1

N

∑

i∈N

α̃i −
1

N

∑

i∈N

r∗i α̃iA
U
i (t)

+
1

N

∑

i∈N

r∗i α̃iA
U
i (t)fi(t).



Summing the above over t ∈ {1, 2, . . . , T} and dividing by T
yields

L(S(T + 1))

T
−

L(S(1))

T

≤
1

N

∑

i∈N

α̃i −
1

NT

T
∑

t=1

∑

i∈N

r∗i α̃iA
U
i (t)

+
1

NT

T
∑

t=1

∑

i∈N

r∗i α̃iA
U
i (t)fi(t).

Knowing
L(S(t+1))

T is positive, we manipulate the above to

1

NT

T
∑

t=1

∑

i∈N

r∗i α̃iA
U
i (t) ≤

L(S(1))

T
+

1

N

∑

i∈N

α̃i

+
1

NT

T
∑

t=1

∑

i∈N

r∗i α̃iA
U
i (t)fi(t).

Setting α̃i = wi/r
∗
i in the above and applying the limit T →

∞ with knowing that L(S(1)) is a constant, we get

lim
T→∞

1

NT

T
∑

t=1

∑

i∈N

wiA
U
i (t) ≤

1

N

∑

i∈N

wi

r∗i

+ lim
T→∞

1

NT

T
∑

t=1

∑

i∈N

wiA
U
i (t)fi(t). (31)

Next, we bound the last term in (31). Fix node i. Consider

packet transmissions during T slots as in (7). For m > 1,

the slot that follows the (m − 1)th packet delivery from

node i has AU
i (t) = 1 and fi(t) = 1, and AU

i (t)fi(t)
evolves as {1, 2, . . . , Di − 1, 0, . . . , 0} until the slot that the

mth packet is transmitted. Therefore, the sum of AU
i (t)fi(t)

during the inter-deliver times between the (m − 1)th and

mth transmissions is Di(Di − 1)/2, and the sum during the

remaining Ri slots is at most Di(Di− 1)/2. Since early slots

before the first transmission, fi(t) is set to 0, and we have

1

T

T
∑

t=1

AU
i (t)fi(t)

≤
1

T

[

(Vi[T ]− 1)
Di (Di − 1)

2
+

Di (Di − 1)

2

]

=
Di (Di − 1)

2

Vi[T ]

T
.

Taking limit T →∞ to the above and using the definition of

the long-term transmission rate, we have

lim
T→∞

1

T

T
∑

t=1

AU
i (t)fi(t) ≤

Di (Di − 1)

2
rπ

MW

i .

Applying Lemma 4 to the above as πMW is drop-free yields

lim
T→∞

1

T

T
∑

t=1

AU
i (t)fi(t) ≤

Di − 1

2
.

Applying the above inequality to (31), we achieve

lim
T→∞

1

NT

T
∑

t=1

∑

i∈N

wiA
U
i (t)

≤
1

N

∑

i∈N

wi

r∗i
+

1

N

∑

i∈N

wi
Di − 1

2
.

Combining Lemma 2 with πMW and the above inequality

gives

JπMW

P ≤
1

N

[

∑

i∈N

wi

r∗i
+

∑

i∈N

wi
Di − 1

2
+

∑

i∈N

wiDi

]

(32)

Comparing (32) with (20), the Max-Weight policy is 2-optimal

as

JπMW

P ≤ 2

[

1

N

∑

i∈N

(

wi

2r∗i
+

wi

2
+ wiDi

)

]

≤ 2J∗
P .

Furthermore, if
∑

i∈N
1
Di
≤ 1, then r∗i = 1

Di
. Hence,

substituting r∗i = 1
Di

to (32) and comparing with (21), we

have

JπMW

P ≤
1

N

[

∑

i∈N

wiDi +
∑

i∈N

wi
Di − 1

2
+

∑

i∈N

wiDi

]

≤
5

3

[

1

N

∑

i∈N

(

3

2
wiDi +

wi

2

)

]

≤
5

3
J∗
P .

Thus, the Max-Weight policy is 5/3-optimal if
∑

i∈N
1
Di
≤

1.

V. SIMULATION RESULTS

This section evaluates the performance of Power-2 , Back-

Off , and Max-Weight policies in two aspects: AWSAoIP and

maximum AoIP. We use the CVXPY package [26] to solve

the convex optimization in (15) for optimal transmission rates.

For each scheduling policy, we simulate 106 slots to ensure

AWSAoIP converges.

A. Average age of information processed

We evaluate AWSAoIP under the three policies in networks

with a varying number of nodes. We begin with a group

of 5 nodes with processing times (24, 152, 70, 37, 54) and

weights (4.1, 7.2, 1.1, 3.0, 1.4). These processing times yield
∑5

i=1
1
Di
≈ 0.12. In Figure 4, we simulate 40 network setups.

Each setup contains a multiple of groups, and the largest setup

has 5× 40 = 200 nodes.

The simulation result shows that both centralized policies—

Back-Off and Max-Weight policies— are near-optimal as their

AWSAoIP are close to the lower bound in (15). For large

networks, Max-Weight policy slightly outperforms the Back-

Off policy. The Power-2 policy trades performance for the

simple distributed algorithm, yet it still achieves 2-optimal.

The AWSAoIPs from these policies are flat until N = 40
because

∑N
i=1

1
Di
≤ 1, so the systems are processor bound.

After N = 40, the systems are communication bound and

AWSAoIP increases linearly with the number of nodes.
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Fig. 5. The distributions of AP

1
(t) with D1 = 2 and AP

9
(t) with D1 = 16

under the Back-Off and Max-Weight policies. The red dashed lines represent
the bounds on the maximum AoI derived in Corollary (1).

B. Maximum age of information processed

We illustrate that the Back-Off policy guarantees a bound

on the maximum AoIP as in Corollary 1. Consider a network

setup consisting of 9 nodes, where D1 = 2 and Di = 16
for i ∈ {2, 3, . . . , 9} and all weights are 1. The JπBO

P and

JπMW

P in this setup are 199.5 and 202.0 respectively. Figure

5 shows the frequencies of AP
1 (t) and AP

9 (t) under both

policies, and the red dash lines are the maximum AoIP from

Corollary 1. The Back-Off policy keeps all AoIPs within the

maximum. Furthermore, it is possible to construct a setup for

the Max-Weight policy that the frequency of event AP
1 (t) = y

is non-zero while r∗1 = 0.5 for any positive integer y, and

the maximum AoIP is unbounded linearly by c(1/r∗i ) for any

constant c.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper considered a wireless network with nodes

transmitting unprocessed packets to their corresponding non-

preemptive processors at the base station over a shared wire-

less channel. We designed three scheduling policies: Power-

2 , Back-Off , and Max-Weight to minimize the Average

Weighted sum AoIP of the system. All policies are 2-optimal

and have different advantages. The Power-2 policy is simple

and distributed. The Back-Off policy is near-optimal and has

a maximum AoIP bound guarantee. The Max-Weight policy

achieves closest to the system’s lower bound. We confirm the

results through simulations.

Our subsequent work will consider a system model with

unreliable wireless channels, where we have some preliminary

results. Future research can consider the periodic generation

of packets, minimum throughput constraints, and random

processing times.
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APPENDIX

The proof of Lemma 6 requires defining new definitions and

proving the other three lemmas. Therefore, we begin with the

requirements and prove Lemma 6 at the end of this appendix.

First, we introduce several definitions. Define

S(t) =

{

i , xi(t) = 1 for some i ∈ N ;

0 , xi(t) = 0 for all i ∈ N

to indicate which node is selected to transmit a packet during

slot t as shown in Table II. That is, if S(t) 6= 0, then CS(t)(t)
is the countdown time of the node selected to transmit a packet

in slot t.
We define the wait gap Gt as the set of the time slots that the

node selected to transmit in slot t has waited since it stopped

being backed off. For example, in Table II, node i = 3 is

scheduled for a transmission in slot t = 12, and we have that

G12 = {12, 11}. Generally, it holds that

Gt =











{

t, t− 1, . . . , t−DBO
S(t) +CS(t)(t)

}

,
∑

n∈N xn(t) = 1;

∅ ,
∑

n∈N xn(t) = 0.

We then define a Connected Chain as an order of wait

gaps Gt1 , Gt2 , . . . , Gth where t1 > t2 > . . . > th and

Gti∩Gti+1
6= ∅ for i = 1, . . . , h−1. The last condition and the

definition of wait gap implies that a connected chain is a dura-

tion that has a packet transmission in every slot. Finally, define

t 1 2 3 4 5 6 7 8 9 10 11 12

S(t) 1 2 1 3 1 2 1 0 1 2 1 3

C1(t) ✁2 ∞ ✁2 ∞ ✁2 ∞ ✁2 ∞ ✁2 ∞ ✁2 ∞

C2(t) 3 ✁2 ∞ ∞ 3 ✁2 ∞ ∞ 3 ✁2 ∞ ∞

C3(t) 7 6 5 ✁4 ∞ ∞ ∞ ∞ ∞ ∞ 7 ✁6
b3(t) 0 0 0 0 1 1 1 1 1 1 0 0

f3(t) 0 0 0 0 1 1 1 0 0 0 0 0

TABLE II
EXTENSION OF TABLE I WITH S(t). ALSO, WE HAVE

G4 = {1, 2, 3, 4} , G3 = {3}, G2 = {1, 2} , G1 = {1} , AND G8 = ∅.
FURTHERMORE, (G4, G2, G1) IS A CONNECTED CHAIN , BUT

(G4, G3, G2, G1) IS NOT SINCE G3 ∩G2 = ∅.

a First Zero Connected Chain as an order of Gt1 , Gt2 , . . . , Gth

that is a Connected Chain and CS(t1)(t1) = 0, and there is no

slot t for 0 < t < t1 that CS(t)(t) = 0.
We first assume that a First Zero Connected Chain ex-

ists, which later leads to a contradiction and there is no

such a chain. Suppose a First Zero Connected Chain Γ =
(Gt1 , . . . , Gtk) exists such that Ci∗(t1) = 0 for some node

i∗. We denote G∗ = Gt1 ∪ . . . ∪ Gtk and LC = |G∗|. We

assume that Γ is with the longest length. This chain leads to

the following three lemmas, as follow:

Lemma 7 (countdown time in the chain). For the First Zero

Connected Chain Γ, it holds that CS(t)(t) ≤ t1 − t for every

t ∈ G∗.

Proof. Let P (j) be the statement that CS(t)(t) ≤ t1 − t for

all t ∈ Gtj , where j = 1, 2, . . . , k.
Basic Step: Since CS(t1)(t1) = 0, we then have that

CS(t1)(t) = t1 − t for every t ∈ Gt1 by the evolution

of the countdown time in in (25). Since node S(t1) does

not get to transmit a packet during slot t ∈ Gt1/ {t1} , the

countdown time of the selected node in slot t must not exceed

the countdown time of node S(t1). That is,

CS(t)(t) ≤ CS(t1)(t) = t1 − t (33)

for all t ∈ Gt1/ {t1} . Combining with the fact that

CS(t1)(t1) = 0, P (1) is true.

Inductive Step: Let q be a natural number such that

q < k and P (q) is true. That is, for every t ∈ Gtq ,
CS(t)(t) ≤ t1 − t.

Since Gtq ∩Gtq+1
6= ∅, we can see that tq+1 ∈ Gtq and

CS(tq+1)(tq+1) ≤ t1 − tq+1. (34)

Using the similar approach as in the Basic Step, the evolution

of CS(tq+1)(t) in (25) implies that

CS(tq+1)(t) = CS(tq+1)(tq+1) + (tq+1 − t) (35)

for all t ∈ Gtq+1
.

Since S(tq+1) does not get to transmit a packet during slot

t ∈ Gtq+1
/ {tq+1} , the countdown time of the selected node

must not exceed the countdown time of node S(tq+1). That

is, combining with (34) and (35), we have

CS(t)(t) ≤ CS(tq+1)(t)

≤ (t1 − tq+1) + (tq+1 − t) = t1 − t (36)

https://doi.org/10.1109/INFOCOM.2019.8737404
https://doi.org/10.1109/TNSE.2019.2952764
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http://jmlr.org/papers/v17/15-408.html


for all t ∈ Gtq+1
/ {tq+1} . Thus, combining with (34), P (q+

1) is true.

By the proof of induction, we can conclude that, for every

t ∈ G∗, CS(t)(t) ≤ t1 − t.

Lemma 8 (processing time shorter than the chain). For the

First Zero Connected Chain Γ, it holds that DBO
S(t) ≤ LC − 1

for every t ∈ G∗.

Proof. Assume that there exists some t′ ∈ G∗ such that

DBO
S(t′) ≥ LC . There must be some q ∈ {1, 2, . . . , k} that

t′ ∈ Gtq and t′ 6= tq We know that

|Gt′ | =
∣

∣

∣

{

t′, t′ − 1, . . . , t′ −DBO
S(t′) + CS(t′)(t

′)
}∣

∣

∣

= DBO
S(t′) − CS(t′)(t

′) + 1. (37)

Applying Lemma 7 and the assumption that DBO
S(t′) ≥ LC to

(37), we have

|Gt′ | ≥ LC − (t1 − t′) + 1. (38)

Thus, we consider G′ = Gt1 ∪ Gt2 ∪ . . . ∪ Gtq ∪ Gt′ . Since

t′ ∈ Gtq , we can easily prove that
(

Gt1 , Gt2 , . . . , Gtq , Gt′
)

is a First Zero Connected Chain. However, we know that

{t1, t1 − 1, . . . , t′ + 1} ⊆ G′/Gt′ and

|G′| = |G′/Gt′ |+ |Gt′ |

≥ (t1 − t′) + |Gt′ |

≥ (t1 − t′) + LC − (t1 − t′) + 1 = LC + 1, (39)

which is longer than LC = |G∗| . This causes a contradiction

since Γ is the longest First Zero Connected Chain. Therefore,

DBO
S(t) ≤ LC − 1 for every t ∈ G∗.

Lemmas 7 and 8 are used to prove the following lemma.

Lemma 9 (maximum transmissions in the chain). For the First

Zero Connected Chain Γ, the number of transmissions from

node i during t ∈ G∗\ {t1} is at most
⌊

(LC − 1) /DBO
i

⌋

, for

every i ∈ N .

Proof. For node i that DBO
i > LC − 1, it does not get to

transmit a packet within t ∈ G∗\ {t1} at all by Lemma 8. In

other words, it transmits at most
⌊

(LC − 1) /DBO
i

⌋

= 0. Now

consider node i such that DBO
i ≤ LC − 1.

If LC − 1 is divisible by DBO
i , then we can partition these

LC − 1 slots into LC−1
DBO

i

intervals of consecutive DBO
i slots.

For node i, the inter-delivery time is always at least DBO
i .

Thus, each interval can transmit at most 1 packet from node

i. That is, during these LC−1 slots, there are at most LC−1
DBO

i

=
⌊

(LC − 1) /DBO
i

⌋

transmissions from node i.
If LC−1 is not divisible by DBO

i , we let zi be the remainder

where 1 ≤ zi < DBO
i . Again, we partition G∗\ {t1} into

⌊

(LC − 1) /DBO
i

⌋

+ 1 intervals where the last interval is

{t1, t1 + 1, . . . , t1 + zi − 1} of length zi and the rest are
⌊

(LC − 1) /DBO
i

⌋

intervals where each interval is a consecu-

tive DBO
i slots. Using the similar argument, we can transmit at

most
⌊

(LC − 1) /DBO
i

⌋

+1 where each interval has one trans-

mission from node i. If we get exact
⌊

(LC − 1) /DBO
i

⌋

+ 1

transmissions, then node i must transmit one packet during the

second-to-last interval and another one during the last interval.

However, when we transmit a packet during the second-to-last

interval, Ci(t) will be set to∞ for DBO
i −1 slots, then become

DBO
i , and keep decreasing by 1 in every slot until node i

transmits another packet. We can easily check that, during the

last interval, Ci(t) will always greater than t1−t. However, by

Lemma 7, node i would not be able to transmit a packet during

the last zi slots, contradicting the assumption that node i
transmits a packet during the last interval. Therefore, for every

i ∈ N , there are at most
⌊

(LC − 1) /DBO
i

⌋

transmissions

from node i within t ∈ G∗\ {t1}.

Now, we will show that if such First Zero Connected

Chain Γ exists, it leads to a contradiction.

Lemma 6 (No-zero). If
∑N

i=1
1

DBO
i

≤ 1, then we have that

Ci(t) ≥ 1 for every i ∈ N and every t ∈ {1, 2, . . .}.

Proof. We assume that there exists some t∗ and i∗ that

Ci∗(t
∗) = 0, so we must be able to detect a First Zero Con-

nected Chain Γ = (Gt1 , Gt2 , . . . , Gtk) where t∗ = t1. To be

concise, we denote G∗ = Gt1∪Gt2∪. . .∪Gtk and LC = |G∗| .
Since there might be multiple First Zero Connected Chains,

we assume that Γ is the First Zero Connected Chain with the

largest LC .
By Lemma 9, the total number of transmissions during

interval G∗\ {t1} is at most
∑

i∈N

⌊

(LC − 1) /DBO
i

⌋

≤
∑

i∈N

(LC − 1) /DBO
i

=
∑

i∈N

(LC − 1) /

⌈

1

r∗i

⌉

≤
∑

i∈N

(LC − 1) r∗i

≤ LC − 1. (40)

Since the chain is connected, there must be exactly LC − 1
transmissions during during interval. Thus, the inequalities

in (40) must be equalities. That is, LC − 1 is divisible by

DBO
i for every i ∈ N , and node i must exactly trans-

mit
⌊

(LC − 1) /DBO
i

⌋

= (LC − 1) /DBO
i packets during

this interval. We then consider node i∗ = S(t1). Since

Ci∗(t1) = 0, this means that node i∗ cannot transmit during

interval
{

t1, t1 − 1, . . . , t1 −DBO
i∗

}

. That is, during interval

G∗\ {t1} , node i∗ can transmit at most
⌈

LC−DBO
i∗ −1

DBO
i∗

⌉

=
LC−1
DBO

i∗
− 1, resulting in a contradiction. Therefore, Ci(t) ≥ 1

for every i ∈ N and t = 1, 2, . . .
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