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Abstract—Radio Access Networks (RANs) for telecommunica-
tions represent large agglomerations of interconnected hardware
consisting of hundreds of thousands of transmitting devices
(cells). Such networks undergo frequent and often heterogeneous
changes caused by network operators, who are seeking to tune
their system parameters for optimal performance. The effects of
such changes are challenging to predict and will become even
more so with the adoption of 5G/6G networks. Therefore, RAN
monitoring is vital for network operators. We propose a self-
supervised learning framework that leverages self-attention and
self-distillation for this task. It works by detecting changes in
Performance Measurement data, a collection of time-varying
metrics which reflect a set of diverse measurements of the
network performance at the cell level. Experimental results
show that our approach outperforms the state of the art by
4% on a real-world based dataset consisting of about hundred
thousands timeseries. It also has the merits of being scalable
and generalizable. This allows it to provide deep insight into the
specifics of mode of operation changes while relying minimally
on expert knowledge.

Index Terms—Change detection, anomaly detection, neural
networks, cellular networks, radio access networks.

I. INTRODUCTION

This work presents a new change detection system for
Performance Measurement (PM) data. The PM system collects
thousands of metrics from each cell, quantifying different
aspects of the cell’s performance, including voice quality
indicators, throughput, latency, radio signal strength, inter-
ference, etc. The volume of this data is so large that it is
not currently feasible for network operators to monitor all
of it. As a result, it often happens that when they make
changes to the network configuration, they create a negative
impact on some subsystems without realizing it. Alternately,
the configuration change may actually have some positive
impact that the operators are not aware of, leading them to
erroneously roll back the configuration change. Our goal is to
develop a system which will monitor PM data and detect all
impacts of configuration changes on the system.

In this work, we address this task by adapting a modern
self-supervised representation learning method [1], originally
developed to deal with large, unlabelled image datasets, to the
problem of detecting impacts of configuration changes on PM
data. We focus on change, as opposed to anomaly detection.
The difference is that change detection focuses on stable
changes in operating characteristics, while anomaly detection
usually strives to detect outliers, or individual highly unusual
data points. This distinction is of great importance to network

operators, as transient unusual behaviors are, by definition,
self-correcting and therefore do not require any corrective
action on the operator’s part. On the other hand, when a stable
change is detected, it means the cell has begun to operate in
a new way, and corrective action may be required.

In order to meet the practical application requirements, the
monitoring solution should be:

• Scalable: In order to obtain complete monitoring coverage
over all of the subsystems reported on by PM data, it is
critical to detect changes in a large number of metrics.
Therefore, the computational complexity of the change
detector should scale linearly with the number of metrics.

• Generalizable: RANs usually include hardware from mul-
tiple vendors, which also experiences constant software
upgrades that modifies the list of recorded PM metrics.
The solution should be able to adapt to these changes
with minimal expert intervention.

To address these requirements, we monitor individual met-
rics, as opposed to looking at pair correlations of metrics,
which experience polynomial computing resource demand
growth [2]. This way we can monitor all (usually thousands
of) metrics that are being recorded at cell level, which enables
deeper insight into the diagnostics of the problem related to
the detected change. We also point out that when previously
co-evolving metrics experience decorrelation, at least one of
them experiences a change and thus we expect our method
to detect it. Regarding generalizability requirements, previous
approaches (see Section II-A) operate over a small set of expert
selected metrics, which can vary across vendors and software
updates. Our solution looks at all the recorded PM metrics
and thus is resilient to such modifications and does not require
expert intervention.

Due to a lack of publicly available datasets for this task,
we developed our own. This dataset is based on a propri-
etary, system-level RAN simulator originally developed and
validated to study network parameter optimization [3], [4].

To summarize, the main contributions of this paper are as
follows:

• We bring attention to the problem of monitoring the net-
work for behavior changes associated with frequent (order
of a week) heterogeneous system parameter changes at
cell level.

• We suggest a scalable and generalizable self-supervised
learning framework that leverages self-attention and self-
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distillation for metric-level change detection.
• To evaluate performance on this task, we develop a

dataset grounded in real RAN historical observations.
• We show superior detection capabilities of our method

compared to the current state of the art across non-ML
and ML approaches.

The rest of the paper is organized as follows: in Section
II we describe previous work related to detecting changes
in cellular network metrics. In Section III we describe in
detail the three change point detectors compared in this paper,
including our own proposed method. In Section IV we describe
the process used for generating the dataset. In Section V
we present a comparison of the performance of the methods
introduced in Section III on the dataset from Section IV. In
Section VI we summarize the work and provide concluding
remarks.

II. RELATED WORK

In this section, we first discuss work on anomaly detec-
tion in cellular networks, then review advances in existing
approaches for change detection.

A. Anomaly Detection in Cellular Networks

Approaches for anomaly detection in cellular networks vary
widely in scope, ranging from detecting anomalies observable
in individual KPIs [5], [6], to the multivariate case using
multiple KPIs [7], or detecting network-level anomalies, taking
into account the interconnected structure of the network [8],
[9]. In this paper we focus on the first one.

Anomalies at the KPI level manifest themselves as irreg-
ularities in the signal. They can be of short (pointwise) or
long lasting (e.g., pattern change in signal’s periodicity or
amplitude) nature [10]. Often the causes of these types of
behavior are different, which motivates the introduction of
a special taxonomy (“change detection”), especially as the
latter can be more harmful to the network as it indicates
significant shift. The work we found on anomaly detection in
cellular networks does not explicitly make such a distinction.
We improve on it and also extend to RAN applications the
advances of the Change Point Detection field of research,
which we briefly review in the next sub-section.

Approaches for anomaly detection applied to cellular net-
works span across a wide range: clustering algorithms, such
as Self-Organizing Maps [5]; ensembling of classification
and regression based methods, such as SVM and ARIMA
[7]; correlation and functional analysis [11]; thresholding and
range-based rules [6]; generative adversarial networks [12];
and convolutional (CNNs) and recurrent neural networks, such
as LSTMs [13], [14]. [15] presents a more in depth survey of
the existing work in anomaly detection for cellular networks.
To the best of our knowledge, our approach is the first to
make use of the transformer self-attention architecture [16]
for cellular network anomaly detection.

Most of the work on anomaly detection in RANs uses
supervised learning. This requires tedious manual labeling of
the datasets and also specifying the types of anomaly classes

[2], [13]. Some attempts to address the labeling challenge
by using semi-supervised learning can be found in [17].
To the best of our knowledge, we are the first to address
both challenges by using self-supervised learning [18], which
requires no labels and no prior knowledge on the possible
types of anomalies present in the data.

B. Change Detection
There is a large body of work on the theoretical and practical

aspects of change detection. The problem of changepoint
detection as the segmentation of the timeseries into segments
delimited by the changepoints, thus finding the in-between
regions of the changes rather than the points of change them-
selves, by using the Matrix Profile of the timeseries to detect
pattern consistency is formulated in FLUSS and its variant
FLOSS [19]. Probabilistic approaches such as BOCPD [20]
formulate the problem as estimating a probability distribution
over the amount of time since the last changepoint, known
as the “run length”. Non-parametric methods such as [21] are
based on statistical two-sample testing, samples are deemed
anomalous if the test statistic exceeds a specific threshold.
KL-CPD [22] extends the kernel changepoint detection non-
parametric approach introduced in [23] to allow for deep
kernels learnt from data. A common underlying paradigm
in many learning and non-learning based approaches slides
consecutive non-overlapping half-windows over the timeseries
and quantifies the mismatch between the left half-window
and the right half-window, as they should most differ when
the point between the two half-windows is a changepoint.
This paradigm is particularly common among unsupervised
deep learning approaches, e.g. [24]. One of the most recent
instantiations of this approach is TIRE [25], which we use as
a ML baseline, see Section III-B.

In a recent survey and benchmarking of changepoint detec-
tion methods [26], the authors observe that: first, there is no
single Change Point Detector (CPD), which performs best on
all datasets, which highlights domain specifics; second, such
classical non-ML CPD as Binseg [27] performs consistently
better across a wide range of datasets compared even to some
ML methods, which is the reason we choose as a non-ML
baseline, see Section III-A.

III. CHANGE DETECTORS

In this section we introduce in more details the non-ML
(Binseg) and ML (TIRE) baselines, as well as our method
(TREX-DINO).

A. Binseg
Binseg [27] is a sequential algorithm, which consecutively

splits timeseries into two windows and calculates the gain
obtained from the introduction of this separation by evaluating
the difference of the cost function calculated on the original
window and the two derived ones. This allows to associate spe-
cific gain with every (potential change) point of the timeseries.
We later use these values as a threshold of the Binseg CPD
algorithm in the binary classification problem, see Section V
for more details.



B. TIRE
TIRE [25] uses a pair of autoencoders, one in the time

domain and one in the frequency domain over consecutive
windows of the timeseries to detect changepoints. In order to
do so, TIRE learns representations that combine a reconstruc-
tion objective and a time-invariant, similarity minimization
objective between successive windows. Once the represen-
tations are learned, they are used in a window based CPD.
Specifically, two sliding windows (backward and forward
looking) are used to decide whether the point in the middle
is a change point. The similarity measure between data in the
sliding windows is computed by applying the cosine distance
between their respective projections into the representation
space:

d(x, y) = 1−
∑K
k=1 g(x)

(k)g(y)(k)√∑K
k=1 g(x)

(k)2
√∑K

k=1 g(y)
(k)2

, (1)

where x and y are datapoints in the corresponding windows;
g is the learned representation, and K is the dimensionality of
the representation space. Application of this sliding window
procedure yields a new timeseries, d. In order to extract change
points, d is first filtered, then a peak finding procedure is
applied to the result.

C. TREX-DINO
We propose to learn representations from large, unlabelled

datasets using self supervision and transformers, a learning
paradigm which has recently enabled impressive performance
in natural language processing [28] and computer vision [29].
Our method, dubbed TREX-DINO (Timeseries REpresentation
eXtraction using DIstillation with NO labels), is an exten-
sion of DINO [1], a method originally proposed for self-
supervised representation learning on images. At a high level,
the self-supervised learning objective encourages the model to
project multiple random augmentations of the same timeseries
into similar representations, while augmentations of different
timeseries are encouraged to have different representations.
This is achieved using a knowledge distillation [30] style
student-teacher learning modality. However, instead of having
a fixed teacher, we periodically update the teacher weights
using an exponential moving average of the student weights.
This effectively implements a form of model ensembling in
the teacher, akin to Polyak-Ruppert averaging [31], [32].

The student network is trained to match the teacher’s distri-
bution over the dimensions of the learned representation using
a cross entropy loss. Given a network g, input timeseries x, the
size of the representation K, and a temperature parameter τ
which controls the sharpness of the distribution, the probability
P over the dimensions of the representation is given by:

P (x)(i) =
exp(g(x)(i)/τ)∑K
k=1 exp(g(x)

(k)/τ)
. (2)

In the standard knowledge distillation setup, the optimiza-
tion objective would be given by

min
θs

H(Pt(x), Ps(x)), (3)

where θs are the parameters of the student network and H is
the cross-entropy loss. However, in order to adapt this to the
self-supervised setting, DINO first defines the set V , which
consists of different augmentations of the same timeseries.
Critically, two of the items in V , xg1 and xg2, are so called
“global” views. These are large crops of the original time-
series, which include most of it. The rest of the augmentations
of x in V feature “local” crops, which remove a larger fraction
of the original timeseries. This style of augmentation is known
in the computer vision literature as “multi-crop” [33]. The
teacher is then used to compute representations for the global
views only, while the student computes representations for all
of them. In other words, we aim to optimize the following
optimization objective:

min
θs

∑
x∈{xg

1 ,x
g
2}

∑
x′∈V,x‘ 6=x

H(Pt(x), Ps(x
′)). (4)

The weights of the teacher, θt, are updated from those of
the student using the following update rule (λ is a hyperpa-
rameter):

θt = λθt + (1− λ)θs. (5)

Collapse (i.e. the network learning to embed all of the
timeseries into exactly the same representation) is avoided by
centering the outputs of the teacher network, gt(x) = gt(x)+c,
where the center, c, is dynamically adjusted as follows (m is
a hyperparameter, B is the batch size):

c = mc+ (1−m)
1

B

B∑
i=1

gt(xi). (6)

See [1] for a more complete treatment of the approach.
DINO was originally targeted at images and implemented

using a vision transformer (ViT) [29]. In order to adapt
this method to the timeseries case, some modifications were
needed. First, we adapted the ViT to accept timeseries as input.
The ViT architecture splits images into patches, each of which
are passed through a convolutional layer and flattened to create
a series of tokens which are used as input to the transformer.
TREX-DINO adapts these from 2-dimensional convolutions,
appropriate for images, to 1-dimensional ones better suited
to timeseries. We keep the channel dimension, so TREX-
DINO supports multi-dimensional timeseries, although in this
paper we focus on the single dimensional case. Furthermore,
DINO augmentations include color jittering, Gaussian blur,
and solarization, as well as multi-crop. TREX-DINO keeps
the Gaussian blur and multi-crop, but replaces color jittering
and solarization with additive Gaussian noise.

Once the representations are learned, they are used to detect
changes using the sliding window method as outlined in
Section III-B.

IV. DATASET

One can observe variance in CPDs performance on time-
series of various origin [26], which is due to data peculiarities
pertinent to each domain (e.g., seasonality, recording period-
icity and length, change type and their occurrence frequency).



This is the main reason that domain specific task data is
of primary importance for evaluating the performance of
proposed methods.

In this paper we used a proprietary System Level Simulator
(SLS) [3], [4], which was specifically developed for studying
effects of system parameter changes on cellular network
performance, and is based on real-world RAN data. It models
traffic in RANs for specific site configuration architectures.
We utilize the one schematically depicted in Fig. 1. Every

Fig. 1. A schematic illustration of an SLS environment that consists of 7
sites, which are serving a number of active and idle User Equipments (UEs).

site operates over 4 frequency bands in each of 3 non-
overlapping sectors. UEs are initially uniformly distributed
across all sites and randomly walk with constant velocity,
or stay in one place. They contribute to the traffic load of
the network by downloading files in a stochastic manner.
This process is modelled to reproduce historically observed
RAN data scenarios, with UE behavior parameters varying
accordingly throughout the day [3], [4]. Cells transmitting data
to UEs also have realistic system parameters preset, but these
do not automatically vary with time.

The main focus of this paper is to detect changes in network
operations by monitoring PM data. Each of the cells records 28
various timeseries. They include Key Performance Indicators
(KPIs) closely monitored by network operators, e.g. down-link
throughput, as well as metrics commonly used in literature for
modeling of RAN performance, e.g. physical resource block
usage and number of active UEs. All aforementioned time-
series are hand picked by experts and are often transformed
using domain knowledge, e.g. throughput is a ratio of the radio
link data and delay. As discussed in Section I, we seek a
generalizable approach to RAN monitoring, and thus we also
include in our analysis an extensive list of low level subsystem
metrics, e.g. the number of successful handovers, treating them
all on par.

In addition to the aforementioned variability coming from
historical RAN data UE parameters, our dataset includes
two additional degrees of freedom. First, infrequent system
parameter changes. Those affect SLS parameters describing
cell subsystems. This is done to model RAN performance
improvement/degradation due to endogenous, e.g. Configura-
tion Management (CM) changes, and exogenous, e.g. hardware
failures, causes that represent interest to the network operators.

Second, pseudo-random changes. These affect UE dynamics
and are useful for verifying stability of the network operations
and enriching the dataset with realistic variance.

The main difference between our dataset and previous
applications of SLS are as follows:
• We are not interested in the dynamics of individual UEs

it can provide, because for privacy and technical reasons
it is easier to get access to aggregated over UEs PM data
to base our change detection on.

• For accurately modeling diverse traffic scenarios, SLS
uses multiple historical network observations from field
deployments, which have finite (maximum week-long)
recording length. ML and especially deep learning meth-
ods that we propose to use (transformers) extract features
without human engineering effort. In order to do it
efficiently they need to have access to a large corpus
of data, e.g. to have enough historical information to
detect lasting operating modes and changes between
them. For that reason, we produce samples of our dataset
by concatenating week-long outputs of SLS data.

Here is the detailed procedure that we use to construct a
sample of the dataset. We run week-long SLS simulations
for the network described in Fig. 1 with combinations of 5
different system parameter sets and 10 various seeds. We then
choose a pair of distinct system parameter changes, κ, and
seeds, ρ, to concatenate week-long timeseries, x̃, into four
week-long samples, x̂:

x̂mt (ρr1 , κk1) =


x̃mt (ρr1 , κk1) if t ∈ [0, 168),

x̃mt−168(ρr2 , κk1) if t ∈ [168, 336),

x̃mt−336(ρr1 , κk2) if t ∈ [336, 504),

x̃mt−504(ρr2 , κk2) if t ∈ [504, 672),

(7)

where x̃mt (ρr, κk) represents time t (in hours) metric m
recording of the week-long simulation ran with seed r and
system parameters set k, and subscripts indicate whether
subscribed variables have equal values.

Finally, we preprocess the constructed timeseries, x̂, to
smooth the data and make it suitable for use in neural networks
by the standard procedure of using logarithmic transformation,
removing the mean, and scaling to unit variance [34], [35], to
obtain our dataset, x. One can see examples of the resulting
timeseries, x, in Fig. 2. Timeseries pattern changes like the
ones in Fig. 2 have no “drop” [2], but clearly indicate a
shift in operating characteristics caused by a modification of
a system parameter that network operators are interested in
learning about. We include them to highlight new types of
domain specific anomalies that are of particular relevance in
telecom.

To create a test set of labels to evaluate CPDs’ performance
and understanding that system parameters switch might not
affect every metric, we manually verified timeseries by lever-
aging the knowledge of the dataset construction (location of
the change point and week-long nature of the subsegments),
by clustering samples using week-over-week statistics, and
keeping for validation samples only from those clusters that



Fig. 2. Examples of discrete (top) and continuous (bottom) timeseries data
created using SLS. The color coding indicates distinct system parameters sets.

clearly had a present or absent mode of operations change,
which resulted in 78455 samples without pattern changes and
14301 samples with it.

V. PERFORMANCE EVALUATION

In this section, we evaluate performance of CPDs described
in Section III using the dataset presented in Section IV. In
order to simplify the comparison, we evaluate performance on
a binary classification task where competing algorithms must
identify whether a changepoint is present in the timeseries.

We use the Binseg implementation by Truong et al. from
[36] with RBF cost function [37].

TIRE and TREX-DINO were both trained on a randomly
selected half of the dataset and tested all together with Binseg
on the other half.

Hyperparameters’ values used for training TIRE and TREX-
DINO were based on [1], [25]. Specifically, for TIRE, we
used 3 parallel autoencoders in both timeseries and frequency
domains; for the DINO subpart of TREX-DINO, we used 12
self-attention heads with embedding dimensions size of 768,
Gaussian noise with standard deviation of 0.3, and Gaussian
blur with kernel standard deviation uniformly distributed in
the [0.1, 2.] range and applied on average in half of the
augmentation calls.

The only parameter that we set manually based on the
domain specifics was the half window size of 168 (equals
24 × 7). In effect, this biases the system to perform week
over week comparisons, which is a common practice among
telecommunications operators in their assessments.

Another important hyperparameter present in all compared
models is the detection threshold: timeseries with predicted
value above it are considered to have a change point. Instead
of using the validation set to tune it for every method, we chose
to compare methods numerically at their top performance and
visually over the entire range of the values: this provides
more robustness due to the narrow peak shape of some of

the performance curves. Due to the different nature of the
algorithms and thus resulting threshold values, we plot curves
after uniform normalization to the [0, 1] range.

Fig. 3. Differential comparison of CPDs’ performance as a function of
normalized detection threshold.

The F1 curves for the three methods are shown in Figure 3.
The maximum F1 scores and the area under precision-recall
curve (PR AUC) attained by each method are shown in Table
I. In addition to achieving the highest max F1 score of the
three, TREX-DINO also attains a high F1 score over a much
wider range of normalized threshold values, indicating that it
is less sensitive to the choice of the threshold. This is also
reflected in its superior PR AUC score.

TABLE I
AGGREGATE COMPARISON OF CPDS USING F1 MAX AND PR AUC.

Metric Binseg TIRE TREX-DINO (ours)
F1 score 0.80 0.87 (+9%) 0.90 (+13%)
PR AUC 0.82 0.91 (+11%) 0.97 (+18%)

Rank Baseline Better Best

VI. CONCLUSION

In this paper, we discussed the importance of monitoring
RANs for frequent change detection and proposed a novel
change point detector to address this problem. In the face
of the lack of public benchmarks devoted to this task, we
developed a dataset that reproduces the challenges that plague
RAN operators on a daily basis. Experiments demonstrated the
superior performance of our approach compared to existing
methods. We are confident that our framework, proven in the
fields of computer vision and natural language processing and
based on a self-supervised transformer architecture with self-
distillation, will continue to show good performance charac-
teristics in real world RAN applications.

In order to present changes detected at metric level over
hundreds of thousands of RAN devices to human network
operators for actionable outcomes, one needs to aggregate
them into meaningful events that share the same root cause.
We leave results of our research effort applied in this direc-
tion for future publication. However, the foundation of any



such aggregation scheme must necessarily be accurate change
detection at the metric level, which is the problem that is best
addressed by our method, TREX-DINO.
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