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Abstract—Mobile edge computing (MEC) is a promising
paradigm to meet the quality of service (QoS) requirements
of latency-sensitive IoT applications. However, attackers may
eavesdrop on the offloading decisions to infer the edge server’s
(ES’s) queue information and users’ usage patterns, thereby
incurring the pattern privacy (PP) issue. Therefore, we propose
an offloading strategy which jointly minimizes the latency, ES’s
energy consumption, and task dropping rate, while preserving
PP. Firstly, we formulate the dynamic computation offloading
procedure as a Markov decision process (MDP). Next, we develop
a Differential Privacy Deep Q-learning based Offloading (DP-
DQO) algorithm to solve this problem while addressing the PP
issue by injecting noise into the generated offloading decisions.
This is achieved by modifying the deep Q-network (DQN) with
a Function-output Gaussian process mechanism. We provide a
theoretical privacy guarantee and a utility guarantee (learning
error bound) for the DP-DQO algorithm and finally, conduct sim-
ulations to evaluate the performance of our proposed algorithm
by comparing it with greedy and DQN-based algorithms.

Index Terms—mobile edge computing, computation offloading,
differential privacy, deep reinforcement learning.

I. INTRODUCTION

The Internet of Things (IoT) integrates a large number of

pervasive, connected, and smart devices in the physical world

via the Internet, enabling various smart IoT applications, e.g.,

deep-learning-driven smart video surveillance, flying ad hoc

networks for precision agriculture, and e-health [1]. These IoT

applications heavily rely on computationally intensive machine

learning algorithms, which are typically resource-hungry and

cannot be readily supported by resource-constrained mobile

devices (MDs) [2]. Meanwhile, offloading computation to

the cloud server (CS) may incur a high latency cost due to

the long transmission distance [3]. In light of this, a new

computing paradigm called mobile edge computing (MEC)

has been proposed, to meet the quality of service (QoS)

requirements of latency-sensitive IoT applications. Here, edge

servers (ESs) are placed in close proximity to MDs [4], at

the network edge (e.g. at base stations or access points).

For an MEC system, it is of great importance to design

efficient computation offloading strategies through achieving

appropriate cooperation among ESs and CSs [5]–[7]. While ef-

ficient computation offloading algorithms have been developed

for MEC systems under various scenarios [5]–[7], privacy

§Corresponding author: Chao Xu, cxu@nwafu.edu.cn

issues, mainly derived from computation cooperation and data

sharing in computation offloading, were ignored. This would

potentially provide attackers with the opportunity for privacy

mining [8].

Recently, researchers begin to focus on addressing privacy

issues in MEC computation offloading, and the available work

can be broadly categorized into two types: i.e., data privacy

protection [9], [10] and pattern privacy (PP) protection [11].

The data privacy issue refers to the case where attackers di-

rectly steal users’ private information (e.g., account passwords,

email addresses, home addresses, etc.) from the transmitted

data during computation offloading. Authors in [9] designed

a sampling perturbation encryption strategy to protect data

privacy against attackers during computation offloading. In

[10], to protect data privacy, a trustworthy access control

mechanism was developed by utilizing smart contracts. In

contrast to data privacy, the PP issue refers to the case where

attackers eavesdrop on the offloading patterns and decisions to

infer system information, e.g., the size and required compu-

tational resources of offloading tasks. Based on this, attackers

could further infer users’ private information, such as their

identities and usage patterns. To the best of our knowledge,

there are very few studies on PP-preserving offloading in

MEC systems. In [11], to achieve PP protection, the authors

proposed to disguise users’ offloading tasks by deliberately

generating redundant tasks, sent along with the actual tasks to

MEC servers. It achieved a tradeoff between the computation

rate and privacy preservation but inevitably incurred extra

computation and communication costs from the generation,

transmission, and processing of the redundant tasks.

In this work, a novel PP-preserving dynamic computation

offloading strategy is devised for MEC systems. Particularly,

we consider a dynamic computation offloading problem that

jointly minimizes the latency, ES’s energy consumption, and

task dropping rate, and formulates it as a Markov Decision

Process (MDP). To solve this problem while addressing the

PP issue, we propose a Differential Privacy Deep Q-learning

based Offloading (DP-DQO) algorithm. The core idea of DP-

DQO is to inject noise after the output layer of the deep Q-

network (DQN) to make adjacent state-action pairs indistin-

guishable, where the "distance" between two state-action pairs

is evaluated by the difference of their corresponding rewards.
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Fig. 1. Computation offloading model for MEC.

This strategy adds noise to the generated offloading decisions,

which prevents the attacker from inferring information on the

edge queue and users’ usage patterns, thereby achieving PP

protection. For our proposed DP-DQO algorithm, we provide

theoretical analysis on both its privacy guarantee and utility

guarantee (learning error bound). Finally, we evaluate DP-

DQO’s performance through simulations, showing that, by

suitably choosing the noise level, DP-DQO can achieve both

the high return and PP protection during the computation

offloading process.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Model

As shown in Fig.1, we consider an MEC system consisting

of N mobile devices (MDs) served by an edge server (ES) and

a cloud server (CS), where the set of MDs is denoted by N =
{1, 2, . . . , N}. Compared with the CS, the ES is closer to MDs

but does not have sufficient computing resources to serve all

MDs simultaneously. In this paper, we consider a time-slotted

system T = {1, 2, . . . , T } where each timeslot’s duration is

∆T (in seconds). At the beginning of each time slot, the ES

may receive offloading tasks from MDs. We consider the task

arrivals from MD n following an independent Poisson process

with parameter λn [12]. At the beginning of time slot t, if there

is an offloading task sent from MD n, we denote it by xn(t) ,
(ρn(t), βn(t)) with ρn(t) and βn(t) respectively denoting its

data size and required CPU cycles for task computation. For

a generic task xn(t) , (ρn(t), βn(t)), we assume that it is

atomic and can not be divided further. Besides, we consider

that the data size ρn(t) and the required CPU cycles βn(t)
follow independent uniform distributions [5].

To buffer the arriving offloading tasks, the ES maintains

a task request queue (TRQ) whose size is denoted by qTR
max.

The newly arriving tasks would be buffered in the TRQ if

there is enough space there, and dropped otherwise. After

the TRQ is updated in time slot t, we denote I(t) as the

total number of offloading tasks that have arrived at the

ES, and K(t) as the combined size of the tasks buffered

at the ES, i.e., K(t) ≤ qTR
max. For the updated TRQ, the

ES would deal with the task appearing at its head, denoted

by xH(t) , (ρH(t), βH(t)), deciding between computing

it locally (at the ES), or delivering it to the CS via one

of M orthogonal channels. At the beginning of time slot t,

let ω(t) denote the number of available orthogonal channels,

i.e., ω(t) ≤ M . Besides, let A(t) ∈ {0, 1} denote the ES’s

computation offloading decision at time slot t, i.e., A(t) = 1
if the task is offloaded to the CS for processing, and A(t) = 0
otherwise. It is worth noting that if there is no free channel

between the ES and CS at the beginning of time slot t, then the

ES has to process the task locally, i.e., A(t) = 0 if ω(t) = 0.

The ES maintains another queue for the tasks to be

processed locally, called the local computing queue (LCQ),

according to the first-come-first-serve (FCFS) discipline. We

denote LCQ’s size by qLC
max. At the beginning of time slot t,

we denote the total number of CPU cycles required by the

tasks waiting in the LCQ by P̂ (t), and the combined size of

these tasks by K̂(t) with K̂(t) ≤ qLC
max. In each time slot, the

arriving task xH(t) , (ρH(t), βH(t)) (if A(t) = 0) would

be buffered only if there is enough space in the LCQ, i.e.,

K̂(t)+ρH(t) ≤ qLC
max. At the end of time slot t, we denote by

Id(t) the number of tasks that are dropped due to the overflow

of the TRQ or LCQ.

In this paper, we aim at optimizing the computation offload-

ing decisions to jointly minimize the incurred latency, energy

consumption of the ES, and task dropping rate. Note that the

waiting time of each task in the TRQ is determined by the

task arrival processes and is independent of the ES’s offloading

decisions. As such, we equivalently focus on minimizing the

latency, ES’s energy consumption, and task dropping rate of

the tasks appearing at the head of the TRQ, while ignoring

their waiting time in the TRQ.
B. Latency and Energy Consumption Model

For the task at the head of the TRQ in time slot t, i.e.,

xH(t) , (ρH(t), βH(t)), the incurred latency, and energy

consumption are determined by the offloading decision made

by the ES. In this subsection, we specify the latency and

energy consumption models regarding local computing at the

ES and offloading computation to the CS, respectively.

1) Local Computing at the ES: For this case, the latency

Le
H(t) consists of two parts, i.e., the waiting time in the LCQ

Lw
H(t) and the computation execution time Lc

H(t), i.e.,

Le
H(t) = Lw

H(t) + Lc
H(t) =

(
P̂ (t) + βH(t)

)
/fe, (1)

in which the waiting time Lw
H(t) is the sum of the computation

execution time of all tasks before the task xH(t) in the

LCQ, i.e., Lw
H(t) = P̂ (t)/fe with fe (in CPU cycles per

second) denoting the ES’s computation capacity. Meanwhile,

the energy consumption for the local computing at the ES can

be expressed as [13]
Ee

H(t) = κ1 (fe)
2
βH(t), (2)

where κ1 is an effective capacitance coefficient dependent on

the ES’s chip architecture, and κ1 (fe)
2

denotes the energy

consumption per CPU cycle for the local computing.

2) Offloading Computation to the CS: For wireless MEC

systems, the task transmission time from the ES to the CS is

generally much larger compared to the computation time at

the CS [6]. Therefore, by ignoring the task computation time,

we specify the offloading latency Lo
H(t) as



Lo
H(t) = ρH(t)/rtr. (3)

Wherein, rtr denotes the transmission rate from the ES to

the CS, which is considered to be constant [14]. Besides, the

energy consumption of the ES Eo
H(t) can be expressed as

Eo
H(t) = ptrLo

H(t), (4)

where ptr denotes the uplink transmission power for the ES.

C. Dynamic Computation Offloading Problem Formulation

Firstly, to balance between the incurred latency and energy

consumption, we define the task execution cost C0(t) of the

offloading decision in time slot t, i.e, A(t), as

C0(t) =

{
Le
n(t) + ψEe

n(t), if A(t) = 0

Lo
n(t) + ψEo

n(t), if A(t) = 1
(5)

where ψ is a parameter introduced to balance the trade-

off between lowering the latency and reducing the energy

consumption. Meanwhile, due to the limited buffer size and

channel resources, some tasks may be dropped from TRQ or

LCQ. Bearing this in mind, to further reduce the number of

dropped tasks, we define the overall cost in time slot t as

C(t) = C0(t)/
[
1− I0(t)

]
= C0(t)/

[
1− Id(t)/I(t)

]
(6)

where I0(t) = Id(t)/I(t) denotes the task dropping rate at the

end of the time slot.

In light of this, the dynamic computation offloading problem

can be formulated as

P : min
AT

lim
T→∞

∑T

t=1
γt−1C(t) (7)

s.t. A(t) ∈ {0, 1}, ∀t ∈ T (8)

ω(t) ≤M, ∀t ∈ T (9)

where A
T = (A(1), A(2), . . . , A(T )) denotes the sequence of

offloading decisions made by the ES from time slot 1 to T , and

the discount factor γ ∈ [0, 1) is introduced to give importance

to the present cost and to make the long-term cumulative cost

finite. Besides, constraint (9) indicates that there are at most

M orthogonal channels that can be used by the ES in each

time slot.

Essentially, problem P can be formulated as an MDP and

solved by reinforcement learning (RL)/ deep reinforcement

learning (DRL) algorithms, where the action-value function (or

policy) should be learned through trial-and-error interactions

with the environment [15]. In this case, by observing the of-

floading decisions made by the ES, the attacker (e.g., malicious

MDs) can use tools such as inverse reinforcement learning

[16] to infer, for instance, the action-value function. With

the inferred action-value function and the observed offloading

decision, the attacker can infer the ES’s state information [17],

e.g., the size of buffered tasks and the required CPU cycles. On

this basis, the attacker could further obtain the usage patterns

of MDs, causing the PP issue. For instance, considering an

MEC system consisting of MDs with different usage patterns,

the attacker can identify a specific MD from a set of anony-

mous ones. To address this issue, we propose a novel PP-

preserving dynamic computation offloading algorithm, called

DP-DQO, so as to minimize the incurred long-term cumulative

cost (7) while achieving PP protection during the computation

offloading process.

III. PATTERN PRIVACY (PP) PRESERVING SOLUTION

A. MDP Formulation and Differential Privacy

We formulate the dynamic offloading problem as an MDP

consisting of a tuple (S,A, R(·, ·)) and depicted as follows:

1) State space S: The state S(t) at the beginning of time

slot t is defined as S(t) = (K(t), K̂(t), P̂ (t), ω(t)), where

K(t) denotes the combined size of tasks buffered in the TRQ,

K̂(t) and P̂ (t) the combined size and required CPU cycles of

tasks in the LCQ, and ω(t) the number of available channels.

Denote the space of all possible states by S.

2) Action space A: The action of the agent at time slot t
is the offloading decision A(t) i.e., A = {0, 1}.

3) Reward function R(·, ·): In each time slot, the reward

obtained by the agent is dependent on the state S(t) and

executed action A(t), which is defined as the negative of the

overall cost, i.e., R(S(t), A(t)) = −C(t).
In this work, we aim at deriving a policy π∗ that maximizes

the discounted accumulative rewards (i.e., the return) given an

initial state S(1), i.e.,

π∗ = arg
π

max lim
T→∞

E
[∑T

t=1
γt−1R(S(t), A(t)) |S(1)

]

=arg
π

min lim
T→∞

E
[∑T

t=1
γt−1C(t)

]
. (10)

To solve this problem while addressing the PP issue, we devise

a novel computation offloading algorithm by modifying the

DQN-based DRL algorithm with the Function-output Gaussian

process mechanism (FGPM). Particularly, the core idea of

our proposed algorithm is to inject the generated noise into

the output of the DQN to provide differential privacy (DP)

throughout the offloading process. Before formally presenting

our proposed algorithm, we start by introducing some neces-

sary definitions.

Definition 1: ((ǫ, δ)-DP [18]): A random mechanism M:

R → U with domain R and range U satisfies (ǫ, δ)-DP, if

for any two adjacent inputs r, r′ ∈ R and for any subset of

outputs X ⊆ U we have

Pr [M (r) ∈ X ] ≤ eǫ Pr [M (r′) ∈ X ] + δ (11)

where ǫ denotes the privacy budget and δ the relaxation factor.

Definition 2: For a random mechanism M: R → U , its

sensitivity ∆M is defined as the maximum difference between

the query results of two adjacent inputs r, r′ ∈ R, i.e, [18]

∆M = sup
r,r′∈R

‖M(r) −M (r′)‖ (12)

where r, r′ ∈ R denotes a pair of adjacent inputs, and ‖ · ‖
the an norm function defined on U .

It is noteworthy that for a random mechanism M, the

sensitivity is used to quantitatively assess its effect on data

privacy. Particularly, the larger sensitivity of the mechanism

M, the larger probability of privacy leakage, and the allocated

privacy budget ǫ to make the mechanism M satisfy DP is also



larger. By considering the action-value function as a random

mechanism and the state-action pairs as its inputs, it seems rea-

sonable to develop a DP-based DRL algorithm to solve MDPs

while making the learned action-value function satisfy DP. To

achieve this, the traditional action-value function defined in

RL needs to be modified with the noise mechanism [18]. In

this paper, we choose the Function-output Gaussian process

mechanism (FGPM) to deal with the continuous inputs, which

extends the Gaussian mechanism with the reproducing kernel

Hilbert space (RKHS).

Definition 3: (Function-output Gaussian process mechanism

(FGPM) F (·) [19]): Given a random mechanism M: R → U
with sensitivity ∆M, the FGPM F (·) is defined as:

F (r) = M(r) + g, ∀r ∈ R (13)

where g denotes the noise sampled from the Gaussian process

noise N
(
0, σ2K

)
, U an RKHS with kernel function K , and σ

the noise level that can be specified according to the allocated

privacy budget.

Proposition 1: If the privacy budget ǫ satisfies 0 < ǫ <
1, the relaxation factor δ and the noise level σ satisfy σ ≥√
2 ln(1.25/δ)∆M/ǫ, then the FGPM F (·) satisfies (ǫ, δ)-DP.

Proof 1: We refer readers to [19] for the detailed proof.

In the following two subsections, the details of our proposed

algorithm and the theoretical analysis on its privacy and utility

Guarantees will be elaborated on respectively.

B. Differentially Private Deep Q-learning based Offloading

(DP-DQO) Algorithm
The details of our proposed DP-DQO algorithm are pre-

sented in Algorithm 1. At the beginning of DP-DQO, the

experience replay buffer D is cleared out, the parameters of the

Q-network θ are randomly initialized, and the parameters of

the target Q-network are set as θ̂ = θ. When the initialization

is completed, the algorithm goes into a loop and the learning

process is divided into Γ episodes, each of which comprises T
time slots. At beginning of each episode, the initial state S(1),
sorted state sets {S0}A∈A, and noise dictionaries {GA}A∈A

are respectively initialized. Then, in time slot t, an action

A(t) is chosen by following the E-greedy policy. After the

chosen action is executed, the corresponding experience tuple

((S(t), A(t), R(S(t), A(t)),S(t + 1)) is observed and further

stored into the replay buffer D.

After Γeps episodes are completed, functional noise gen-

erating and parameter updating are performed. Specifically,

a mini-batch of Ω experience tuples are randomly sampled

from the replay buffer, the set of which is denoted by

{(Si, Ai, Ri,S ′
i) |1 ≤ i ≤ Ω}. Then, the sampled tuples are

utilized in sequence to update the noise dictionaries and Q-

network. Firstly, for the i-th experience tuple, the next state

S ′
i is inserted into the set SAi

in the ascending order of the

reward. Secondly, a Gaussian process N
(
µA,S′

i
, σdA,S′

i

)
is

constructed to generate noise for each action A (∀A ∈ A)of

state S ′
i , where µA,S′

i
and σdA,S′

i
respectively denote its mean

and variance. The expressions of µA,S′

i
and dA,S′

i
are presented

as (14) and (15), where Ψ = (4α(z+1)/Ω)−1 with α, z, and

Ω respectively denoting the learning rate, balance factor, and

Algorithm 1 DP-DQO Algorithm

1: Initialization: Initialize replay buffer D, Q-network Qθ,

target Q-network Q̂
θ̂
, and training start time as Γeps.

2: for episode = 1,Γ do

3: Set the state S(1) = (0, 0, 0,M), state sets {S0}A∈A =
{∅}A∈A, and noise dictionaries {GA}A∈A = {∅}A∈A.

4: for t = 1, T do

5: Action selection: With probability E select a random

action A(t), otherwise choose the action A(t) =
argmaxA∈AQθ (S(t), A(t)).

6: Acting and observing: Execute the action A(t),
receive reward R(S(t), A(t)), and obtain the new

state S(t+ 1).
7: Refreshing replay buffer: Store the new transition

((S(t), A(t), R(S(t), A(t)),S(t + 1)) into D.

8: if episode > Γeps then

9: Training: Sample a mini-batch of transitions

{(Si, Ai, Ri,S ′
i) |1 ≤ i ≤ Ω} from D.

10: for i = 1,Ω do

11: Insert S ′
i into the sorted state set SAi

.

12: for A ∈ A do

13: Build a Gaussian process N
(
µA,S′

i
, σdA,S′

i

)

(14) and (15), sample the noise gA,S′

i
∼

N
(
µA,S′

i
, σdA,S′

i

)
, update the dictionary GA.

14: end for

15: Calculate the target yi with (16).

16: end for

17: Update the Q-network Qθ with (18).

18: Update target network: θ̂ = θ every Γ0 episodes.

19: end if

20: end for

21: end for

22: Output: The Q-network Qθ.

batch size. Besides, ζ =
∥∥S ′

i − S ′−
i

∥∥
2
, ν =

∥∥S ′+
i − S ′

i

∥∥
2

and

Λ =
∥∥S ′+

i − S ′−
i

∥∥
2
, in which S ′+

i and S ′−
i are two adjacent

states of S ′
i in the ordered set SAi

. And, GA(S) represents the

value of the key S in the dictionary GA.

µA,S′

i
=

(
eΨζ − e−Ψζ

)
GA

(
S ′+
i

)
+
(
eΨν − e−Ψν

)
GA

(
S ′−
i

)

−e−ΨΛ + eΨΛ

(14)

dA,S′

i
= 1−

(
eΨζ − e−Ψζ

)
eΨζ +

(
eΨν − e−Ψν

)
eΨν

−e−ΨΛ + eΨΛ
(15)

For each state-action pair (S ′
i, A), ∀A ∈ A, the noise

is generated according to gA,S′

i
, which is further utilized

to update the dictionary, i.e., GA = GA

⋃{S ′
i, gA,S′

i
}, and

calculate the target yi with the target Q-network Q̂
θ̂
, i.e.,

yi=R(Si, Ai) + γ arg max
A′∈A

(
Q̂

θ̂
(S ′

i, A
′) +GA′(S ′

i)
)
. (16)

Then, the average of the noised temporal-difference (TD)

errors can be expressed

L =1/Ω
∑Ω

i=1

[
yi − (Qθ (Si, Ai) +GAi

(Si))
]2

(17)



with which the Q-network Qθ can updated according to

θ = θ − α∇θL. (18)

During the training phase, the target Q-network Q̂
θ̂

is updated

by setting θ̂ = θ every Γ0 epochs.

C. Privacy and Utility Guarantees of DP-DQO Algorithm

In this subsection, we analyze both the privacy guarantee

and utility guarantee for our proposed DP-DQO algorithm, as

shown in the following two theorems.

Theorem 1: (Privacy Guarantee) The action-value function

learned by DP-DQO is
(
ǫ, δ + exp

(
−(2z − 8.68

√
Ψσ)2/2

))

-DP, if 2z > 8.68
√
Ψσ and σ ≥ J(α, z,D,Ω)∆F√

2((Γ− Γeps)T/Ω) ln(e + ǫ/δ)/ǫ, in which J(α, z,D,Ω)
=

(
(4α(z + 1)/Ω)2 + 4α(z + 1)/Ω

)
D2, Ψ = (4α(z + 1)

/Ω)−1, D denotes the Lipschitz constant of the action-

value function approximation, Ω the size of mini-batch, and

(Γ − Γeps)T the total number of steps in training. Wherein,

the two state-action pairs are called adjacent if their "distance",

evaluated by the difference of their corresponding rewards (i.e.,

R and R′), is less than the sensitivity of the FGPM ∆F , i.e.,

‖R−R′‖
1
≤ ∆F .

Proof 2: Let Q and Q′ respectively denote the estimated Q-

values given two adjacent state-action pairs, the corresponding

rewards of which satisfy ‖R−R′‖
1
≤ ∆F . To establish the

DP guarantee, we will check the update step in line 17 of

Algorithm 1. Firstly, let Q̃ denote the Q-value before updating

the Q-network. Then, we have
∥∥∥Q− Q̃

∥∥∥
1
≤ αD (2 +GA (S ′

i)−GA (Si)) /Ω. (19)

From Lemma 8 of [19],

∥∥∥Q− Q̃
∥∥∥
1
≤ 2αD(z+1)/Ω is satis-

fied with probability at least 1−exp
(
−(2z − 8.68

√
Ψσ)2/2

)
.

Similarly, we have

∥∥∥Q′ − Q̃
∥∥∥
1
≤ 2αD(z + 1)/Ω is satisfied

with probability at least 1 − exp
(
−(2z − 8.68

√
Ψσ)2/2

)
.

Furthermore, by the triangle inequality, it can be derived that

‖Q−Q′‖
1
≤ 4αD(z+1)/Ω for any ‖R −R′‖

1
≤ ∆F . Next,

by defining d = Q − Q′ and resorting to Lemma 6 in [19],

we have

‖d‖2H ≤ (1 + Ψ/2)(4αD(z + 1)/Ω)2 +D2/2Ψ (20)

where ‖ · ‖H denotes the RKHS norm. By setting 1/Ψ =
4α(z + 1)/Ω, we can transform (20) as

‖d‖2H ≤ ((4α(z + 1)/Ω)2 + 4α(z + 1)/Ω)D2. (21)

Referring to Definition 3 and Proposition 1, we inject noise

sampled by the Gaussian process to Q that makes the up-

date step achieve
(
ǫ, δ + exp

(
−(2z − 8.68

√
Ψσ)2/2

))
-DP,

given that σ ≥
√
2 ln (1.25/δ)‖d‖H/ǫ. This shows that each

iteration of update has a privacy guarantee. Finally, according

to the composition theorem in [20], multiple iterations in our

proposed algorithm provide a privacy guarantee. �

Next, we establish the utility guarantee of DP-DQO by

analyzing the discrepancy between the action-value of some

state-action pairs learned by our algorithm and that regarding

the optimal policy, i.e., the learning error (utility loss) [19].

In Theorem 2, we provide the upper bound of the learning

error for our algorithm, which tends towards zero as the size

of the state space approaches infinity, i.e., a utility guarantee

is achieved.

Theorem 2: (Utility Guarantee) Let Q and Q∗ respectively

denote the action-value of some state-action pairs learned by

our algorithm and that regarding the optimal policy, and n
the cardinality of the state space S, i.e., |S| = n. In the case

n < ∞, and γ < 1, the utility loss (learning error) of the

algorithm satisfies

E [‖Q−Q∗‖
1
] ≤ 2

√
2σ√

nπ(1− γ)
. (22)

Proof 3: Due to space limitations, we omit the derivations

and refer readers to [19] for the detailed proof. �

IV. SIMULATION RESULTS

In this section, we conduct simulations to evaluate the

performance of our proposed DP-DQO algorithm. Consider

an MEC system consisting of a CS, an ES, and N = 5 MDs.

The length of the time slot is set as ∆T = 1. The data size

and the required CPU cycles for arriving tasks are uniformly

generated between [5, 50] MB and [0.5 × 1011, 2.0 × 1011]
cycles, respectively. Besides, we respectively set the size of

the TRQ and LCQ as qTR
max = 5 GB and qLC

max = 2 GB, and

the computation capacity and effective capacitance coefficient

of the ES as f e = 5 × 1010 and κ1 = 10−11 [21]. For the

link from the ES to CS, we adopt the channel model and

parameters as in [14] and correspondingly set the transmission

rate as rtr = 5 MB/s. The performance of our proposed DP-

DQO algorithm is evaluated against two baseline algorithms:

1) the Greedy algorithm and 2) the DQN-based algorithm.

For DRL algorithms, each artificial neural network (ANN)

consists of two fully connected hidden layers, each with 128

neurons, where the ReLU function is adopted as the activation

function. We set the length of one episode as T = 100, the

size of replay buffer D = 2000, the mini-batch size Ω = 64,

and the target network update frequency Γ0 = 10. To achieve

exploration, we adopt the E-greedy policy with E = 0.02. The

learning rate α and discount factor γ are set to 0.002 and

0.98, respectively. Here, all simulation results are obtained by

averaging 10 independent runs with different seeds, and for

fair comparisons, the same seed is adopted for all algorithms

and policies in one run.

Firstly, we evaluate the convergence of DP-DQO with

different noise levels, as shown in Fig. 2. The dark curve

(solid or dotted) shows the mean value over runs, and the

shaded areas are obtained by filling the interval between the

maximum and minimum values over runs. In Fig. 2, it can

be seen that the training performance is negatively correlated

with the noise level σ. This is mainly due to the fact that a

higher level of privacy protection would reduce the difference

between the Q-values of adjacent actions more significantly.

In return, this may cause more uncertainty in the Q-network’s



Fig. 2. Convergence comparison for DP-DQO at noise levels σ =

{0.1, 0.3, 0.5, 0.7} and two baseline algorithms.

Fig. 3. Performance comparison for DP-DQO at noise levels σ =

{0.1, 0.3, 0.5, 0.7} and two baseline algorithms, in terms of the return where
the task arrival rate from 0.1 to 0.4.

update direction, thereby making the algorithm’s performance

more unstable. To further evaluate the effectiveness of DP-

DQO, we vary the task arrival rate from 0.1 to 0.4, and present

the achieved return in Fig. 3. It can be seen that our proposed

DP-DQO algorithm outperforms the greedy algorithm in all

cases. Besides, it is noteworthy that when the noise level is not

high, e.g., σ = 0.1, the return achieved by our proposed DP-

DQO algorithm is roughly the same as that of the DQN-based

algorithm. In other words, by suitably choosing the noise level,

a high utility guarantee (low learning error) can be achieved

while preserving the PP protection during the computation

offloading process.

V. CONCLUSIONS

In this paper, we have investigated and proposed a com-

putation offloading strategy for the MEC system which not

only minimizes the offloading cost, consisting of the latency,

energy consumption of the edge server, and task dropping

rate but also preserves Pattern Privacy (PP) during the of-

floading process. This prevents attackers from inferring the

edge server’s queuing information and users’ usage patterns

through inverse reinforcement learning and other techniques

when they observe the offloading decisions. By modifying

the vanilla DQN with the Function-output Gaussian Process

Mechanism, a novel PP-preserving dynamic computation of-

floading algorithm, called DP-DQO, was proposed. For DP-

DQO, we provided theoretical analysis on both its privacy

guarantee and utility (learning error) guarantee. Our simulation

results show that DP-DQO with a suitable noise level performs

as well as the DQN-based algorithm in terms of its achieved

return and significantly outperforms the greedy algorithm.
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