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Abstract—Most of today’s communication systems are designed
to target reliable message recovery after receiving the entire en-
coded message (codeword). However, in many practical scenarios,
the transmission process may be interrupted before receiving
the complete codeword. This paper proposes a novel rateless
autoencoder (AE)-based code design suitable for decoding the
transmitted message before the noisy codeword is fully received.
Using particular dropout strategies applied during the training
process, rateless AE codes allow to trade off between decoding
delay and reliability, providing a graceful improvement of the
latter with each additionally received codeword symbol. The
proposed rateless AEs significantly outperform the conventional
AE designs for scenarios where it is desirable to trade off
reliability for lower decoding delay.

I. INTRODUCTION

The design of short block-length error-correcting codes for
unpredictable and time-varying wireless channels still remains
a challenge [1]. Particularly challenging is the design of
codes for channels experiencing prolonged deep fades or even
complete channel failures that prevent the receiver to receive
the complete (noisy) codeword. Such channels, referred to as
dying channels in [3] and [4], arise in various communication
systems, e.g., due to loss of synchronization, lack of memory,
depletion of harvested energy in wireless sensors, interruption
of a secondary user by a primary user in cognitive radio, loss
of line-of-sight channel in optical wireless communications,
limited channel duration of low-earth-orbit satellite communi-
cations, or physical defects in magnetic recording memories
[4]–[6]. Despite their apparent applicability, few works have
considered the design of coding schemes for dying channels
[5]–[7].

In the above–mentioned scenarios, a conventional fixed-rate
code design may suffer from high inefficiency in the short
block-length regime. Rateless codes provide a possibility for
the receiver to trade off decoding delay with increased reli-
ability by adaptively receiving additional codeword symbols
(thus decreasing the code rate) until the desired reliability
is attained [8]. Rateless codes such as rateless spinal codes
[9] and analog fountain codes (AFC) [10] are recent classes
of codes that represent a flexible solution for rate adaptation
to unpredictable wireless channels. Both spinal and AFC
codes map the set of input messages directly into codewords
comprising sequences of real (or complex) symbols, thus
effectively performing adaptive coding and modulation.

This paper has received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement number 856967.

Deep autoencoders (AEs) provide a new framework to de-
sign codes for challenging—or unknown—channels [11]. AE-
based codes have been studied in several settings, such as one-
bit quantization channels [12], optical communications [13],
and OFDM [14]. The resulting AE-based codes are shown
to perform close to optimal for several baseline scenarios
[11]–[15]. Similar to spinal and AFC codes, AE-based codes
map input messages directly into real (or complex) codeword
sequences. However, AE-based codes are trained—and thus
optimized—for a given code rate, meaning that they perform
poorly if the decoding is attempted before the complete
codeword is received.

Designing flexible and efficient short block-length codes for
dying channels [4] is the focus of this paper. In particular,
we extend the conventional AE-based code design to a class
of AE-based codes that shares with rateless codes that re-
ceiving additional codeword symbols progressively improves
the successful message decoding probability. We call the
proposed AE-based codes rateless AE codes. Such progressive
improvement of the reliability allows the receiver to select
when, i.e., after how many received symbols, to attempt de-
coding, thus trading off error probability with decoding delay.
Inspired by a recent work on rateless AEs for flexible reduced-
dimensionality signal representation [16], we integrate suitably
designed dropout strategies into the AE-based code design to
induce the desired performance behavior. More precisely, by
controlling the dropout parameters in rateless AE code design,
we shape a desired decoding delay vs reliability behavior of
the resulting codes: a property that is not easy to enforce using
classical coding approaches. Numerical results demonstrate
that the resulting rateless AE codes significantly outperform
conventional AE-based code designs for scenarios where it is
desirable to trade off reliability for lower decoding delay such
as the case of dying channels.

II. SYSTEM MODEL AND AUTOENCODER-BASED CODES

A. System Model

We consider a transmitter that sends a message m from
a message set M = {1, 2, . . . ,M} over a noisy channel.
Each message is represented as a sequence of k = log2(M)
bits s = (s1, s2, . . . , sk). The encoder encodes a message m
into a transmitted codeword x = (x1, x2, . . . , xn) of length
n symbols. Formally, we define the encoder via the function
f : M → Rn. We consider two different power constraints
for the codewords: i) a fixed power constraint, for which
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‖x‖22 = n holds for every x, and ii) and average power
constraint, for which 1

M

∑i=M
i=1 ‖xi‖22 = n. The code rate is

defined as R = k/n [bits/channel use].
Let y = (y1, y2, . . . , yn) ∈ Rn be the output of the

channel (described in the next subsection). The decoder maps
y into the estimated message m̂ using the decoder transform
g : Rn →M.

B. Channel Model

We consider a channel model consisting of the cascade of an
AWGN channel and an erasure channel. The motivation under-
pinning this model is to consider an AWGN channel affected
by random interruptions or occasional deep fades—modeled
as erasures—whose locations are known to the receiver (see
Section II-C below for more details). Let Eb/N0 denote the
energy per bit (Eb) to noise power spectral density (N0) ratio.

We consider two variants of the proposed cascaded AWGN
and erasure channel, as detailed below. In both models, the
erasure channel is described by a set of L channel states. We
denote by p` the probability that the channel is in the `-th
state. The erasure channel state distribution is defined as p =
{p1, p2, . . . , pL},

∑L
i=` p` = 1.

Model 1: Channel Model with Tail Erasures. In this
model, the receiver receives the first r` symbols of y and the
remaining n − r` symbols are erased. The `-th channel state
is then defined by the pair (p`, r`); if the erasure channel is at
state `, the receiver receives y` = {y1, y2, . . . , yr`}, while the
remaining symbols are erased. Let r = {r1, r2, . . . , rL}. The
channel model with tail erasures is then defined by p and r.

Model 2: Channel Model with Random Erasures. In this
model, the symbols of y are randomly erased. The `-th state
of the erasure channel is defined by a pair (p`, ε`), where
ε` ∈ [0, 1] is the symbol erasure probability. The L channel
states are defined by p and the set of corresponding erasure
probabilities ε = {ε1, ε2, . . . , εL}.

C. Comment on the Channel Models

Model 1 is known as a channel that dies, and its
information-theoretic properties are investigated in [4]. The
model is suitable for situations where the receiver, after
receiving a certain (varying) number of symbols, can no
longer receive additional symbols. This may be the case
with low-cost devices due to, e.g., loss of synchronization,
lack of memory, or depletion of harvested energy, in satellite
communications, molecular communications, and in certain
magnetic recording cases. The model is also motivated by a
scenario where a receiver is able to trade off decoding delay
against error probability by performing decoding based only
on the first received symbols: The error probability decreases
with each received symbol at the expense of an increased
delay. Depending on the error rate and delay requirements,
the receiver can decide when to start the decoding process.

Model 2 is a multi-state extension of a channel model,
dubbed AWGN+erasure channel, considered in [17]. This
model, as well as the model with tail erasures, is also suitable
to model multicast to heterogeneous receivers. In this case,

the erasure channel state probabilities model the fraction of
receivers experiencing different erasure channel states. In our
context, the model with random erasures is used as a reference
for comparison with the tail erasure channel model.

D. Problem Formulation

Under the setup in Section II-B, the goal is to design a pair
(f, g) that, for a given number of received symbols, minimizes
the average message error probability

Pe =
1

M

∑
m∈M

P{m̂ 6= m|m} . (1)

Before presenting the proposed rateless AE code design, we
review the basics of the conventional AE-based codes.

III. PRELIMINARIES: CONVENTIONAL
AUTOENCODER-BASED CODE DESIGN

From the deep learning perspective, the communication
system described in Section II-A can be implemented as an
autoencoder (AE) [11], as illustrated in Fig. 1 (disregard for
the moment the dropout block). The input (encoder) and output
(decoder) layers and the bottleneck layer constitute the main
AE blocks. The AE-based approach introduces a new design
paradigm in communication systems in which the transmitter
and receiver components are jointly optimized using machine
learning-based end-to-end learning methods.

At the transmitter’s input layer, the message m is encoded
as a one-hot vector u = (u1, u2, . . . , uM ) ∈ {0, 1}M , i.e.,
it is represented as an M -dimensional vector with the m-th
element equal to one and all other elements equal to zero. The
transmitter can be represented as a feedforward neural network
with H hidden layers, followed by a bottleneck layer of width
n (corresponding to the codeword length). At the output of the
bottleneck layer, a normalization step ensures that the power
constraint on x is met. The number of neurons in each hidden
layer is given by the vector h = {h1, h2, . . . , hH}, where hi
represents the number of neurons of the i-th hidden layer.

The AWGN channel is implemented by the noise layer. The
output of the noise layer can be represented as y = x + z,
where z contains n independent and identically distributed
samples of a Gaussian random variable with zero mean and
variance σ2. It is important to notice that the random nature
of the channel can be represented as a form of regularization,
because the receiver never sees the same training example
twice. As a consequence, it is almost impossible for the neural
network to overfit [15].

The goal of the neural network is to find the most suitable
representation of the information robust to the channel pertur-
bations. The receiver is implemented in the same way as the
transmitter (symmetric feedforward neural network), except
that the last layer has a softmax activation function with output
b = (b1, b2, . . . , bM ) ∈ (0, 1)M , ‖b‖1 = 1. The index of the
highest value element in b corresponds to the decoded message
m̂, i.e.,

m̂ = argmax
i
{bi} .



Fig. 1. Communication system represented as a deep autoencoder [11] with
two types of normalization: 1) Average power constraint and 2) Fixed power
constraint; and dropout block for: a) Model 1 and b) Model 2.

Except for the last layer of the transmitter and receiver,
which have linear and softmax activation functions respec-
tively, all others layers use the rectified linear unit (ReLU) as
the activation function.

Ideally, one would like to train the AE to minimize the error
probability Pe. However, Pe cannot be used directly as it is not
differentiable. A common approach is to use the cross-entropy
loss between u and b,

`(u, b) = −
M∑
i=1

ui log bi , (2)

as a surrogate for the error probability. The AE is then trained
so that `(u, b) is minimized.

IV. RATELESS AUTOENCODER CODES

A. Design of Rateless Autoencoder Codes

We introduce a novel class of AE codes, referred to as
rateless AE codes, that allow to trade off decoding delay
and reliability. Inspired by the rateless AEs in [16], we use
a suitably defined randomized dropout strategy to match the
AE-based code design to a given erasure channel model. To
define a generic randomized dropout strategy covering various
erasure channel models, we introduce a channel dropout vector
d associated to the channel noise layers, as shown in Fig.1. A
channel dropout vector d = (d1, d2, . . . , dn), di ∈ {0, 1}, is
a binary vector of length n whose zero entries (represented by
empty circles in the dropout block in Fig. 1) designate noise
layer neurons on which the dropout is applied, i.e., whose
output values are set to zero [18]. To address the erasure
channel models with multiple states (L > 1), we define a
sequence of dropout vectors d`, ` ∈ {1, 2, . . . , L}, where
dropout vector d` corresponds to the `-th class. The number
of zeros and ones and their positions or statistical occurrence
in the dropout vectors {d`} are defined as part of the rateless
AE code design process.

In the training process, we apply the randomized dropout
strategy, where different dropout vectors are applied randomly
on a batch-by-batch basis. For each training batch, we first
randomly sample a dropout class ` ∈ {1, 2, . . . , L} following

the dropout class probability distribution q, and then apply
the dropout vector d` corresponding to the dropout class ` for
all the training samples in the batch. The details of applying
dropout vectors on individual training batches differ for each
of the erasure channel models defined in Section II-B, as we
detail next.

Model 1. The dropout vector d` for the `-th class is
constructed such that its first r` positions (corresponding to
the topmost neurons in the layer) are set to one, while the
remaining ones are set to zero (recall that only the first r`
symbols survive the channel unerased), as shown in Fig. 1
(dropout block a)). Note that each dropout vector d` is fixed
in advance, i.e., it is deterministic.

Model 2: The dropout vector d` for the `-th class (character-
ized by the channel erasure probability ε`, see Section II-B)
is constructed so that each of its positions is randomly and
independently set to zero with probability ε`, as shown in Fig.
1 (dropout block b), empty circles represent zero neurons).
Note that each dropout vector d` is now randomized, i.e., the
realization of d` is random and in general different across the
training batches.

B. Connections to Rateless and Rate-Compatible Codes

The proposed AE codes provide a graceful degradation
of the error probability as additional codeword symbols are
received (see Sec. V). This behavior is akin to rateless codes,
justifying the nickname rateless AE codes. However, strictly
speaking, the proposed codes are not rateless in the sense that
an arbitrary number of codeword symbols can be generated
from the source message. In the context of latency-constrained
communications, one can set the codeword length n to a
sufficiently large value, e.g., to the value which corresponds
to the maximum allowable decoding delay.

From the receiver perspective, rateless AE codes allow
flexible selection of the codeword length. In this sense, the
proposed codes are related to rate-compatible codes for incre-
mental redundancy hybrid automatic repeat request (HARQ)
[19]. Note also that, for any selected codeword length, we
are interested in decoding the complete source message. This
is in contrast to optimizing the intermediate performance of
rateless codes that targets recovery of a part of the message
if an insufficient number of codeword symbols are received
[20]. It is also different from unequal error protection codes
that provide certain messages or parts of a message a higher
probability of reconstruction, as we recently investigated in
the context of AE-based code design [21].

V. PERFORMANCE EVALUATION OF RATELESS AE CODES

The goal of this work is to devise a code design that is able
to trade off decoding delay against decoding error probability.
To the best of our knowledge, code design for dying chan-
nels has only been addressed for the binary erasure channel
(BEC) [5], [6]. Thus despite their apparent importance, explicit
constructions of codes for channel models 1 and 2 above are
missing. In this work, we use an AE-based approach to address
this problem.
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Fig. 2. Rateless AE (R-AE) versus Conventional AE (C-AE) decomposed
BLER performances for different erasure channel state distributions p (Model
1, (n, k) = (24, 12)).

We present results for the (n, k) = (24, 12) code scenario,
where M = 4096 messages are transmitted over n = 24
channel uses. We consider a cascaded AWGN and erasure
channel as described in Section II-B.

A. Rateless AE Architecture and Training Procedure

The same training process as for the conventional AE [11],
apart from the introduction of appropriate dropout strategies,
is preserved for the rateless AE training. More precisely, the
rateless AE is optimized by using stochastic gradient descent
with the Adam optimizer [22]. The learning rate is α = 0.001,
β1 = 0.9 and β2 = 0.999. The training is performed at
Eb/N0 = 1 dB. For both the conventional and rateless AE
design, we apply the average power constraint across the set
of codewords in the codebook. This type of normalization can
be accomplished by introducing a batch normalization layer in
the AE architecture (Fig. 1) [23]. For both the conventional and
rateless AE architectures, we consider a single fully–connected
hidden layer (H = 1) with 500 neurons, i.e., h = h1 = 500,
and a batch size 500. Both training and test data sets are
created by sampling a message set M uniformly at random.
The training and test data set consist of 105 and 106 messages,
respectively.

B. Model 1 – Channel with Tail Erasures

We consider the tail erasure model with L = 4 states.
In each state, a receiver is able to receive the first r =
{15, 18, 21, 24} consecutive channel symbols, respectively.
The erasure channel state distribution is p = {p1, p2, p3, p4}
(whose numerical values are specified later). Assuming that
p and r are known at the transmitter, the channel dropout
distribution q and vectors d` are constructed to match the tail
erasure channel parameters p and r. In other words, we set
q = p and, using r, we define how many neurons starting
from the topmost will survive the dropout for each dropout
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Fig. 3. R-AE versus C-AE BLER performances as a function of the number
of received symbols (Model 1, (n, k) = (24, 12)).

vector class d`. Using the above parameters, we compared
the rateless AE design to the conventional AE design.

In Fig. 2, we present block error-rate (BLER) results of
rateless AE codes as a function of Eb/N0 for erasure chan-
nel state distributions p(1) = {0.8, 0.1, 0.05, 0.05}, p(2) =
{0.25, 0.25, 0.25, 0.25} and p(3) = {0.05, 0.05, 0.1, 0.8}. For
example, for the channel with state distribution p(1), the
probability that first r1 = 15 symbols are received is p1 = 0.8,
the first r2 = 18 symbols are received is p2 = 0.1, and
so on. The BLER results are presented as follows: for a
different number of received symbols r1 = 15, r3 = 21
and r4 = 24 (note that we skip r2 = 18 for the sake of
figure clarity), separate BLER curves are presented for each
erasure channel state distribution p(1), p(2) and p(3). We
compare the BLER results with the conventional AE codes
under the same settings. One can note clear performance loss
of conventional AE codes as long as they do not receive all
n channel output symbols, unlike rateless AE codes whose
BLER values degrade more gracefully. From Fig. 2, influence
of different dropout class distributions q (matched to different
channel erasure state distribution p) can be clearly observed.
For example, if q = p(1) is applied during the training (which
favors dropout vector d1 with the first r1 = 15 ones), such a
code will naturally demonstrate the best BLER performance
after receiving the first 15 symbols. In contrast, if trained for
the probability distribution q = p(3) that favors reception of
all n symbols, the rateless AE performance after r` = n = 24
symbols is comparable to the conventional AE BLER trained
for reception of the complete codeword, while still providing
significant BLER improvement for lower r` values.

Fig. 3 illustrates the BLER performance for the rateless AE
design matched to the channel state distribution p(3) (i.e., q =
p(3) and d` = r) as a function of the number of received
symbols r for three different Eb/N0 values (3dB, 5dB and
7dB). Compared to the BLER curves of the conventional AE
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Fig. 5. R-AE (trained for q = p(3)) versus mismatched R-AE codes (Model
1, (n, k) = (24, 12)).

codes, graceful degradation of BLER curves of the rateless AE
codes with the increase of the number of received symbols is
clearly observed. Note also that the ability to generalize of
the proposed approach is satisfactory, as from Fig. 3, only a
slight performance degradation is observed for rates that are
not seen during the training process (when r is different than
15, 18, 21 and 24).

In Fig. 4, we present the average BLER curves (averaged
across the probability distribution p of the channel erasure
states) versus Eb/N0 (dB) for three different erasure channel
state distributions p(1), p(2) and p(3). We note that, by
applying an appropriate (i.e., matched) dropout strategy for the
rateless AE design, a significant improvement of the average
BLER for a given erasure channel state distribution p can be
achieved as compared to the conventional AE design.
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Fig. 6. R-AE versus C-AE BLER performances as a function of the number
of received symbols - Fixed power constraint (Model 1, (n, k) = (24, 12)).

The previous examples assume that the transmitter knows
the erasure channel state distribution p, so that it can apply
the matched dropout class distribution q = p for the training
process. In order to test the robustness of rateless AE codes
on the mismatch of the channel state and the dropout class
distributions, in Fig. 5 we examine the average performance
of the rateless AE design trained for a particular dropout
class distribution q = p(3) against the same code tested over
three different mismatched erasure channel state distributions
(see the figure legend for details). Clearly, rateless AE design
whose dropout class distribution q is matched to the channel
state distribution p outperforms the case where the same
code is applied over the (slightly) mismatched erasure channel
state distribution p. On the other hand, even with mismatch,
the proposed rateless AE design significantly outperforms the
conventional AE design, demonstrating the inherent robustness
of the rateless AE design.

Finally, we emphasize the importance of the power con-
straint selection. Recall that, herein, we apply the average
power constraint, in contrast to the fixed power constraint
applied in [11]. In Fig. 6, we present the rateless AE vs
the conventional AE BLER performance under the fixed
power constraint for the dropout class distribution q = p(2)

as a function of the number of received symbols. Besides
significant degradation of the conventional AE performance
unless all n = 24 symbols are received, we note a different
behavior of the rateless AE codes that essentially lose their
rateless property. In other words, the rateless AE design is
now optimized for a specific number of received symbols r
which is smaller than the codeword length n (in our example,
r2 = 18) and reception of additional symbols does not improve
the BLER performance.

C. Model 2 – Channel with Random Erasures

In Fig. 7, we present the average BLER vs Eb/N0 (dB)
results (averaged across different channel erasure states) for
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L = 4 channel erasure states defined by the erasure probabili-
ties ε = {3/8, 2/8, 1/8, 0} for three different channel erasure
state distributions p(1) = {0.8, 0.1, 0.05, 0.05} (i.e., during the
training process, channel erasure probability ε1 = 3/8 will be
applied with probability p1 = 0.8, ε2 = 2/8 with probability
p2 = 0.1, and so on), p(2) = {0.25, 0.25, 0.25, 0.25} and
p(3) = {0.05, 0.05, 0.1, 0.8}. As expected, learning the rate-
less AE code for random erasures is more challenging than
for the case of tail erasures, however, the proposed rateless
AE design still outperforms the conventional one.

VI. CONCLUSION

We presented rateless AE codes, a novel class of AE codes
that trade off decoding delay and reliability. By integrating
a randomized dropout technique into the AE-based code
design, rateless AE codes provide a graceful degradation of
the decoding error probability as a function of the number of
received codeword symbols. Rateless AE codes can be tailored
for so-called dying channels, where the receiver observes an
incomplete noisy codeword interrupted at a given (random)
symbol. Such dying channels are relevant in several short-
packet wireless communication scenarios. Numerical results
demonstrate that the proposed rateless AE codes provide high
flexibility in shaping a desired delay vs reliability behavior.
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