
1

To Risk or Not to Risk: Learning with Risk
Quantification for IoT Task Offloading in UAVs

Anne Catherine Nguyen†, Turgay Pamuklu†, Member, IEEE, Aisha Syed‡,
W. Sean Kennedy‡, Melike Erol-Kantarci†, Senior Member, IEEE

†School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada
‡Nokia Bell Labs

Emails:{anguy087, turgay.pamuklu, melike.erolkantarci}@uottawa.ca, {aisha.syed, sean.kennedy}@nokia-bell-labs.com

Abstract—A deep reinforcement learning technique is presented
for task offloading decision-making algorithms for a multi-access
edge computing (MEC) assisted unmanned aerial vehicle (UAV)
network in a smart farm Internet of Things (IoT) environment.
The task offloading technique uses financial concepts such as cost
functions and conditional variable at risk (CVaR) in order to
quantify the damage that may be caused by each risky action.
The approach was able to quantify potential risks to train the
reinforcement learning agent to avoid risky behaviors that will
lead to irreversible consequences for the farm. Such consequences
include an undetected fire, pest infestation, or a UAV being
unusable. The proposed CVaR-based technique was compared to
other deep reinforcement learning techniques and two fixed rule-
based techniques. The simulation results show that the CVaR-
based risk quantifying method eliminated the most dangerous
risk, which was exceeding the deadline for a fire detection task.
As a result, it reduced the total number of deadline violations
with a negligible increase in energy consumption.

Index Terms—Risk quantification, Unmanned Aerial Vehicles,
Deep Reinforcement Learning, Smart Farm

I. INTRODUCTION

Wireless technology has expanded the horizon of the agri-
culture industry. It has enabled more efficient and precise
farming techniques with the deployment of the Internet of
Things (IoT) devices and wireless connectivity. Farmers are
now able to monitor their farmlands using sensors and cameras
that relay back to their real-time status updates. Through image
classification, IoT devices can quickly identify changes in
environments and potential risks. Qazi et al. [1] highlighted
the latest advancements in IoT technologies and artificial intel-
ligence used in smart farms. The authors identified that with
the assistance of artificial intelligence, smart farm networks are
able to self-manage their resources in order to maintain efficient
performance.

Furthermore, energy-aware reinforcement learning solutions
are recently proposed for many wireless network problems.
Mollahasani et al. [2] proposed actor-critic-based learning to
reduce energy consumption in an open radio access network
architecture. Khoramnejad et al. [3] addressed energy consump-
tion and quality of service performance metrics in 5G networks
by using a multi-agent double deep Q-network. Pamuklu et al.
[4] included solar panels in their architecture as an alternative
energy source for reducing the dependency on grid energy.
Their reinforcement learning solution also improved the cost

efficiency to improve the economic feasibility. Energy-aware-
based machine learning (ML) solutions are also attracting inter-
est in unmanned aerial vehicle (UAV) based wireless networks
recently [5]. Sun et al. [6] modeled their age of information
and energy-centric problem as a Markov decision process and
then solved it with a policy gradient-based machine learning
algorithm.

Task offloading is another emerging topic in UAV-based
networks. Ebrahim et al. [7] provided a tradeoff between delay
and energy by optimizing offloading decisions using deep
reinforcement learning (RL). Sacco et al. [8] aimed to reduce
the required information and training time for an RL-based
task offloading solution. Zhao et al. [9] studied on multi-agent
TD3 approach to address their continuous action space problem.
Yang et al. [10] focused on service cost minimization by
optimizing the joint task offloading and time-division multiple
access-based channel allocation decisions.

In our previous works, we also studied task offloading
problems in UAV-based smart agriculture IoT networks. First,
we proposed a tabular Q-Learning approach [11], and then a
deep RL version [12] for larger networks. In addition to these
studies, we proposed a risk-sensitive solution [13] to isolate
critical key performance indicators; thus, we can control the
tradeoff between multi objectives while training our tabular ML
model.

Unlike our prior works, we also looked into risk quantifi-
cation techniques. In finance, there are several methods used
to measure risks, such as the Sharpe ratio, the Sortino ratio,
and conditional value at risk (CVaR). These measurements are
used to evaluate the riskiness of investments based on their
expected losses [14]. The Sharpe ratio [15] measures the risk
of an investment portfolio by dividing the increase in return by
the volatility of the portfolio. First, it subtracts the return of
a known safe investment from the portfolio’s expected return.
Then the difference between the two portfolios is divided by the
standard deviation of the first portfolio’s returns. The difference
between the two portfolios indicates the potential increase in
return, and the standard deviation of the investment’s return
indicates the volatility of the returns. The Sortino ratio [16]
is an extension of the Sharpe ratio, but it has a different
denominator. Instead of dividing by the standard deviation
of all the portfolio’s returns, it uses the standard deviation

Accepted for ICC2023. © 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any

copyrighted component of this work in other works.

ar
X

iv
:2

30
2.

07
39

9v
1

 [
cs

.N
I]

 1
4

Fe
b

20
23

UAV

Tasks

Fire
Detection

Pest
Detection

Growth
Monitoring

IoT Devices

Offload

Actions
1. Perform Task

Locally

2. Offload Task
to Another UAV

3. Offload Task to
MEC

Fig. 1. The network model for risk quantifying approach.

of the portfolio’s negative returns. CVaR was introduced by
Rockafellar and Uryasev as a way to evaluate investment
portfolios based on their expected shortfalls [14]. CVaR is the
mean of the lowest α percentile of the portfolio’s returns. This
enables investors to say that the portfolio’s expected returns are
better than the CVaR (1− α) percent of the time.

In wireless networks, financial concepts like risk can be
used to evaluate and model behaviors to find an algorithm
that avoids undesirable behaviors. Apandi et al. [17] use the
Sharpe ratio as a decision-making parameter for base stations
to use in order to find an optimal way to find user associations
in order to send subcarriers. Zhou et al. [18] use CVaR to
measure the average of the worst age of information times for
IoT status updates at the receiver in an IoT monitoring system.
The CVaR of the receiver’s age of information was used as one
of the considerations in their optimization algorithm. Unlike
this paper, we use CVaR to measure the potential damages after
certain dangerous events happen in a smart farm.

The rest of this paper is organized as follows: Sections II
and III describe the system model and the proposed CVaR-
based risk quantifying approach, respectively. Then, we present
the performance evaluation of this method in Section IV and
conclude the paper with Section V.

II. SYSTEM MODEL

Our smart farm scenario consists of a set of X IoT devices
deployed across large farmland. These IoT devices perform

real-time intensive image classification tasks in order to provide
up-to-date updates on the farm. They can perform K different
types of tasks such as fire detection, pest detection, and crop
growth monitoring. One of the limitations of IoT devices
being used on farms is their finite battery and computing
capacity. Accurate image classification tasks require rigorous
computation because they need to use deep neural networks
(DNNs). If the IoT devices perform all the image classification
tasks themselves, they will run out of batteries very quickly
while trying to meet the heavy computing resource demands of
the image classification algorithms. In addition, some of these
tasks need to be done within a certain time frame; therefore
they have deadlines.

In order to relieve some of the demands of the IoT devices,
we have J unmanned aerial vehicles (UAV) deployed over the
farmlands. A UAV device (j) contains a computing resource
that is capable of performing an image classification task
〈j, t〉, locally, which is generated in time interval t. Also,
a UAV provides connectivity to other UAVs or multi-access
edge computing (MEC) devices (L) where this task can be
performed. With the addition of these computing resources
(J+ = J ∪ L), IoT devices can offload their tasks to nearby
UAVs. Upon receiving a task, the UAVs can choose to compute
the task themselves, offload to another UAV, or offload to a
MEC server. The UAVs also suffer from having a finite battery
capacity ΥB

j′ . Their current battery level at time T , (ΥR
j′) can

be modeled using the following equation,

ΥR
j′ = ΥB

j′ − (ΥH
j′ + ΥA

j′ + ΥI
j′) ∗ T

−
∑
j∈J
t∈T
t′∈T

(ΥC
j′ −ΥI

j′) ∗ p〈j,t〉j′t′ , (1)

where ΥB
j′ is the initial battery level for UAV j′, ΥH

j′ is the
amount of energy required for the UAV to fly above the farm,
ΥA
j′ is the amount of energy required by the antenna to send

signals, T is the total simulation time, ΥI
j′ is the amount of

energy required for the CPU to be idle, and ΥC
j′ is the amount

of energy required for the CPU to run a task. p〈j,t〉j′t′ is a
binary indicator used to indicate that UAV j′ computed the task
〈j, t〉 at time t′. Computing a task locally will lead to some of
their battery power being consumed; however, if the current
UAV has too many tasks to compute, the task’s queuing time
will increase, which can lead to a deadline violation occurring
E(v〈j,t〉) = 1 because the task’s processing time exceeds the
task’s deadline.

One of the objectives of the proposed methods is to extend
the UAV’s battery life. This will enable the UAV to hover for as
long as possible. The next objective is to minimize the average
mean uplink delay for task completion. By the uplink delay, we
are reducing the chances of a deadline violation occurring. Not
meeting the tasks’ deadline γD〈j,t〉 can have severe consequences.
For example, if the pests are not detected in time, a significant
portion of the crops may be destroyed. These consequences can
be described as risky behavior that we would like to avoid. We
are proposing two methods that will make decisions on behalf

of the UAVs while considering the consequences of the risks
during the decision-making process.

III. RISK QUANTIFYING (RQ) METHOD

A. Deep Risk Sensitive Learning with Risk Measurement

Deep reinforcement learning uses deep neural networks to
generate Q-values for each action instead of Q-tables. These
Q-values indicate to the agent the action that will lead to
the best long-term gain. The agent then selects the action.
As the agent goes through a series of actions and encounters
different scenarios, the neural networks train themselves with
new experiences to get more precise in predicting the Q-
values. In addition, the neural networks allow a larger state
space without being bound by physical disk space like the
tabular Q-learning method. This enabled us to include more
environmental information in the state such as the transmission
delays between all of the computing resources. When dealing
with a multi-objective problem, we need to juggle many risks
at the same time and evaluate each risk. We need a measure
of risk in order to properly quantify each risk so that we can
determine the correct course of action. In the field of finance,
there are several methods of evaluating risk in order to select the
best investment. Our approach to evaluating the performance of
each objective is based on the CVaR calculation.

The CVaR method is particularly applicable to our smart
farm scenario because we have several different types of risks
that can occur at the same time throughout monitoring the
farm. Each risk can lead to different levels of damage. For
example, when you miss the deadline of a fire recognition
task by one second, it will cause some containable damage.
The longer you exceed the deadline, the amount of damage
will increase drastically and become unmanageable. Similarly,
when the UAV is operating at full battery capacity, performing
a task locally does not do a lot of damage since it will only
consume a small percentage of the battery power. However,
when the UAV’s battery is almost depleted, performing a task
locally now becomes more dangerous because it may cause the
UAV to stop working. The potential damage of each known
risk factor can be modeled according to the objectives listed in
(2) as a function of time, and the sum of all the risk factors
can be viewed similarly to how we view the potential returns
of an investment portfolio. Using CVaR will allow us to train
the agent to avoid actions that will lead to the worst damages.

Instead of only considering the returns’ lowest α percentile,
we consider the mean of both the highest and lowest α/2-
percentile. We found that if you only use CVaR, you are only
avoiding the worst behavior. The agent only learns not to do
actions that lead to the worst damages; however, it will still
perform actions that lead to damages that are slightly better
than the worst damages. When you include the upper α/2-
percentile in the evaluation, you can train the agent to learn
good behavior along with avoiding bad ones.

Unlike the deep risk-sensitive approach presented in Section
III-B4, this approach does not have a separate state to evaluate
the known risk. Also, it does not consider all deadline violations

to be the same. It uses cost functions to evaluate the value of
each risk based on the potential damages.

1) Objective: The objectives of this problem are similar
to the objectives highlighted in [13] where we would like to
minimize the hovering time of the UAV network (ΥR

j′) , and
minimize the mean uplink delay (δ). Instead of restricting the
total number of deadline violations, we would like to minimize
the total number of deadline violations that will lead to severe
consequences E(v〈j,t〉) = 1. For example, if we exceed the
deadline for a fire identification task, the consequences from
this deadline violation will lead to more damage than if the
deadline for a growth monitoring task is exceeded.
Maximize:

W ∗min
j′∈J

ΥR
j′ −

1−W
2 ∗ΘM

δ − 1−W
2 ∗ΘD

∑
〈j,t〉∈〈J ,T 〉

E(v〈j,t〉) (2)

2) Risk Cost Functions: The cost functions determine the
potential cost of damages an action can inflict on the smart
farm. The costs for each risk is evaluated after every action,
and the sum of all the individual cost forms the total cost.

• Energy Risk Cost (Ce): As the UAV’s current battery power
after the action (ΥR

ja
) goes down, the situation becomes

more serious. This is reflected in exponential growth (g)
seen in (3).

Ce(ΥR
ja) = (1−ΥR

ja)g (3)

• End-to-end Delay Risk Cost (Cd): The end-to-end delay
risk is a function of the task’s end-to-end delay (∆〈j,t〉).
The end-to-end delay can be defined as

∆〈j,t〉 = ∆jR
I + ∆jP

jR
+ ΥQ

〈j,t〉 + ΥP
〈j,t〉, (4)

where ∆jR
I is the transmission delay from the IoT device

(I) to the UAV that first received the task (jR), ∆jP
jR

is the
transmission delay from jR to the computing resource that
will compute the task jP , ΥQ

〈j,t〉 is the time the task spends
in jP ’s queue, and ΥP

〈j,t〉 is the time it takes for the task to
be computed at by jP . The ideal situation is when the end-
to-end delay is less than the task’s deadline (γD〈j,t〉). This is
why it will have the lowest cost; the more the end-to-end
delay is lower than the deadline. If the end-to-end delay is
equal to the deadline, it is still acceptable, which is why
the Cd is 0. If the end-to-end delay is greater than the task’s
deadline, then the cost will be positive because there will
be some damage done to the smart farm environment. The
magnitude of the cost E(∆〈j,t〉) depends on the end-to-end
delay, the deadline, and the task type. If the task’s type is
a fire task (h〈j,t〉 = 1), the costs associated with missing
this task’s deadline will be more severe and, therefore,
higher. The further away the end-to-end delay is from the
task’s deadline, the magnitude of the cost will increase by

a power of s. If the task type is not a fire task (h〈j,t〉 = 0),
the magnitude of the cost will increase by a power of w.

Cd(∆〈j,t〉) =


−E(∆〈j,t〉) if ∆〈j,t〉 < γD〈j,t〉
0 if ∆〈j,t〉 = γD〈j,t〉
E(∆〈j,t〉) if ∆〈j,t〉 > γD〈j,t〉

(5)

Where: E(∆〈j,t〉) = h〈j,t〉|(γD〈j,t〉 −∆〈j,t〉)|s

+ (1− h〈j,t〉)|(γD〈j,t〉 −∆〈j,t〉)|w (6)

• Total Cost (CT): Total cost is the sum of the energy risk
cost (Ce) and the end-to-end delay cost (Cd). Γ is the
scaling factor for the energy cost.

CT = Γ ∗ Ce + Cd (7)

3) Risk Measurement: After every action, the total cost of
that action (CTa

) is calculated and we form an ordered list of
costs (Zja) for all actions performed by agent ja. We assume
that agent ja has performed a total of n actions at time t (in
seconds). Let ZLja

be a list that contains the lowest α
2 % of n

elements in Zja . Let ZHja
be a list that contains the highest

α
2 % of n elements in Zja . The risk measurement (η) for agent
ja after action a is defined as

η =

∑
ZLja

+
∑

ZLja

α
100 ∗ n

. (8)

4) Markov Decision Process Definition:
• State: The state includes the task type k, the CPU delays

of all computing resources in UAVs and MECs ∆j′∈J+ ,
all UAVs’ current battery levels ΥL

j′∈J , all transmission

delays between computing resources ∆jP∈J+

jR∈J+ , and the
UAV that first received the task ji. The state can be defined
as

S = {k,∆j′∈J+ ,ΥL
j′∈J ,∆

jP∈J+

jR∈J+ , ji}. (9)

• Action: Each UAV will act as an independent agent.
Upon receiving a task, an agent must select a destination
j′ which is a computing resource, out of all the computing
resources available J+, where the task will be computed.
The agent can choose to do the task on the local computing
resource or send the task to a nearby UAV or MEC server.
Therefore, the set of all possible actions is defined as

A = {xj′∈J+}. (10)

The reward function RRQ is defined as

RRQ = (1− β)RVc + βRVm, (11)

where RVc is the reward value of the current UAV, RVm is the
reward value of the UAV with the highest costs, and β is the
degree to which we are considering the UAV with the highest
costs. The values for RVm and RVc are defined using (12), and
depend on the UAV’s CVaR value before (ηp) and after (ηa) the
action was taken. If ηa < ηp, then the action caused the average
risk cost to decrease, and the agent will be rewarded with the

highest reward. If ηa < ηp, then the action caused the average
risk cost to increase which means that the agent is engaging in
actions that are significantly increasing battery consumption,
uplink mean delay, or exceeding the deadline violation of a
dangerous task. Therefore, the reward value is negative.

RV =



20, if (ηa < ηp) ∧ (ηa < 0)

10, if (ηa < ηp) ∧ (ηa = 0)

1, if (ηa < ηp) ∧ (ηa > 0)

5, if (ηa = ηp) ∧ (ηa < 0)

2, if (ηa = ηp) ∧ (ηa = 0)

−5, if (ηa = ηp) ∧ (ηa > 0)

1, if (ηa > ηp) ∧ (ηa < 0)

−1, if (ηa > ηp) ∧ (ηa = 0)

−10, if (ηa > ηp) ∧ (ηa > 0)

(12)

B. Baseline Methods

1) Round Robin (RR): In the round robin, there is a fixed
order to determine the destination of the task. All computing re-
sources are placed on an ordered list, and the task’s destination
is determined by knowing the previous task’s destination and
sending the current task to the next destination on the ordered
list.

2) Lowest Queue Time and Highest Energy First (QHEF):
Similar to the RR algorithm, QHEF uses fixed rules to deter-
mine the destination of the task. The algorithm determines the
destination where the task will be computed by first finding
the destination with the lowest queuing time. The next step
is to find the destination with the highest energy level, out of
all the computing resources with the lowest queue time. If the
computing resource with the highest energy level and lowest
queue time is higher than the receiving UAV’s current energy
level, then the task will be offloaded to another destination. If
not, then the receiving UAV will compute the task locally.

3) Deep Q-Learning: We used the Deep Q-Learning algo-
rithm presented by Nguyen et al. [12]. The Deep Q-Learning
algorithm uses the action set defined in (10), the state defined in
(9) and the epsilon-greedy policy. The reward function defined
in (13) consists of two subparts: the reward for choosing an
action that does not increase energy consumption (ΥL

ja
− 1)

over threshold e, and the reward for selecting a destination that
did not lead to a deadline violation (1−E(vja))+VLja ∗E(vja)).
Where VLja , determines the magnitude of the negative reward if
a deadline violation occurred when it could have been prevented
if the task had been sent to the MEC server (E(vjm) = 0),
the task was performed locally (E(vjr) = 0), the task was
performed by another UAV (∃j′ ∈ (J /(jr∪ja))(E(vj′)) = 0),
or a deadline violation was inevitable.

R = (ΥL
ja − 1) + (1− E(vja)) + VLja ∗ E(vja) (13)

ΥL
ja =


2, if E(ΥR

ja
)−maxj′∈J (E(ΥR

j′)) ≥ −e
0, if E(ΥR

ja
)−maxj′∈J (E(ΥR

j′)) ≤ −2e

1, otherwise,
(14)

0 5 10 15 20 25 30 35 40
Number of Episodes (250 Episodes per tick)

0

20

40

60

80

100
Cu

m
ul

at
iv

e
Re

wa
rd

 in
 O

ne
 E

pi
so

de
UAV:1
UAV:2
UAV:3
UAV:4

Fig. 2. Reward convergence for RQ method.

VLja =


−40, if E(vjm) = 0

−20, if E(vjr) = 0

−10, if ∃j′ ∈ (J /(jr ∪ ja))(E(vj′)) = 0

−1, otherwise.

(15)

4) Deep Risk Sensitive (DRS) Reinforcement Learning: We
extended Pamuklu et al.’s work in [13] by adding deep learning
to their risk-sensitive approach. Instead of using Q-tables to
predict the risk and reward Q-values, we used deep neural
networks. Deep learning enabled us to extend the state space
to include transmission delays between IoT devices and UAVs,
UAVs to UAVs, and UAVs to MEC. The state space is defined
in (9). The action set is defined in (10). For each action, the
reward and risk is evaluated separately. The reward evaluates
how close the agent’s action came to achieving objective P2 in
[13]. It is defined as follows,

RDRS = −
[
W ∗ (ΥL

ja − 1)− 1−W
ΘM

∗∆ja

]
, (16)

where the (ΥL
ja
− 1) portion is proportional to how the

action impacted the battery level of the computing resource
that computed the task. ∆ja is the mean uplink delay of the
computing resource a after the task was added to its queue.

The risk function can be defined as

C =

{
−VLja , if state ∈ RS
−1, otherwise

(17)

Where: RS = {r|r ⊂ S, and E(vja)}

It addresses the risk constraint defined in the objective function
[13]. If the agent reaches a risk state, then the agent will be
penalized. The magnitude of that penalization is determined by
VLja . If a deadline could have been avoided, then the magnitude
of VLja is high, otherwise, it is low.

IV. PERFORMANCE EVALUATION

In order to simulate our MEC-aided UAV smart farm net-
work, we used Simu5G [19]. It is a 5G network simulation

UAV1 UAV2 UAV3 UAV4
UAVs

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

En
er

gy
 %

DRS QHEF RR DQL RQ

Fig. 3. Remaining battery levels for all UAVs across the network.

library that runs on a network simulator platform called Om-
net++ [20]. Our simulation network consisted of sixteen IoT
devices (X = 16), four UAVs (J = 4), and one MEC server
(L = 1). The IoT devices generated three types of tasks
(K = 3), fire detection, pest detection, and growth monitoring.
Table I shows the parameters that we used for each task during
our simulation. The tasks’ interarrival time (1/λ) followed
an exponential distribution. Each task had a unique deadline
(γD〈j,t〉), and the deadlines for all fire detection, pest detection
and growth monitoring tasks were 1s, 2s, and 15s respectively.
The MEC processing times for each task (γP〈j,t〉 (MEC)) were
lower than the UAVs’ processing times (γP〈j,t〉 (UAV)) because
we assumed that the MEC server had more computing resources
and therefore will compute the tasks faster.

For the energy consumption, the following parameters were
used with (1), UAVs with index 0 and 1 had full battery capacity
(ΥB

j′) of 570 watt-hours, meanwhile, UAVs with index 2 and
3’s full battery capacity was 627 watt-hours. Hovering (ΥH

j′)
consumed 211 watt-hours. The antenna (ΥA

j′) needed 17 watt-
hours. In order to operate the CPU1 we needed 4320 watt-hours
if the CPU is idle (ΥI

j′) and 12960 watt-hours if the CPU is
computing a task (ΥC

j′).
We used the following reinforcement learning parameters,

a learning rate of 0.05 and a discount factor of 0.85. Our
simulation time was 5s (T = 5). We trained our model using
a dataset of 100 recorded simulations. In terms of the cost
function parameters for our Risk Quantifying method, we used
an energy risk growth value of 2 (g = 2), fire task end-to-end
delay risk growth value of 8 (s = 8), and other task risk growth
value of 1 (w = 1). For the risk measurement, we used an α
value of 2. In RQ’s reward function, β = 0.75.

1Idle and running CPU energy consumptions are selected based on limited
simulation time. Thus, UAVs that will operate for ten hours can be simulated,
and the difference in energy performance between the methods can be tested.

RR QHEF DQL DRS RQ
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

of

 D
ea

dl
in

e
Vi

ol
at

io
ns

fire
pest
growth

Fig. 4. Deadline violation distribution per task type.

TABLE I
SIMULATION TASKS’ PARAMETERS FROM [13]

Task Type (1/λ) γD〈j,t〉
γP〈j,t〉
(UAV)

γP〈j,t〉
(MEC)

Fire detection 0.25s 1s 0.1s 0.05s
Pest detection 0.25s 2s 0.2s 0.1s
Growth monitoring 0.5s 15s 1.5s 0.75s

A. Simulation Results

Every key performance indicator plot shows the average
results over 10 runs with different seeds.

1) Convergence: Fig. 2 demonstrates the cumulative reward
for the proposed RQ method after 10000 episodes. We can see
that the reward converges after 8750 episodes. Each UAV is
an independently trained agent and has its own deep neural
network to predict the most accurate Q-value. Despite being
independent of one another, they all have similar performances
and converged towards the same value at the end of the training
period.

2) Remaining Energy Level: The remaining energy level
is a KPI used to determine how long the UAV network can
remain hovering. A high remaining energy level signifies that
the UAV can hover for a longer period of time, whereas a low
remaining energy level indicates that the UAV will not hover
for a long period of time. In Fig. 3, QHEF had the highest
minimum remaining energy level at 97.04%, and DQL was
not far behind at 96.97%. RQ’s minimum remaining energy
level was 96.65% which is 0.39 lower than QHEF, meaning
the difference between their performances is not significant.

3) Deadline Violations: A deadline violation occurs when
the uplink delay exceeds the task’s deadline. The RQ had the
lowest percentage of deadline violations. The ML algorithms
outperformed all other algorithms because they made deadline
violation a focus in their objective functions. In Fig. 4, we
can see that the RQ method was able to outperform the deep
risk-sensitive method because it was able to eliminate fire task

UAV1 UAV2 UAV3 UAV4 MEC Average
Nodes

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
la

y
(s

)

RR QHEF DQL DRS RQ

Fig. 5. Uplink delay distribution per node.

deadline violations. For all the other methods, the fire task made
up most of their deadline violations.

4) Mean Uplink Delay: The uplink delay is the sum of
all the transmission delays involved with sending the task
to the destination computing resource, the queuing time, and
CPU processing time. Fig. 5 illustrates the uplink delay for
each algorithm across every node in the network. We can see
that the RQ method had the lowest average uplink delay at
around 0.6 seconds. This is because it has a cost function that
considers the end-to-end delay, and the more the uplink delay
exceeds the task’s deadline, the higher the cost. This would then
lead to the agent’s risk costs increasing. The ML algorithms
outperformed the heuristic algorithms in uplink delay because
they could self-adjust their destination-finding rules and adapt
to new situations; meanwhile, the RR and QHEF algorithms
had fixed rules.

V. CONCLUSION

In this study, we presented machine learning algorithms
with awareness of risk quantification in an IoT-aided smart
farm setting. We used two different techniques to identify risk
behaviors in order to train the agent to avoid such behaviors
that can lead to severe consequences. The first technique was an
extension of our previous study, where we had a separate state
to identify whether the agent had entered a risky situation. The
second technique used cost functions to evaluate the potential
damages of each action and used a risk parameter based on
CVaR in order to evaluate the agent’s decision-making. We
compared our techniques with another deep RL technique and
two non-machine learning heuristic algorithms and saw that the
risk parameter technique (RQ) was able to completely avoid
the risky behavior which is exceeding the deadline on a fire
recognition task. This, in turn, reduced the total number of
deadline violations and the mean uplink delay. In the future,
we would like to include multi-UAV trajectory planning into
our problem.

ACKNOWLEDGEMENT

This work is supported by MITACS Canada Accelerate
program in collaboration with Nokia Bell Labs.

REFERENCES

[1] S. Qazi, B. A. Khawaja, and Q. U. Farooq, “IoT-equipped and AI-enabled
next generation smart agriculture: A critical review, current challenges and
future trends,” IEEE Access, vol. 10, pp. 21219–21235, 2022.

[2] S. Mollahasani, T. Pamuklu, R. Wilson, and M. Erol-Kantarci, “Energy-
aware dynamic DU selection and NF relocation in O-RAN using ac-
tor–critic learning,” Sensors, vol. 22, p. 5029, Jul 2022.

[3] F. Khoramnejad, R. Joda, A. B. Sediq, H. Abou-Zeid, R. Atawia,
G. Boudreau, and M. Erol-Kantarci, “Delay-Aware and Energy-Efficient
Carrier Aggregation in 5G using Double Deep Q-Networks,” IEEE
Transactions on Communications, vol. 70, no. 10, pp. 6615–6629, 2022.

[4] T. Pamuklu, M. Erol-Kantarci, and C. Ersoy, “Reinforcement learning
based dynamic function splitting in disaggregated green open RANs,”
in ICC 2021 - IEEE International Conference on Communications, Jun
2021.

[5] M. Abrar, U. Ajmal, Z. M. Almohaimeed, X. Gui, R. Akram, and
R. Masroor, “Energy efficient UAV-enabled mobile edge computing for
IoT devices: A review,” IEEE Access, vol. 9, pp. 127779–127798, 2021.

[6] M. Sun, X. Xu, X. Qin, and P. Zhang, “AoI-energy-aware UAV-assisted
data collection for IoT networks: A deep reinforcement learning method,”
IEEE Internet of Things Journal, vol. 8, no. 24, pp. 17275–17289, 2021.

[7] M. A. Ebrahim, G. A. Ebrahim, H. K. Mohamed, and S. O. Abdellatif,
“A deep learning approach for task offloading in multi-UAV aided mobile
edge computing,” IEEE Access, vol. 10, pp. 1–1, Sep 2022.

[8] A. Sacco, F. Esposito, G. Marchetto, and P. Montuschi, “A self-learning
strategy for task offloading in UAV networks,” IEEE Transactions on
Vehicular Technology, vol. 71, no. 4, pp. 4301–4311, 2022.

[9] N. Zhao, Z. Ye, Y. Pei, Y. C. Liang, and D. Niyato, “Multi-agent deep
reinforcement learning for task offloading in UAV-assisted mobile edge
computing,” IEEE Transactions on Wireless Communications, vol. 21,
no. 9, pp. 6949–6960, 2022.

[10] C. Yang, B. Liu, H. Li, B. Li, K. Xie, and S. Xie, “Learning based chan-
nel allocation and task offloading in temporary UAV-assisted vehicular
edge computing networks,” IEEE Transactions on Vehicular Technology,
vol. 71, no. 9, pp. 9884–9895, 2022.

[11] A. C. Nguyen, T. Pamuklu, A. Syed, W. S. Kennedy, and M. Erol-
Kantarci, “Reinforcement learning-based deadline and battery-aware of-
floading in smart farm IoT-UAV networks,” in ICC 2022 - IEEE Inter-
national Conference on Communications, pp. 189–194, 2022.

[12] A. C. Nguyen, T. Pamuklu, A. Syed, W. S. Kennedy, and M. Erol-
Kantarci, “Deep reinforcement learning for task offloading in UAV-aided
smart farm networks,” in IEEE FNWF, Sep 2022.

[13] T. Pamuklu, A. C. Nguyen, A. Syed, W. S. Kennedy, and M. Erol-
Kantarci, “IoT-aerial base station task offloading with risk-sensitive
reinforcement learning for smart agriculture,” IEEE Transactions on
Green Communications and Networking, pp. 1–1, 2022.

[14] R. T. Rockafellar, S. Uryasev, et al., “Optimization of conditional value-
at-risk,” Journal of risk, vol. 2, pp. 21–42, 2000.

[15] W. F. Sharpe, “The sharpe ratio,” The Journal of Portfolio Management,
vol. 21, no. 1, p. 49–58, 1994.

[16] F. A. Sortino and L. N. Price, “Performance measurement in a downside
risk framework,” The Journal of Investing, vol. 3, no. 3, p. 59–64, 1994.

[17] N. I. A. Apandi, S. Tian, W. Hardjawana, P. L. Yeoh, and B. Vucetic,
“Sharpe ratio for joint user association and subcarrier allocation design
in downlink heterogeneous cellular networks,” in IEEE 28th Annual
International Symposium on Personal, Indoor, and Mobile Radio Com-
munications, pp. 1–5, 2017.

[18] B. Zhou, W. Saad, M. Bennis, and P. Popovski, “Risk-aware optimization
of age of information in the internet of things,” in International Confer-
ence on Communications, pp. 1–6, IEEE, 2020.

[19] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, “Simu5g–an
omnet++ library for end-to-end performance evaluation of 5G networks,”
IEEE Access, vol. 8, pp. 181176–181191, 2020.

[20] OpenSim Ltd., “What is OMNeT++?,” 2019.

	I Introduction
	II System Model
	III Risk Quantifying (RQ) Method
	III-A Deep Risk Sensitive Learning with Risk Measurement
	III-A1 Objective
	III-A2 Risk Cost Functions
	III-A3 Risk Measurement
	III-A4 Markov Decision Process Definition

	III-B Baseline Methods
	III-B1 Round Robin (RR)
	III-B2 Lowest Queue Time and Highest Energy First (QHEF)
	III-B3 Deep Q-Learning
	III-B4 Deep Risk Sensitive (DRS) Reinforcement Learning

	IV Performance Evaluation
	IV-A Simulation Results
	IV-A1 Convergence
	IV-A2 Remaining Energy Level
	IV-A3 Deadline Violations
	IV-A4 Mean Uplink Delay

	V Conclusion
	References

